Sorry, you need to enable JavaScript to visit this website.

Correlation

  • A cartoon that can be used for discussing the traditional theme of "Correlation does not imply Causation" as well as what observational evidence does provide the most convincing evidence of a causal relationship. The cartoon was used in the June 2019 CAUSE cartoon caption contest. The cartoon was drawn by British cartoonist John Landers (www.landers.co.uk) based on an idea by Dennis Pearl from Penn State University.

    0
    No votes yet
  • A cartoon to initiate discussions about how the correlation is a unitless number that does not change with changes in the units of the variables involved.  The cartoon was created in February 2020 by British caetoonist John Landers based on an idea by Dennis Pearl (Penn State) and Larry Lesser (Univ of Texas at El Paso). An outline of a lesson plan for the use of the cartoon is given in a 2020 Teaching Statistics article by Dennis Pearl and Larry Lesser.

    0
    No votes yet
  • The Student Dust Counter is an instrument aboard the NASA New Horizons mission to Pluto, launched in 2006. As it travels to Pluto and beyond, SDC will provide information on the dust that strikes the spacecraft during its 14-year journey across the solar system. These observations will advance our understanding of the origin and evolution of our own solar system, as well as help scientists study planet formation in dust disks around other stars.

    In this lesson, students explore the SDC data interface to establish any trends in the dust distribution in the solar system. Students record the number of dust particles, "hits," recorded by the instrument and the average mass of the particles in a given region.

    0
    No votes yet
  • The Neutral Buoyancy Laboratory allows astronauts an atmosphere resembling zero gravity (weightlessness) in order to train for missions involving spacewalks. In this activity, students will evaluate pressures experienced by astronauts and scuba divers who assist them while training in the NBL.  This lesson addresses correlation, regression, residuals, inerpreting graphs, and making predictions.

    NASA's Math and Science @ Work project provides challenging supplemental problems for students in advanced science, technology, engineering and mathematics, or STEM classes including Physics, Calculus, Biology, Chemistry and Statistics, along with problems for advanced courses in U.S. History and Human Geography.

    0
    No votes yet
  • Math and Science @ Work presents an activity for high school AP Statistics students. In this activity, students will look at data from an uncalibrated radar and a calibrated radar and determine how statistically significant the error is between the two different data sets.

    NASA's Math and Science @ Work project provides challenging supplemental problems for students in advanced science, technology, engineering and mathematics, or STEM classes including Physics, Calculus, Biology, Chemistry and Statistics, along with problems for advanced courses in U.S. History and Human Geography.

    0
    No votes yet
  • NASA's Math and Science @ Work presents an activity focused on correlation coefficients, weighted averages and least squares. Students will analyze the data collected from a NASA experiment, use different approaches to estimate the metabolic rates of astronauts, and compare their own estimates to NASA's estimates.

    NASA's Math and Science @ Work project provides challenging supplemental problems for students in advanced science, technology, engineering and mathematics, or STEM classes including Physics, Calculus, Biology, Chemistry and Statistics, along with problems for advanced courses in U.S. History and Human Geography.

    0
    No votes yet
  • This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: Pearson's residuals and rules for partitioning an I x J contingency tables as ways to determine association between variables.

    0
    No votes yet
  • A song for use in helping students to interpret positive, negative, and zero correlation and transfer knowledge about associations to new context/situations.  Lyrics by Lawrence M. Lesser and may be sung to the tune of “Twinkle, Twinkle, Little Star.” This song is part of an NSF-funded library of interactive songs that involved students creating responses to prompts that are then included in the lyrics (see www.causeweb.org/smiles for the interactive version of the song, a short reading covering the topic, and an assessment item).

    0
    No votes yet
  • A song for use in helping students to recognize and construct examples to illustrate how correlation does not imply causation.  Music & Lyrics © 2016 by Monty Harper.  This song is part of an NSF-funded library of interactive songs that involved students creating responses to prompts that are then included in the lyrics (see www.causeweb.org/smiles for the interactive version of the song, a short reading covering the topic, and an assessment item).

    0
    No votes yet
  • A song for use in helping students to recognize and construct examples to illustrate how correlation does not imply causation.  Music & Lyrics © 2016 by Monty Harper.  This song is part of an NSF-funded library of interactive songs that involved students creating responses to prompts that are then included in the lyrics (see www.causeweb.org/smiles for the interactive version of the song, a short reading covering the topic, and an assessment item).

    0
    No votes yet

Pages

register