Calculates unweighted kappa and kappa with linear and quadratic weightings, along with some other measures of concordance.
Calculates unweighted kappa and kappa with linear and quadratic weightings, along with some other measures of concordance.
This page will compute the One-Way ANOVA for up to five samples. The design can be either for independent samples or correlated samples (repeated measures or randomized blocks). This page will also perform pair-wise comparisons of sample means via the Tukey HSD test
This page will perform a two-way factorial analysis of variance for designs in which there are 2-4 levels of each of two variables, A and B, with each subject measured under each of the AxB combinations.
This page will compute the Two-Way Factorial ANOVA for Independent Samples, for up to four rows by four columns. This page will also calculate the critical values of Tukey's HSD for purposes of post-ANOVA comparisons.
This page calculates the Poisson distribution that most closely fits an observed frequency distribution, as determined by the method of least squares. Users enter observed frequencies, and the page returns the fitted Poisson frequencies, the mean and variance of the observed distribution and the fitted Poisson distribution, and R-squared.
This page will perform the procedure for up to k=12 sample values of r, with a minimum of k=2. It will also perform a chi-square test for the homogeneity of the k values of r, with df=k-1. The several values of r can be regarded as coming from the same population only if the observed chi-square value proves the be non-significant.
This calculator returns the value of t for the difference between the means of two correlated samples, for sample sizes up to 10. Users are prompted for sample size as the page opens. It will also calculate various summary statistics for the two samples.
This chapter of the "Concepts and Applications of Inferential Statistics" online textbook describes in detail the Kruskal-Wallis test, it's formulas, variables, and procedures using an example involving wine-tasters.
As the page opens, you will be prompted to enter two sample size values, na and nb. If the samples are of different sizes, the larger of the two should be designated as sample A. If you are starting out with raw (unranked) data, the necessary rank- ordering will be performed automatically.
Beginning with a set of n paired values of Xa and Xb, this page will perform the necessary rank- ordering along with all other steps appropriate to the Wilcoxon test. As the page opens, you will be prompted to enter the number of paired values of Xa and Xb.