Sorry, you need to enable JavaScript to visit this website.

Webinars

  • Introducing Informal Inference Using Data-Centric Lab Exercises

    Rakhee Patel, UCLA
    Tuesday, January 11, 2011 - 2:00pm
    Since formal hypothesis testing and inference methods can be a challenging topic for students to tackle, introducing informal inference early in a course is a useful way of helping students understand the concept of a null distribution and how to make decisions about whether to reject it. We will present two computer labs, both using Fathom, that illustrate these concepts using permutation in a setting where students will be answering interesting investigative questions with real data.
  • Facilitating Student Projects in Statistics

    Dianna Spence & Brad Bailey, North Georgia College & State University
    Tuesday, December 14, 2010 - 2:00pm
    When instructors have their students implement "real-world" projects in statistics, a number of questions arise: Where can students locate real data to analyze? What kinds of meaningful research questions can we help students to formulate? What aspects of statistical research can be covered in a project? What are reasonable methods for evaluating the student's work? The presenters will share resources developed during an NSF-funded study to develop and test curriculum materials for student projects in statistics, using linear regression and t-test scenarios.
  • Over the HILS: Learned Helplessness in Statistical Instruction

    Brandon Vaughn, University of Texas
    Wednesday, December 8, 2010 - 2:00pm
    Some students in statistics classes exhibit behaviors that share characteristics with the established construct of learned helplessness. This webinar will discuss this phenomenon, and detail an instrument recently developed which measures this (HILS: Helplessness in Learning Statistics).
  • This Little Piggy Teaches Probability

    Stacey Hancock, Reed College; Jennifer Noll, Portland State University; Sean Simpson, Westchester Community College; and Aaron Weinberg, Ithaca College
    Tuesday, November 23, 2010 - 2:30pm
    Many instructors ask students to demonstrate the frequentist notion of probability using a simulation early in an intro stats course. Typically, the simulation involves dice or coins, which give equal (and known) probabilities. How about a simulation involving an unknown probability? This webinar discusses an experiment involving rolling (unbalanced) pigs. Since the probabilities are not equal, this experiment will also allow the instructor to have students think about the concept of fairness within games.
  • Developing a Statistics Teaching and Beliefs Survey

    Jiyoon Park & Audbjorg Bjornsdottir, University of Minnesota
    Tuesday, November 9, 2010 - 2:00pm
    This webinar presents the development of a new instrument designed to assess the practices and beliefs of teachers of introductory statistics courses. The Statistics Teaching Inventory (STI) was developed to be used as a national survey to assess changes in teaching over time as well as for use in evaluating professional development activities. We will describe the instrument and the validation process, and invite comments and suggestions about its content and potential use in research and evaluation studies.
  • Using Your Hair To Understand Descriptive Statistics

    Tisha Hooks, Winona State University
    Tuesday, October 26, 2010 - 2:30pm
    The purpose of this webinar is to introduce an activity to enhance students' understanding of various descriptive measures. In particular, by completing this hands-on activity students will experience a visual interpretation of a mean, median, outlier, and the concept of distance-to-mean.
  • Using Calibrated Peer Review in Statistics and Biology: A Coordinated Statistical Literacy Project

    Ellen Gundlach & Nancy Pelaez, Purdue University
    Wednesday, October 13, 2010 - 2:00pm
    Ellen and Nancy use Calibrated Peer Review, an online writing and peer evaluation program available from UCLA, to introduce statistical literacy to Nancy's freshman biology students and to bring a real-world context to statistical concepts for Ellen's introductory statistics classes in an NSF-funded project. CPR allows instructors in large classes to give their students frequent writing assignments without a heavy grading burden. Ellen and Nancy have their students read research journal articles on interesting subjects and use guiding questions to evaluate these articles for statistical content, experimental design features, and ethical concerns.
  • Linear Statistical Models As A First Statistics Course For Math Majors

    George Cobb, Mount Holyoke College
    Tuesday, October 12, 2010 - 2:00pm
    What's the best way to introduce students of mathematics to statistics? Tradition offers two main choices: a variant of the standard "Stat 101" course, or some version of the two-semester sequence in probability and mathematical statistics. I hope to convince participants to think seriously about a third option: the theory and applications of linear models as a first statistics course for sophomore math majors. Rather than subject you to a half-hour polemic, however, I plan to talk concretely about multiple regression models and methodological challenges that arise in connection with AAUP data relating faculty salaries to the percentage of women faculty, and to present also a short geometric proof of the Gauss-Markov Theorem.
  • Why Not Just Take A Census?

    Carolyn Cuff, Westminster College
    Tuesday, September 28, 2010 - 2:30pm
    Students must confront their misconceptions before we can teach them new concepts. Naively, a census is an accurate method to quantify a population parameter. A very brief, memorable and easy to implement activity demonstrates that a census is at best difficult even for a small and easily enumerated population. Exercise Documentation
  • Using baboon "mothering" behavior to teach Permutation tests

    Thomas Moore, Grinnell College
    Tuesday, September 14, 2010 - 2:00pm
    Permutation tests and randomization tests were introduced almost a century ago, well before inexpensive, high-speed computing made them feasible to use. Fisher and Pitman showed the two-sample t-test could approximate the permutation test in a two independent groups experiment. Today many statistics educators are returning to the permutation test as a more intuitive way to teach hypothesis testing. In this presentation, I will show an interesting teaching example about primate behavior that illustrates how simple permutation tests are to use, even with a messier data set that admits of no obvious and easy-to-compute approximation.

Pages