Sorry, you need to enable JavaScript to visit this website.

Teaching Bayesian and frequentist methods side-by-side


With John Kruschke (Indiana University)


Abstract

Frequentist and Bayesian statistical methods typically are taught in separate courses. I propose instead that frequentist and Bayesian methods can be fruitfully taught together. By setting the two approaches side by side, the goals and concepts of each approach are delineated more clearly. The teaching framework incorporates the essential topics of (i) hypothesis testing and (ii) estimation with uncertainty. The progression of topics is guided with a two-by-two table (based on the framework of Kruschke & Liddell, 2018). The table has columns for frequentist and Bayesian approaches, and rows for hypothesis testing and estimation with uncertainty. Teaching and learning are facilitated by an interactive Shiny app, arranged in a corresponding table. The app juxtaposes the different information provided by the different approaches, and interactively reveals dependencies of each approach on different assumptions. The teaching framework integrates the introduction of Bayesian methods and clarifies frequentist ideas.

Reference cited: Kruschke, J. K. and Liddell, T. M. (2018). The Bayesian new statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic Bulletin & Review, 25, 178-206. DOI: https://doi.org/10.3758/s13423-016-1221-4


Recording

list