A light bulb joke that can be used in discussing how the choice of model might affect the conclusions drawn. The joke was submitted to AmStat News by Robert Weiss from UCLA and appeared on page 48 of the October, 2018 edition.
A light bulb joke that can be used in discussing how the choice of model might affect the conclusions drawn. The joke was submitted to AmStat News by Robert Weiss from UCLA and appeared on page 48 of the October, 2018 edition.
Explore the Hubble Deep Fields from a statistical point of view. Watch out for the booby traps of bias, the vagueness of variability, and the shiftiness of sample size as we travel on a photo safari through the Hubble Deep Fields (HDFs).
Probabilistic Risk Assessment (PRA) is a comprehensive, structured, and logical analysis method aimed at identifying and assessing risks in complex technological systems for the purpose of cost-effectively improving their safety and performance. NASA’s objective is to better understand and effectively manage risk, and thus more effectively ensure mission and programmatic success, and to achieve and maintain high safety standards at NASA. This PRA Procedures Guide, in the present second edition, is neither a textbook nor an exhaustive sourcebook of PRA methods and techniques. It provides a set of recommended procedures, based on the experience of the authors, that are applicable to different levels and types of PRA that are performed for aerospace applications.
This NASA-HANDBOOK is published by the National Aeronautics and Space Administration (NASA) to provide a Bayesian foundation for framing probabilistic problems and performing inference on these problems. It is aimed at scientists and engineers and provides an analytical structure for combining data and information from various sources to generate estimates of the parameters of uncertainty distributions used in risk and reliability models. The overall approach taken in this document is to give both a broad perspective on data analysis issues and a narrow focus on the methods required to implement a comprehensive database repository.
Dr. Kuan-Man Xu from the NASA Langley Reserach Center writes, "A new method is proposed to compare statistical differences between summary histograms, which are the histograms summed over a large ensemble of individual histograms. It consists of choosing a distance statistic for measuring the difference between summary histograms and using a bootstrap procedure to calculate the statistical significance level. Bootstrapping is an approach to statistical inference that makes few assumptions about the underlying probability distribution that describes the data. Three distance statistics are compared in this study. They are the Euclidean distance, the Jeffries-Matusita distance and the Kuiper distance. "
This paper comes from researchers at the NASA Langley Research Center and College of William & Mary.
"The experience of retinex image processing has prompted us to reconsider fundamental aspects of imaging and image processing. Foremost is the idea that a good visual representation requires a non-linear transformation of the recorded (approximately linear) image data. Further, this transformation appears to converge on a specific distribution. Here we investigate the connection between numerical and visual phenomena. Specifically the questions explored are: (1) Is there a well-defined consistent statistical character associated with good visual representations? (2) Does there exist an ideal visual image? And (3) what are its statistical properties?"
This presentation was given by Aneta Siemiginowska at the 4th International X-ray Astronomy School (2005), held at the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA.
This presentation was given by Aneta Siemiginowska at the 4th International X-ray Astronomy School (2005), held at the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA.
This article gives a brief overview of the role of a biostatistician at NASA. It also provides names of those one can contact in this area.
This resource was prepared to give the practicing engineer a clear understanding of probability and statistics with special consideration to problems frequently encountered in aerospace engineering. It is conceived to be both a desktop reference and a refresher for aerospace engineers in government and industry. It could also be used as a supplement to standard texts for in-house training courses on the subject.