Resource Library

Advanced Search | Displaying 591 - 600 of 1114
  • This hands-on activity is appropriate for a lab or discussion section for an introductory statistics class, with 8 to 40 students. Each student performs a binomial experiment and computes a confidence interval for the true binomial probability. Teams of four students combine their results into one confidence interval, then the entire class combines results into one confidence interval. Results are displayed graphically on an overhead transparency, much like confidence intervals would be displayed in a meta-analysis. Results are discussed and generalized to larger issues about estimating binomial proportions/probabilities.
    0
    No votes yet
  • This activity illustrates the convergence of long run relative frequency to the true probability. The psychic ability of a student from the class is studied using an applet. The student is asked to repeatedly guess the outcome of a virtual coin toss. The instructor enters the student's guesses and the applet plots the percentage of correct answers versus the number of attempts. With the applet, many guesses can be entered very quickly. If the student is truly a psychic, the percentage correct will converge to a value above 0.5.
    0
    No votes yet
  • This activity allows students to explore the relationship between sample size and the variability of the sampling distribution of the mean. Students use a Java applet to specify the shape of the "parent" distribution and two sample sizes. The simulation then samples from the parent distribution to approximate the sampling distributions for the two sample sizes. Students can see both sampling distributions at the same time making them easy to compare. The activity also allows students to determine the probability of extreme sample means for the different sample sizes so that they can discover that small sample sizes are much more likely than large samples to produce extreme values. Keywords: sampling distribution, sample size, simulation
    0
    No votes yet
  • This activity makes use of a campus-based resource to develop a "capstone" project for a survey sampling course. Students work in small groups and use a complex sampling design to estimate the number of new books in the university library given a budget for data collection. They will conduct a pilot study using some of their budget, receive feedback from the instructor, then complete data collection and write a final report.
    0
    No votes yet
  • This activity is an example of Cooperative Learning in Statistics. It uses student's own data to introduce bivariate relationship using hand size to predict height. Students enter their data through a real-time online database. Data from different classes are stored and accumulated in the database. This real-time database approach speeds up the data gathering process and shifts the data entry and cleansing from instructor to engaging students in the process of data production. Key words: Regression, correlation data collection, body measurements
    0
    No votes yet
  • Because surveys are increasingly common in the medical literature, readers need to be able to critically evaluate the survey method. Two questions are fundamental: 1) Who do the respondents represent? 2) What do their answers mean? This lecture example discusses survey sampling terms and aspects of interpreting survey results.
    0
    No votes yet
  • This lecture example discusses calculating chance with probabilities (a ratio of occurrence to the whole) or odds (a ratio of occurrence to nonoccurrence). It presents a clinical example of measuring the chance of initiating breastfeeding among 1000 new mothers. Tables are provided in pdf format.
    0
    No votes yet
  • The Numbers Guy examines numbers in the news, business and politics. Some numbers are flat-out wrong or biased, while others are valid and help us make informed decisions. Carl Bialik tells the stories behind the stats, in daily updates on this blog and in his column published every other Friday in The Wall Street Journal.
    0
    No votes yet
  • This text article gives a relatively short description of the concept of p-values and statistical significance. This article aimed at health professionals frames the idea of statistical significance in the setting of a weight loss program. In addition to discussing p-values and comparing them with confidence intervals, the article touches on the ideas of practical significance and the fact that the significance of 0.05 is arbitrary.
    0
    No votes yet
  • This applet generates confidence intervals for means or proportions. The options for confidence intervals for means include "z with sigma," "z with s," or "t." The options for confidence intervals for proportions are "Wald," "Adjusted Wald," or "Score." Users set the population parameters, sample size, number of intervals, and confidence level. Click "Sample," and the applet will graph the intervals. Intervals shown in green contain the true population mean or proportion, while intervals in red do not. The true mean or proportion is shown by a blue line. The applet displays the proportion of intervals containing the population parameter for each sample and a running total of all the samples. Users can also click on a particular interval to display the numerical interval or sort the displayed confidence intervals from smallest to largest. This applet is part of a collection designed to accompany the textbook "Investigating Statistical Concepts, Applications, and Methods" (ISCAM) and is used in Exploration 4.3 on page 327, Investigation 4.3.6 on page 331, and Exploration 4.4 on page 350. This applet also supplements "Workshop Statistics: Discovery with Data," 2nd edition, Activity 19-5 on page 403. Additional materials written for use with these applets can be found at http://www.mathspace.com/NSF_ProbStat/Teaching_Materials/rowell/final/16_cireview_bc322_2.doc and http://www.mathspace.com/NSF_ProbStat/Teaching_Materials/rowell/final/15_sampdistreview_bc322_1.doc.
    0
    No votes yet

Pages

register