This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture overs the following: covariance patterns and generalized estimating equations (GEE).
This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture overs the following: covariance patterns and generalized estimating equations (GEE).
This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture overs the following: conditional logistic regression, conditional likelihood for matched pairs, the non-central hypergeometric, the conditional maximum likelihood estimator (CMLE), conditional confidence interval for odds ratios, and McNemar's statistic.
This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture overs the following: odds ratio, dependent proportion, marginal homogeneity, McNemar's Test, marginal homogeneity for greater than 2 levels, measures of agreement, and the kappa coefficient (weighted vs. unweighted).
This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: sparse tables, sampling zeros, structural zeros, and log-linear model (and limitations).
This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: partial/conditional tables, confounding, types of independence (mutual, joint, marginal, and conditional), identifiability constraints, partial odds ratios, hierarchical log-linear model, pairwise interaction log-linear model, conditional independence log-linear model, goodness of fit, and model building.
This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: conditional independence, log-linear models for 2x2 tables, expected counts, logistic regression, odds ratio, parameters of interest for different designs and the MLEs, poisson log-linear model, double dichotomy, the multinomial, and the multinomial log-linear model.
This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: ordinal regression models, cumulative probabilities, non-proportional odds, score stat for proportionl odds, MLEs, the adjacent categories logit, and proportional odds model.
This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: generalized odds ratio, collapsed categories, polytomous (or multinomial) logistic regression, and maximum likelihood using the multinomial.
This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: unconditional likelihood, elimination of nuisance parameters, and Mantel-Haenzsel estimate.
This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: maximum likelihood estimation for logistic regression, sample size requirements for approximate normality of the MLE’s, confidence intervals, likelihood ratio statistic, score test statistic, deviance, Hosmer-Lemeshow goodness-of-fit statistic, the Hosmer-Lemeshow statistic, parameter estimates, scaled/unscaled estimates, residuals, grouped binomials, and model building strategies.