# Data Presentation

• ### Song: Empirical Rule

A song to help students remember the empirical rule that it is rare to see an observation more than three sd's away from the mean, while about 19 out of 20 will fall within two sd's and about 2 out of 3 within one sd.  The lyrics were weritten in 2017 by Lawrence M Lesser from The University of Texas at El Paso and may be sung to the tune of "Material Girl" written by Peter Brown and Robert Rans and populartized by Madonna.

• ### Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis

This NASA-HANDBOOK is published by the National Aeronautics and Space Administration (NASA) to provide a Bayesian foundation for framing probabilistic problems and performing inference on these problems. It is aimed at scientists and engineers and provides an analytical structure for combining data and information from various sources to generate estimates of the parameters of uncertainty distributions used in risk and reliability models. The overall approach taken in this document is to give both a broad perspective on data analysis issues and a narrow focus on the methods required to implement a comprehensive database repository.

• ### Using the Bootstrap Method for a Statistical Significance Test of Differences Between Summary Histograms

Dr. Kuan-Man Xu from the NASA Langley Reserach Center writes, "A new method is proposed to compare statistical differences between summary histograms, which are the histograms summed over a large ensemble of individual histograms. It consists of choosing a distance statistic for measuring the difference between summary histograms and using a bootstrap procedure to calculate the statistical significance level. Bootstrapping is an approach to statistical inference that makes few assumptions about the underlying probability distribution that describes the data. Three distance statistics are compared in this study. They are the Euclidean distance, the Jeffries-Matusita distance and the Kuiper distance. "

• ### The Statistics of Visual Representation

This paper comes from researchers at the NASA Langley Research Center and College of William & Mary.

"The experience of retinex image processing has prompted us to reconsider fundamental aspects of imaging and image processing. Foremost is the idea that a good visual representation requires a non-linear transformation of the recorded (approximately linear) image data. Further, this transformation appears to converge on a specific distribution. Here we investigate the connection between numerical and visual phenomena. Specifically the questions explored are: (1) Is there a well-defined consistent statistical character associated with good visual representations? (2) Does there exist an ideal visual image? And (3) what are its statistical properties?"

• ### Probability and Statistics in Aerospace Engineering

This resource was prepared to give the practicing engineer a clear understanding of probability and statistics with special consideration to problems frequently encountered in aerospace engineering. It is conceived to be both a desktop reference and a refresher for aerospace engineers in government and industry. It could also be used as a supplement to standard texts for in-house training courses on the subject.

• ### Introduction to Statistics (NASA Lesson)

These pages explain the following basic statistics concepts: mean, median, mode, variance, standard deviation and correlation coefficient (with example from the Institute on Climate and Planets).

• ### Using Computers for Statistical Analysis (NASA Activity)

This lesson introduces students to creating spreadsheets for statistical analysis.

• ### Team Extreme: The Statistics of Success (NASA Activity)

This program focuses on the teamwork required to produce a successful mission and the importance of statistics in project design and management. Using the video and a hands-on lesson, students learn about statistical analysis and how people use statistics, such as mean, median, mode and range, to make decisions. Members of the Penske Racing Team and engineers from Pratt & Whitney Rocketdyne help students investigate the relationship between work, energy and power as they look at race car design, the space shuttle and the International Space Station.

• ### The White Glove Test: Discovering Dust in the Solar System (NASA Activity)

The Student Dust Counter is an instrument aboard the NASA New Horizons mission to Pluto, launched in 2006. As it travels to Pluto and beyond, SDC will provide information on the dust that strikes the spacecraft during its 14-year journey across the solar system. These observations will advance our understanding of the origin and evolution of our own solar system, as well as help scientists study planet formation in dust disks around other stars.

In this lesson, students explore the SDC data interface to establish any trends in the dust distribution in the solar system. Students record the number of dust particles, "hits," recorded by the instrument and the average mass of the particles in a given region.

• ### A Dusty Dilemma (NASA Activity)

The Student Dust Counter is an instrument aboard the NASA New Horizons mission to Pluto, launched in 2006. As it travels to Pluto and beyond, SDC will provide information on the dust that strikes the spacecraft during its 14-year journey across the solar system. These observations will advance human understanding of the origin and evolution of our own solar system, as well as help scientists study planet formation in dust disks around other stars.

In this lesson, students learn the concepts of averages, standard deviation from the mean, and error analysis. Students explore the concept of standard deviation from the mean before using the Student Dust Counter data to determine the issues associated with taking data, including error and noise. Questions are deliberately open-ended to encourage exploration.