Curriculum

  • Epidemiology is the study of the distribution and determinants of human disease and health outcomes, and the application of methods to improve human health. This course examines the methods used in epidemiologic research, including the design of epidemiologic studies and the collection and analysis of epidemiological data.  Perfect for students and teachers wanting to learn/acquire materials for this topic.

    0
    No votes yet
  • The aim of this course is to cover sampling design and analysis methods that would be useful for research and management in many field. A well designed sampling procedure ensures that we can summarize and analyze data with a minimum of assumptions and complications. Perfect for both students and teachers wanting to learn/acquire materials for this topic.

    5
    Average: 5 (1 vote)
  • Those who complete this course will be able to select appropriate methods of multivariate data analysis, given multivariate data and study objectives; write SAS and/or Minitab programs to carry out multivariate data analyses; and interpret results of multivariate data analyses.  Perfect for students and teachers wanting to learn/acquire materials for this topic.

    5
    Average: 5 (1 vote)
  • The focus of this class is a multivariate analysis of discrete data. We will learn basic statistical methods and discuss issues relevant for the analysis of some discrete distribution, cross-classified tables of counts, (i.e., contingency tables), success/failure records, questionnaire items, judge's ratings, etc. Being familiar with matrix algebra is helpful in completing this course.  Perfect for students and teachers wanting to learn/acquire materials for this topic.

    5
    Average: 5 (1 vote)
  • Statistics is often taught as though the design of the data collection and the data cleaning have already been done in advance.  However, as most practicing statisticians quickly learn, typically problems that arise at the analysis stage, could have been avoided if the experimenter had consulted a statistician before the experiment was done and the data were conducted.  This course is created to provide an understanding of how experiments should be designed so that when the data are collected, these shortcomings are avoided.  Perfect for students and teachers wanting to learn/acquire materials for this topic.

    5
    Average: 5 (1 vote)
  • This is a graduate level course/collection of lessons in analysis of variance (ANOVA), including randomization and blocking, single and multiple factor designs, crossed and nested factors, quantitative and qualitative factors, random and fixed effects, split plot and repeated measures designs, crossover designs and analysis of covariance (ANCOVA). Perfect for students and teachers alike looking to learn/acquire materials on ANOVA.

    5
    Average: 5 (1 vote)
  • This graduate level course offers an introduction into regression analysis. A researcher is often interested in using sample data to investigate relationships, with an ultimate goal of creating a model to predict a future value for some dependent variable. The process of finding this mathematical model that best fits the data involves regression analysis.  STAT 501 is an applied linear regression course that emphasizes data analysis and interpretation and is perfect for both students and teachers of statistics courses.

    5
    Average: 5 (1 vote)
  • This chapter explains the structure/steps of hypothesis testing, the concept of significance, the relationship between confidence intervals and hypothesis testing, and Type I/II errors.

    0
    No votes yet
  • This text explains the differences between t-tests, z-tests, tests with proportions, and tests of correlation.

    0
    No votes yet
  • Analysis of variance (ANOVA) is used to test hypotheses about differences between two or more means. The t-test based on the standard error of the difference between two means can only be used to test differences between two means. When there are more than two means, it is possible to compare each mean with each other mean using t-tests. However, conducting multiple t-tests can lead to severe inflation of the Type I error rate. (Click here to see why) Analysis of variance can be used to test differences among several means for significance without increasing the Type I error rate. This chapter covers designs with between-subject variables. 

    0
    No votes yet

Pages

register