Resource Library

Statistical Topic

Advanced Search | Displaying 581 - 590 of 670
  • This is the description and instructions for the Monte Carlo Estimation of Pi applet. It is a simulation of throwing darts at a figure of a circle inscribed in a square. It shows the relationship between the geometry of the figure and the statistical outcome of throwing the darts.
    0
    No votes yet
  • This is the description and instructions for the Can You Beat Randomness?- The Lottery Game applet. It is a simulation of flipping coins. Students are asked to make conjectures about randomness and how certain strategies affect randomness. It strives to show the "growth of order out of randomness."
    0
    No votes yet
  • This is the description and instructions for the One-Dimensional Random Walk applet. This Applet relates random coin-flipping to random motion. It strives to show that randomness (coin-flipping) leads to some sort of predictable outcome (the bell-shaped curve).
    0
    No votes yet
  • This is the description and instructions for the Two-Dimensional Random Walk applet. This Applet relates random coin-flipping to random motion but in more than one direction (dimension). It covers mean squared distance in the discussion.
    0
    No votes yet
  • This site provides the description and instructions for as well as the link to the Diffusion Limited Aggregation: Growing Fractal Structures applet. This applet strives to describe, classify, and measure different random fractal patterns in nature.
    0
    No votes yet
  • This website provides lesson plans, activities, a problem bank, and links to references that meet NCTM standards for probability.
    0
    No votes yet
  • This section of the Engineering Statistics Handbook describes in detail the process of choosing an experimental design to obtain the results you need. The basic designs an engineer needs to know about are described in detail.
    0
    No votes yet
  • This section in the Engineering Statistics Handbook takes a data set and walks the user through analysis and experimental design based on the data.
    0
    No votes yet
  • The GAISE project was funded by a Strategic Initiative Grant from ASA in 2003 to develop ASA-endorsed guidelines for assessment and instruction in statistics in the K-12 curriculum and for the introductory college statistics course.
    0
    No votes yet
  • This site provides the description and instructions for as well as the link to The Self-Avoiding Random Walk applet. In the SAW applet, random walks start on a square lattice and then are discarded as soon as they self-intersect. If a random walk survives after N steps, we compute the square of the distance from the origin, sum it up, and divide by the number of survivals. This variable is plotted on the vertical axis of the graph, which is plotted to the right of the field where random walks travel.
    0
    No votes yet

Pages