Sorry, you need to enable JavaScript to visit this website.

Faculty

  • This NASA-HANDBOOK is published by the National Aeronautics and Space Administration (NASA) to provide a Bayesian foundation for framing probabilistic problems and performing inference on these problems. It is aimed at scientists and engineers and provides an analytical structure for combining data and information from various sources to generate estimates of the parameters of uncertainty distributions used in risk and reliability models. The overall approach taken in this document is to give both a broad perspective on data analysis issues and a narrow focus on the methods required to implement a comprehensive database repository.

    0
    No votes yet
  • Dr. Kuan-Man Xu from the NASA Langley Reserach Center writes, "A new method is proposed to compare statistical differences between summary histograms, which are the histograms summed over a large ensemble of individual histograms. It consists of choosing a distance statistic for measuring the difference between summary histograms and using a bootstrap procedure to calculate the statistical significance level. Bootstrapping is an approach to statistical inference that makes few assumptions about the underlying probability distribution that describes the data. Three distance statistics are compared in this study. They are the Euclidean distance, the Jeffries-Matusita distance and the Kuiper distance. "

    0
    No votes yet
  • This paper comes from researchers at the NASA Langley Research Center and College of William & Mary.  

    "The experience of retinex image processing has prompted us to reconsider fundamental aspects of imaging and image processing. Foremost is the idea that a good visual representation requires a non-linear transformation of the recorded (approximately linear) image data. Further, this transformation appears to converge on a specific distribution. Here we investigate the connection between numerical and visual phenomena. Specifically the questions explored are: (1) Is there a well-defined consistent statistical character associated with good visual representations? (2) Does there exist an ideal visual image? And (3) what are its statistical properties?"

    0
    No votes yet
  • This resource was prepared to give the practicing engineer a clear understanding of probability and statistics with special consideration to problems frequently encountered in aerospace engineering. It is conceived to be both a desktop reference and a refresher for aerospace engineers in government and industry. It could also be used as a supplement to standard texts for in-house training courses on the subject. 

    0
    No votes yet
  • This presentation is a part of a series of lessons on the Analysis of Categorical Data.  This lecture overs the following: covariance patterns and generalized estimating equations (GEE). 

    0
    No votes yet
  • This presentation is a part of a series of lessons on the Analysis of Categorical Data.  This lecture overs the following: conditional logistic regression, conditional likelihood for matched pairs, the non-central hypergeometric, the conditional maximum likelihood estimator (CMLE), conditional confidence interval for odds ratios, and McNemar's statistic.

    0
    No votes yet
  • This presentation is a part of a series of lessons on the Analysis of Categorical Data.  This lecture overs the following:  odds ratio, dependent proportion, marginal homogeneity, McNemar's Test, marginal homogeneity for greater than 2 levels, measures of agreement, and the kappa coefficient (weighted vs. unweighted).

    0
    No votes yet
  • This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: sparse tables, sampling zeros, structural zeros, and log-linear model (and limitations).

    0
    No votes yet
  • This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: partial/conditional tables, confounding, types of independence (mutual, joint, marginal, and conditional), identifiability constraints, partial odds ratios, hierarchical log-linear model, pairwise interaction log-linear model, conditional independence log-linear model, goodness of fit, and model building.

    0
    No votes yet
  • This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: conditional independence, log-linear models for 2x2 tables, expected counts, logistic regression, odds ratio, parameters of interest for different designs and the MLEs, poisson log-linear model, double dichotomy, the multinomial, and the multinomial log-linear model.

    0
    No votes yet

Pages

list