Sorry, you need to enable JavaScript to visit this website.

Design of Experiments

  • Statistics is often taught as though the design of the data collection and the data cleaning have already been done in advance.  However, as most practicing statisticians quickly learn, typically problems that arise at the analysis stage, could have been avoided if the experimenter had consulted a statistician before the experiment was done and the data were conducted.  This course is created to provide an understanding of how experiments should be designed so that when the data are collected, these shortcomings are avoided.  Perfect for students and teachers wanting to learn/acquire materials for this topic.

    5
    Average: 5 (1 vote)
  • This is a graduate level course/collection of lessons in analysis of variance (ANOVA), including randomization and blocking, single and multiple factor designs, crossed and nested factors, quantitative and qualitative factors, random and fixed effects, split plot and repeated measures designs, crossover designs and analysis of covariance (ANCOVA). Perfect for students and teachers alike looking to learn/acquire materials on ANOVA.

    5
    Average: 5 (1 vote)
  • Examples of real data/studies and their analyses and interpretation.

    0
    No votes yet
  • RStudio Cloud makes it easy for professionals, hobbyists, trainers, teachers and students to do, share, teach and learn data science using R.  Create analyses using RStudio directly from your browser - there is no software to install and nothing to configure on your computer.  Share your projects - and access those of others - without worrying about data transfer or package installation. Each project defines its own environment, and RStudio Cloud automatically reproduces that environment whenever anyone accesses the project.  It’s easy to share analyses with the world - but it’s also simple to collaborate with a select group in a private space. You control who can enter a space - and via roles, you have fine grained control over what each user can do.  There are also many learning materials available: interactive tutorials covering the basics of data science, cheatsheets for working with popular R packages, links to Datacamp courses, and a guide to using RStudio Cloud.

    0
    No votes yet
  • Gapminder seeks to educate all on the importance of "factfulness" and of knowing and contextualizing the statistics that describe the state of our world.  Learn facts from across the globe such as average income, life expectancy, energy use, education levels, and much more.

    Download Gapminder’s slides, tools, posters, handouts, lesson plans, and presentations at this webpage.

    0
    No votes yet
  • Gapminder seeks to educate all on the importance of "factfulness" and of knowing and contextualizing the statistics that describe the state of our world.  Learn facts from across the globe such as average income, life expectancy, energy use, education levels, and much more.

    This particular page gives teachers resources to use in their classrooms involving the tools and data found on Gapminder.

    0
    No votes yet
  • This is the free online textbook for the Foundations of Data Science class at UC Berkeley for the Data 8 Project. Creators have used https://github.com/data-8/textbook to maintain this textbook (an open source project that allows for continual easy editing and maintenance).

    0
    No votes yet
  • This site offers separate webpages about statistical topics relevant to those studying psychology such as research design, representing data with graphs, hypothesis testing, and many more elementary statistics concepts.  Homework problems are provided for each section.

    0
    No votes yet
  • Use presets or change parameter values manually to explore the cost-effectiveness of different research approaches to unearth true scientific discoveries. For detailed explanation and conceptual background, see LeBel, Campbell, & Loving (in press, JPSP), Table 3. This app is an extension of Zehetleitner and Felix Schönbrodt's (2016) positive predictive value app

    0
    No votes yet
  • The goal of this text is to provide a broad set of topics and methods that will give students a solid foundation in understanding how to make decisions with data. This text presents workbook-style, project-based material that emphasizes real world applications and conceptual understanding. Each chapter contains:

    • An introductory case study focusing on a particular statistical method in order to encourage students to experience data analysis as it is actually practiced.
    • guided research project that walks students through the entire process of data analysis, reinforcing statistical thinking and conceptual understanding.
    • Optional extended activities that provide more in-depth coverage in diverse contexts and theoretical backgrounds. These sections are particularly useful for more advanced courses that discuss the material in more detail. Some Advanced Lab sections that require a stronger background in mathematics are clearly marked throughout the text.
    • Data sets from multiple disciplines and software instructions for Minitab and R.

    The text is highly adaptable in that the various chapters/parts can be taken out of order or even skipped to customize the course to your audience. Depending on the level of in-class active learning, group work, and discussion that you prefer in your course, some of this work might occur during class time and some outside of class. 

    0
    No votes yet

Pages

list