Sorry, you need to enable JavaScript to visit this website.

Resource Library

Statistical Topic

Advanced Search | Displaying 71 - 80 of 671
  • Random is a website devoted to probability, mathematical statistics, and stochastic processes, and is intended for teachers and students of these subjects. The site consists of an integrated set of components that includes expository text, interactive web apps, data sets, biographical sketches, and an object library. 

    0
    No votes yet
  • The focus of this class is a multivariate analysis of discrete data. We will learn basic statistical methods and discuss issues relevant for the analysis of some discrete distribution, cross-classified tables of counts, (i.e., contingency tables), success/failure records, questionnaire items, judge's ratings, etc. Being familiar with matrix algebra is helpful in completing this course.  Perfect for students and teachers wanting to learn/acquire materials for this topic.

    0
    No votes yet
  • Statistics is often taught as though the design of the data collection and the data cleaning have already been done in advance.  However, as most practicing statisticians quickly learn, typically problems that arise at the analysis stage, could have been avoided if the experimenter had consulted a statistician before the experiment was done and the data were conducted.  This course is created to provide an understanding of how experiments should be designed so that when the data are collected, these shortcomings are avoided.  Perfect for students and teachers wanting to learn/acquire materials for this topic.

    0
    No votes yet
  • This is a graduate level course/collection of lessons in analysis of variance (ANOVA), including randomization and blocking, single and multiple factor designs, crossed and nested factors, quantitative and qualitative factors, random and fixed effects, split plot and repeated measures designs, crossover designs and analysis of covariance (ANCOVA). Perfect for students and teachers alike looking to learn/acquire materials on ANOVA.

    0
    No votes yet
  • This graduate level course offers an introduction into regression analysis. A researcher is often interested in using sample data to investigate relationships, with an ultimate goal of creating a model to predict a future value for some dependent variable. The process of finding this mathematical model that best fits the data involves regression analysis.  STAT 501 is an applied linear regression course that emphasizes data analysis and interpretation and is perfect for both students and teachers of statistics courses.

    0
    No votes yet
  • This resource gives a thorough definition of confidence intervals. It shows the user how to compute a confidence interval and how to interpret them. It goes into detail on how to construct a confidence interval for the difference between means, correlations, and proportions. It also gives a detailed explanation of Pearson's correlation. It also includes exercises for the user.

    0
    No votes yet
  • The program DistCalc calculates probabilities and critical values for the most important distributions. The purpose of this program is to show the concept of critical values and the replacement of printed distribution tables. The Distribution Calculator offers calculations for the normal distribution, the t distribution, the chi-square distribution, and the F distribution.

    0
    No votes yet
  • EXCITE is a collection of teaching materials developed by the Centers for Disease Control and Prevention (CDC) to introduce students to public health and epidemiology. Students will learn about the scientific method of inquiry, basic biostatistics, and outbreak investigation. EXCITE adapts readily to team teaching across a variety of subjects, including mathematics, social studies, history, and physical education.

    0
    No votes yet
  • This chapter of the HyperStat Online Textbook discusses in detail sampling distributions of various statistics (mean, median, proportions, correlation, etc.), differences between such statistics, the Central Limit Theorem, and standard error, giving formulas, examples, and exercises.

    0
    No votes yet
  • This presentation on data analysis addresses observational studies and randomized controlled trials in two different sections. Types of studies are defined and examples of each study is given to emphasize the differences. Factors and variables are also discussed.

    0
    No votes yet

Pages

list