Resource Library

Statistical Topic

Advanced Search | Displaying 611 - 620 of 671
  • This chapter of the HyperStat Online Textbook discusses in detail sampling distributions of various statistics (mean, median, proportions, correlation, etc.), differences between such statistics, the Central Limit Theorem, and standard error, giving formulas, examples, and exercises.
    0
    No votes yet
  • This site has a wide collection of statistical objects inluding an online textbook covering first-year non-calculus based statistics (e.g. Normal distribution, ANOVA, Chi-Square). There is a simulation/demonstration section containing Java Applets on these first-year topics (ANOVA, Binomial Distribution,Central Limit Theorem, Chi Square, Confidence Interval, Correlation, Central Tendency, Effect Size, Goodness of Fit, Histogram, Normal Distribution, Power, Regression, Repeated Measures, Restriction of Range, Sampling Distribution, Skew, t-test, Transformations). Additionally, this page contains links for 10 case studies covering the topics in the first-year statistics course. There is also a page with some basic statistical analysis tools that will aid in doing the computations.
    0
    No votes yet
  • The t-distribution activity is a student-based in-class activity to illustrate the conceptual reason for the t-distribution. Students use TI-83/84 calculators to conduct a simulation of random samples. The students calculate standard scores with both the population standard deviation and the sample standard deviation. The resulting values are pooled over the entire class to give the simulation a reasonable number of iterations.
    0
    No votes yet
  • This PowerPoint presentation teaches sampling distributions related to proportions and means using multiple examples, charts, and graphs.
    0
    No votes yet
  • This page will perform an analysis of variance for the situation where there are three independent variables, A, B, and C, each with two levels. The user may enter data directly or copy and paste from a spreadsheet or other application.
    0
    No votes yet
  • In the first simulation, random samples of size n are drawn from the population one sample at a time. With df=3, the critical value of chi-square for significance at or beyond the 0.05 level is 7.815; hence, any calculated value of chi-square equal to or greater than 7.815 is recorded as "significant," while any value smaller than that is noted as "non-significant." The second simulation does the same thing, except that it draws random samples 100 at a time. The Power of the Chi-Square "Goodness of Fit" Test pertains to the questionable common practice of accepting the null hypothesis upon failing to find a significant result in a one- dimensional chi-square test.
    0
    No votes yet
  • The following pages calculate r, r-squared, regression constants, Y residuals, and standard error of estimate for a set of N bivariate values of X and Y, and perform a t-test for the significance of the obtained value of r. Allows for import of raw data from a spreadsheet; for samples of any size, large or small.
    0
    No votes yet
  • This page will calculate r_s , the Spearman rank- order correlation coefficient, for a bivariate set of paired XY rankings. As the page opens, you will be prompted to enter the number of items for which there are paired rankings. If you are starting out with raw (unranked) data, the necessary rank-ordering will be performed automatically.
    0
    No votes yet
  • For n = 50 to 400, in steps of size 5, this program computes and displays (1) the exact probability P(|A_n - p| >= epsilon), where A_n is the average outcome of n Bernoulli trials with probability p of success, and (2) the Chebyshev estimate p(1-p)/(n(epsilon^2)) for this probability. You can specify p and epsilon.
    0
    No votes yet
  • These lecture notes are composed of nearly 180 PowerPoint slides that have been coverted to a pdf file (6 per page) on Biomedical Imaging. The following topics are outlined: Vocabulary, Displaying Data, Central Tendency and Variability, Normal Z-scores, Standardized Distribution, Probability, Samples & Sampling Error, Type I and Type II Errors, Power of a Test, Hypothesis Testing, One Sample Tests, Two Independent Sample Tests, Two Dependent Sample Tests & Estimation, Correlation and Regression Techniques, Non-Parametric Statistical Tests, Applications of Central Limit Theorem, Law of Large Numbers, Design of Studies and Experiments, Fisher's F-Test, Analysis Of Variance(ANOVA), Principle Component Analysis (PCA), Chi-Square Goodness-of-fit test, Multiple Linear Regression, General Linear Model, Bootstrapping and Resampling.
    0
    No votes yet

Pages

list