Sorry, you need to enable JavaScript to visit this website.

Webinars

  • Introducing Informal Inference Using Data-Centric Lab Exercises

    Rakhee Patel, UCLA
    Tuesday, January 11, 2011 - 2:00pm
    Since formal hypothesis testing and inference methods can be a challenging topic for students to tackle, introducing informal inference early in a course is a useful way of helping students understand the concept of a null distribution and how to make decisions about whether to reject it. We will present two computer labs, both using Fathom, that illustrate these concepts using permutation in a setting where students will be answering interesting investigative questions with real data.
  • Facilitating Student Projects in Statistics

    Dianna Spence & Brad Bailey, North Georgia College & State University
    Tuesday, December 14, 2010 - 2:00pm
    When instructors have their students implement "real-world" projects in statistics, a number of questions arise: Where can students locate real data to analyze? What kinds of meaningful research questions can we help students to formulate? What aspects of statistical research can be covered in a project? What are reasonable methods for evaluating the student's work? The presenters will share resources developed during an NSF-funded study to develop and test curriculum materials for student projects in statistics, using linear regression and t-test scenarios.
  • Over the HILS: Learned Helplessness in Statistical Instruction

    Brandon Vaughn, University of Texas
    Wednesday, December 8, 2010 - 2:00pm
    Some students in statistics classes exhibit behaviors that share characteristics with the established construct of learned helplessness. This webinar will discuss this phenomenon, and detail an instrument recently developed which measures this (HILS: Helplessness in Learning Statistics).
  • Developing a Statistics Teaching and Beliefs Survey

    Jiyoon Park & Audbjorg Bjornsdottir, University of Minnesota
    Tuesday, November 9, 2010 - 2:00pm
    This webinar presents the development of a new instrument designed to assess the practices and beliefs of teachers of introductory statistics courses. The Statistics Teaching Inventory (STI) was developed to be used as a national survey to assess changes in teaching over time as well as for use in evaluating professional development activities. We will describe the instrument and the validation process, and invite comments and suggestions about its content and potential use in research and evaluation studies.
  • Using Calibrated Peer Review in Statistics and Biology: A Coordinated Statistical Literacy Project

    Ellen Gundlach & Nancy Pelaez, Purdue University
    Wednesday, October 13, 2010 - 2:00pm
    Ellen and Nancy use Calibrated Peer Review, an online writing and peer evaluation program available from UCLA, to introduce statistical literacy to Nancy's freshman biology students and to bring a real-world context to statistical concepts for Ellen's introductory statistics classes in an NSF-funded project. CPR allows instructors in large classes to give their students frequent writing assignments without a heavy grading burden. Ellen and Nancy have their students read research journal articles on interesting subjects and use guiding questions to evaluate these articles for statistical content, experimental design features, and ethical concerns.
  • Linear Statistical Models As A First Statistics Course For Math Majors

    George Cobb, Mount Holyoke College
    Tuesday, October 12, 2010 - 2:00pm
    What's the best way to introduce students of mathematics to statistics? Tradition offers two main choices: a variant of the standard "Stat 101" course, or some version of the two-semester sequence in probability and mathematical statistics. I hope to convince participants to think seriously about a third option: the theory and applications of linear models as a first statistics course for sophomore math majors. Rather than subject you to a half-hour polemic, however, I plan to talk concretely about multiple regression models and methodological challenges that arise in connection with AAUP data relating faculty salaries to the percentage of women faculty, and to present also a short geometric proof of the Gauss-Markov Theorem.
  • Using baboon "mothering" behavior to teach Permutation tests

    Thomas Moore, Grinnell College
    Tuesday, September 14, 2010 - 2:00pm
    Permutation tests and randomization tests were introduced almost a century ago, well before inexpensive, high-speed computing made them feasible to use. Fisher and Pitman showed the two-sample t-test could approximate the permutation test in a two independent groups experiment. Today many statistics educators are returning to the permutation test as a more intuitive way to teach hypothesis testing. In this presentation, I will show an interesting teaching example about primate behavior that illustrates how simple permutation tests are to use, even with a messier data set that admits of no obvious and easy-to-compute approximation.
  • Helping Students Understand the Meaning of Random: Addressing Lexical Ambiguity

    Diane Fisher, University of Louisiana at Lafayette; Jennifer Kaplan, Michigan State University; and Neal Rogness, Grand Valley State University
    Tuesday, August 10, 2010 - 2:00pm
    Our research shows that half of the students entering a statistics course use the word random colloquially to mean, "haphazard" or "out of the ordinary." Another large subset of students define random as, "selecting without prior knowledge or criteria." At the end of the semester, only 8% of students we studied gave a correct statistical definition for the word random and most students still define random as, "selecting without order or reason." In this session we will present a classroom approach to help students better understand what statisticians mean by random or randomness as well as preliminary results of the affect of this approach.
  • Pedagogical simulations with StatCrunch

    Webster West, Texas A&M University
    Tuesday, July 13, 2010 - 2:00pm
    In introductory statistics courses, web-based applets are often used to visually conduct large simulation studies illustrating statistical concepts. However, it is difficult to determine what (if anything) students learn from repeatedly pressing a button when using applets. More advanced options such as writing/running computer code are typically considered to be much too advanced for most introductory courses. The web-based software package, StatCrunch, now offers simulation capabilities that strike a middle ground between these two extremes. The instructor/student needs only to perform a small number of steps using the menu driven interface with each step being key to understanding the underlying data structure. This talk will cover the steps required to study concepts such as the central limit theorem, confidence intervals, hypothesis testing and regression using StatCrunch.
  • Resources for Teaching Statistics with Social Science Data

    Lynette Hoelter, University of Michigan
    Tuesday, June 8, 2010 - 2:00pm
    This webinar will introduce several sources of data and tools that could be useful in both general and social science-specific statistics instruction. The Social Science Data Analysis Network (SSDAN) and the Inter-university Consortium for Political and Social Research (ICPSR), both a part of the University of Michigan's Institute for Social Research, are collaborating on two NSF-funded projects to support quantitative literacy in the social sciences. Resources from each organization and TeachingWithData.org, a result of the partnership, will be highlighted. Materials range from small extracts of data from the Census and American Community Surveys used with specific teaching modules to full datasets with accompanying online analysis tools.

Pages