Sorry, you need to enable JavaScript to visit this website.

Probability

  • The objective of this course is to learn and apply statistical methods for the analysis of data that have been observed over time.  Our challenge in this course is to account for the correlation between measurements that are close in time. Perfect for students and teachers wanting to learn/acquire materials for this topic.

    0
    No votes yet
  • Those who complete this course will be able to select appropriate methods of multivariate data analysis, given multivariate data and study objectives; write SAS and/or Minitab programs to carry out multivariate data analyses; and interpret results of multivariate data analyses.  Perfect for students and teachers wanting to learn/acquire materials for this topic.

    0
    No votes yet
  • The focus of this class is a multivariate analysis of discrete data. We will learn basic statistical methods and discuss issues relevant for the analysis of some discrete distribution, cross-classified tables of counts, (i.e., contingency tables), success/failure records, questionnaire items, judge's ratings, etc. Being familiar with matrix algebra is helpful in completing this course.  Perfect for students and teachers wanting to learn/acquire materials for this topic.

    0
    No votes yet
  • This text explains the differences between t-tests, z-tests, tests with proportions, and tests of correlation.

    0
    No votes yet
  • Online Statistics: An Interactive Multimedia Course of Study is a resource for learning and teaching introductory statistics. It contains material presented in textbook format and as video presentations. This resource features interactive demonstrations and simulations, case studies, and an analysis lab. 

    0
    No votes yet
  • A collection of Java applets and simulations covering a range of topics (descriptive statistics, confidence intervals, regression, effect size, ANOVA, etc.).

    0
    No votes yet
  • A song for use in helping students to apply Bayes Theorem and examine marginal and conditional proportions in a table to see how, for rare conditions, most positive test results may be false positives.  Lyrics and music by Tom Toce copyright 2015.  This song is part of an NSF-funded library of interactive songs that involved students creating responses to prompts that are then included in the lyrics (see www.causeweb.org/smiles for the interactive version of the song, a short reading covering the topic, and an assessment item).

    0
    No votes yet
  • RStudio Cloud makes it easy for professionals, hobbyists, trainers, teachers and students to do, share, teach and learn data science using R.  Create analyses using RStudio directly from your browser - there is no software to install and nothing to configure on your computer.  Share your projects - and access those of others - without worrying about data transfer or package installation. Each project defines its own environment, and RStudio Cloud automatically reproduces that environment whenever anyone accesses the project.  It’s easy to share analyses with the world - but it’s also simple to collaborate with a select group in a private space. You control who can enter a space - and via roles, you have fine grained control over what each user can do.  There are also many learning materials available: interactive tutorials covering the basics of data science, cheatsheets for working with popular R packages, links to Datacamp courses, and a guide to using RStudio Cloud.

    0
    No votes yet
  • CATS, established in 1978, promotes the statistical sciences, statistical education, statistics applications, and related issues affecting the statistics community. The mission and scope of CATS evolved over time as interdisciplinary collaboration increasingly shaped the character of scientific research. After a brief hiatus, CATS was reconstituted in 2011 and has since focused on improving the visibility and practice of statistics within government agencies not well connected to statistics, increasing attention to statistical issues of big data and data science, and helping agencies identify bottlenecks impairing their analysis capabilities. Its multidisciplinary members are experts from statistics and related fields and leaders in diverse areas of interdisciplinary research, including the analysis of large-scale data, computational biology and bioinformatics, spatial data, environmental science, neuroscience, health care policy, and complex computer experiments.

    0
    No votes yet
  • How can we accurately model the unpredictable world around us? How can we reason precisely about randomness? This course will guide you through the most important and enjoyable ideas in probability to help you cultivate a more quantitative worldview.

    By the end of this course, you’ll master the fundamentals of probability and random variables, and you’ll apply them to a wide array of problems, from games and sports to economics and science.  This course includes 62 interactive quizzes and more than 400 probabilty-based problems with solutions.  Access to this course requires users to sign up for a free account.

    0
    No votes yet

Pages

list