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Why Teach Bayesian?
• Bayesian is valuable in real 

applications; sought by researchers
• Bayesian is easy to teach; easier than 

frequentist
• Bayesian clarifies frequentist ideas
à Bayesian should be in curriculum
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Bayesian is Valuable in Real 
Applications

Examples from personal experience:
ü in quadratic logistic regression, need credible 

interval on the position of the nadir of parabola
ü need simultaneous estimation of regression 

coefficients and latent scale values of items 
(with credible intervals) for end-censored data

ü need models for unbalanced designs, with 
empty cells, heterogeneous variances, outliers, 
in customized hierarchical structure

ü need variety of customized, specialized trend 
models, w. credible intervals on all parameters

All are straight forward in Bayesian.
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Bayesian is Sought by Researchers
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45 workshops with audiences of working professionals 
and graduate students from 
• academia (econ, educ, climate sci, bio, cognitive sci, etc.)
• business and industry                                            

(retail sales, charitable giving, food production, etc.)
• government                                                 

(human factors @FAA, survival analysis @FDA, etc.)



Bayesian is Easy to Teach
(and easier than frequentist)
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• I was initially driven to Bayesian by 
aversion to teaching frequentist     
(and experienced extraordinary research 
usefulness later)

• I’ve taught frequentist and Bayesian 
courses separately for years…



A Tale of Two Courses
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Frequentist Bayesian
Fundamental concepts: data and models
sampling distrib’s, 

p values, 
confidence intervals,
test & stop intentions

Bayesian re-allocation 
of credibility across 
parameter values, 

MCMC representation
Generalized Linear Model: 
dependent variable types 

metric, dichotomous, nominal, ordinal, count.
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Bayesian Clarifies Frequentist Ideas
“The p value is not the probability of the null 
hypothesis!”

“What is?” 
Answer from Bayesian…
Aha: The p value is about imaginary data.

“The 95% confidence interval is not the range of 
most probable values!”

“What is?” 
Answer from Bayesian…
Aha: The CI is about not-rejected values.
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How to Include Bayesian?
• Replace stand-alone frequentist course? 

No: frequentist methods are entrenched, and do 
address the issue of error rates.

• Add optional stand-alone Bayesian course? 
No: students won’t take it and instructors won’t prep it.

• Add required stand-alone Bayesian course? 
No: won’t be required any time soon.

• Any separate courses?
No: Juxtaposition can clarify both approaches.

à Inject Bayesian+frequentist into existing 
courses
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How to Inject Bayesian+Frequentist
into Existing Courses

Need: A module that
• is self-contained (minimizes teacher prep)
• has a complete tutorial explaining 

Bayesian and frequentist analyses
• has interactive software (browser-based, 

no installation needed)
• has interactive exercises
• has clear learning objectives and 

assessment
Accomplished by new Shiny App
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Overview of the Shiny App
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Screen Layout of the App
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Data 
specification

Frequentist Bayesian

Estimate 
with 

Uncertainty

maximum 
likelihood estimate 

(MLE) with 
confidence interval 

(CI)

posterior 
distribution with 
highest density 
interval (HDI)

Null 
Hypothesis 

Test
p value Bayes factor & 

posterior prob’s
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Why teach hypothesis testing 
and estimation with uncertainty

• They have different goals: 
• Hypothesis testing seeks decision 

regarding a specific hypothesis.
• Estimation with uncertainty seeks 

description of data with 
precision.

• Hypothesis testing is traditional and 
ubiquitous 
• but has issues (e.g., cognitive trap of 

“black and white thinking”).
• Estimation with uncertainty is 

encouraged by best practices (e.g., 
ASA Statement, Am. Stat. Beyond p<.05)

© John K. Kruschke, 2019 17

• Juxtaposition 
clarifies both.

• Estimation w. 
uncertainty is 
more intuitive 
and easier to 
teach.
• App’s default 

view has no 
hypothesis 
tests!



Simultaneous info for all analyses
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Data 
specification

Frequentist Bayesian

Estimate 
with 

Uncertainty
ü ü

Null 
Hypothesis 

Test
ü ü



Interactive controls for assumptions
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Observe all influences simultaneously
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Application: Translate situation to settings
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Intended Learning Outcomes
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In-depth understanding 
of frequentist and 
Bayesian analyses and 
their inter-relation. 
Achieved interactively by 
manipulating the sliders, 
watching what happens, 
and figuring out why.

In-depth understanding 
of  how to apply to real 
situations. 
Achieved interactively by 
translating situation to 
settings of the sliders. The 
app makes explicit what info 
needs to be found.



Assessing Learning Outcomes
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Be able to predict the 
qualitative effect of 
every slider and 
button on the results 
in every cell of the 
table, and explain 
why.

Be able to set the 
sliders appropriately 
to reflect real-world 
scenarios, and explain 
why.



Extensive Online Tutorial
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Interactive “Try It!” Exercises
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A Tour of the Shiny App
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Ordering of topics
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1. The Data
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1. The Data
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2. The Model
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2. The Model

© John K. Kruschke, 2019 33



2. The Model
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A model is 
a data-
generating 
machine 
with control 
knobs 
called 
parameters.



2. The Model
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3. Frequentist (point) Estimation

© John K. Kruschke, 2019 36

1 2

3



3. Frequentist (point) Estimation

© John K. Kruschke, 2019 37



3. Frequentist (point) Estimation
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4. Bayesian Estimation
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Two Foundational Ideas of 
Bayesian Reasoning

1. Bayesian reasoning is re-allocation of 
credibility across possibilities.

2. The possibilities are parameter values in a 
mathematical model of data.
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Bayesian reasoning is re-allocation 
of credibility across possibilities.

41

Sherlock Holmes: “How often have I said 
to you that when you have eliminated the 
impossible, whatever remains, however 
improbable, must be the truth?” 

(Doyle, 1890)

© John K. Kruschke, 2019



42© John K. Kruschke, 2019



43© John K. Kruschke, 2019



44© John K. Kruschke, 2019



45© John K. Kruschke, 2019



46© John K. Kruschke, 2019



47© John K. Kruschke, 2019



Two Foundational Ideas of 
Bayesian Reasoning

1. Bayesian reasoning is re-allocation of 
credibility across possibilities.

2. The possibilities are parameter values in a 
mathematical model of data.
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The tendency of a coin to come up heads

49

Data values:
y=1 for “heads”  and  y=0 for “tails”

The tendency for heads is the 
value of the parameter q:

p(y=1|q) = q
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11 discrete 
candidate values 
for q
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4. Bayesian Estimation
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4. Bayesian Estimation

© John K. Kruschke, 2019 57



4. Bayesian Estimation
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95% highest 
density interval 
(HDI): contains the 
95% most probable 
parameter values.



4. Bayesian Estimation
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Notice: Posterior modes track data. HDI is narrower for smaller SD, & for larger N.



4. Bayesian Estimation
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Notice: Any broad prior has minimal influence on posterior.



What If There Were No Significance Tests?
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Hypothesis Testing
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5. Bayesian Hypothesis Testing
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5. Bayesian Hypothesis Testing
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5. Bayesian Hypothesis Testing
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µ0



5. Bayesian Hypothesis Testing
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Bayes factor: BFnull
is shift of probability 
toward null hypothesis



5. Bayesian Hypothesis Testing
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Notice: When data mean is close to µ0 then BFnull is greater than 1.0; etc. 



5. Bayesian Hypothesis Testing
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Notice: BFnull is shift of prob, not the posterior prob of null. 



5. Bayesian Hypothesis Testing
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Notice: BFnull is strongly affected by SD of prior (but HDI is not).



5. Bayesian Hypothesis Testing
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Notice: Prior on parameter is not same as prior on null model.

This Photo by Unknown Author is licensed under CC BY-ND

http://nemanquezpas.blogspot.com/2011/01/cerveja-duff-dos-simpsons-franca.html
https://creativecommons.org/licenses/by-nd/3.0/


6. Frequentist Hypothesis Testing
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6. Frequentist Hypothesis Testing
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6. Frequentist Hypothesis Testing
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6. Frequentist Hypothesis Testing
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Notice: When data mean is close to µ0 then p is large; etc. 



6. Frequentist Hypothesis Testing
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Notice: Multiple tests imply more stringent alpha.



6. Frequentist Hypothesis Testing
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Notice: Larger typical N implies smaller p values (and narrower CI’s).



6. Frequentist Hypothesis Testing
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7. Frequentist Uncertainty
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7. Frequentist Uncertainty
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The 95% Confidence Interval 
is 

the parameter values 
not rejected at p < .05

i.e.,
the parameter values

with p ≥ .05



7. Frequentist Uncertainty
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7. Frequentist Uncertainty
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7. Frequentist Uncertainty

© John K. Kruschke, 2019 82



Review: Compare info side by side
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Review: What sliders do not affect

© John K. Kruschke, 2019 84



Reprise: Learning Outcomes
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Be able to predict the 
qualitative effect of 
every slider and 
button on the results 
in every cell of the 
table, and explain 
why.

Be able to set the 
sliders appropriately 
to reflect real-world 
scenarios, and explain 
why.



How to Improve the App?
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• Guidelines for where and how to insert 
into existing classes?
• Sub-modules? With videos?
• Specific exercise sets and quiz banks?
• Simpler, one-parameter version?          

(could not show corrections for multiple tests)
• Software that allows inserting user data?

(would be challenging in Shiny) 
• Discuss at Breakout Session!



How to Get Teachers to Adopt the App?
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• More arguments in favor of Bayesian? 
• Demo’s of how intuitive and easy Bayesian is?
• Examples of how juxtaposition clarifies both?
• More arguments against frequentist? (people 

react badly to this)
• Evidence of efficaciousness?
• Endorsement by agencies, societies, leading 

instructors?
• Discuss at Breakout Session!
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The AppThe Tutorial
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Thank you!
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