# Difference between revisions of "Chance News 36"

Line 39: | Line 39: | ||

Professors Craig R. Fox and Jonathan Levav have written an interesting paper [http://fox-lab.org/papers/Fox&Levav(2004).pdf Partition-Edit-Count: Naïve Extensional Reasoning in Judgment of Conditional Probability], They conducted several experiments to see how Duke University students interpreted and performed on probability problems especially when given alternative phrasing. For example, (a distant version of the Monty Hall problem) they considered three pharmaceutical companies, A, B, and C. Half the students were told "the FDA will publish a report in which it will reveal which of the three drugs is most effective." The other half were told "the FDA will publish a report in which it will rank the three drugs from the most effective to least effective." All the students were then informed that an independent lab definitively found that A is more effective than C. | Professors Craig R. Fox and Jonathan Levav have written an interesting paper [http://fox-lab.org/papers/Fox&Levav(2004).pdf Partition-Edit-Count: Naïve Extensional Reasoning in Judgment of Conditional Probability], They conducted several experiments to see how Duke University students interpreted and performed on probability problems especially when given alternative phrasing. For example, (a distant version of the Monty Hall problem) they considered three pharmaceutical companies, A, B, and C. Half the students were told "the FDA will publish a report in which it will reveal which of the three drugs is most effective." The other half were told "the FDA will publish a report in which it will rank the three drugs from the most effective to least effective." All the students were then informed that an independent lab definitively found that A is more effective than C. | ||

− | The first group of students was asked to find "the probability that the FDA will identify A as the most effective of the three." The second group was asked to find "the probability that the FDA's rankings will list A ahead of both B and C." The correct answer is 2/3 rather than 1/ | + | The first group of students was asked to find "the probability that the FDA will identify A as the most effective of the three." The second group was asked to find "the probability that the FDA's rankings will list A ahead of both B and C." The correct answer is 2/3 rather than 1/2 irrespective of the wording. In the first group, 10% of 67 obtained the correct answer; in the second group, 23% of 62 obtained the correct answer. Fox and Levav present an explanation of the thought processes at work based on partitioning, editing and counting. |

===Discussion=== | ===Discussion=== |

## Revision as of 20:56, 26 April 2008

## Contents

## Quotation

## Forsooth

## Sex and Cereal

A sure way to obtain column inches in the media for biological/medical research is to study sex selection and relate it to something unexpected. In this instance, 740 pregnant women were asked to fill out a survey which dealt with their physical characteristics, habits and most of all, daily dietary intakes.

The Independent: "Big breakfast is most important meal -- if you want a baby boy."

Reuters: "Skipping breakfast may mean your baby is a girl."

New Scientist: "Breakfast cereals boost chances of conceiving boys."

CNN.com: "Study shows bananas make baby boys."

New York Times: "Boy or Girl? The Answer May Depend on Mom's Eating Habits."

Choosing a provocative title doesn't hurt "You are what your mother eats: evidence for maternal preconception diet influencing foetal sex in humans." According to the lead author, "If you want a boy, eat a healthy diet with a high calorie intake, including breakfast." From the New Scientist, "When the researchers divided the women into groups with high, medium and low intake of energy, they found that 56% of women in the high-energy group had boys, compared with 45% in [the] lowest group." Further, "Cereal intake had a bigger effect," producing 59% boys when eating one or more bowlfuls per day, "compared with only 43% who bore boys in the group eating less than a bowlful per week." The researcher tested many foods and found only cereal "significantly associated with infant sex."

### Discussion

1. Here is a wiki which looks at a different study-on mice-which also claims that nutrition affects the percentages of males and females. Which of the two is an experimental study and which is an observational study?

2. The current study was done in England and of the 740 mothers-to-be, 301 (approximately 40%) said they currently were smokers. Why would this fact cast doubt on the conclusions being applied to the United States?

3. Eating cereal for breakfast is a very American habit, duplicated in few countries; even those other countries, such as England where cereal is eaten for breakfast, have nowhere near the selection possibilities obtainable in the United States. Many industrialized countries eat little or no breakfast at all. What then should the male/female ratio be for these countries?

4. It is often said that many cereals are really candies in disguise. If so, should the mother-to-be "cut to the chase" and just have a candy bar for breakfast? If not, why not?

5. Instead of the customary .05 level, the researchers chose a p-value < 01 for determining statistical significance. Why did they lower the p-value?

6. The researchers keep referring to a "bowl of cereal." Why is this an exceedingly inexact measure?

Submitted by Paul Alper

## Monty Hall Psychology

Professors Craig R. Fox and Jonathan Levav have written an interesting paper Partition-Edit-Count: Naïve Extensional Reasoning in Judgment of Conditional Probability, They conducted several experiments to see how Duke University students interpreted and performed on probability problems especially when given alternative phrasing. For example, (a distant version of the Monty Hall problem) they considered three pharmaceutical companies, A, B, and C. Half the students were told "the FDA will publish a report in which it will reveal which of the three drugs is most effective." The other half were told "the FDA will publish a report in which it will rank the three drugs from the most effective to least effective." All the students were then informed that an independent lab definitively found that A is more effective than C.

The first group of students was asked to find "the probability that the FDA will identify A as the most effective of the three." The second group was asked to find "the probability that the FDA's rankings will list A ahead of both B and C." The correct answer is 2/3 rather than 1/2 irrespective of the wording. In the first group, 10% of 67 obtained the correct answer; in the second group, 23% of 62 obtained the correct answer. Fox and Levav present an explanation of the thought processes at work based on partitioning, editing and counting.

### Discussion

1. Near the end of the paper the authors state: "Moreover, despite the fact that participants could have solved all three puzzles computationally by invoking Bayes theorem or the definition of conditional probability, a very small proportion of these respondents seemed to attempt a computational answer, and none of the participants who explicitly invoked a formula arrived at the correct solution." Use Bayes theorem to obtain the correct answer.

2. The allegation is that this particular problem is "a distant version of the Monty Hall problem." Show how A, B, and C relate to the goats, doors and car.

3. Fox and Levav offered prize money for participation in these problems. In particular, an MBA student was offered $20 for the above problem. For some other problems, $1 was offered to anyone in the Duke University student center. Explain the discrepancy.

4. The authors claim that it makes sense that the second wording, the one with the word "rank," would more likely lead to a correct six-fold partitioning (ordering of events such as ABC, ACB, etc.) and easy editing and counting. The first wording, emphasizes "most effective," which has a three-fold partitioning (A most effective, B most effective, C most effective). Edit and count the second wording to come up with the correct 2/3. Edit and count the first wording to come up with the wrong answer, 1/2. .

5. Comparing the difference in the proportion of successes for the two different wordings, the authors claim via a chi-square test that the value of chi-square is 3.5 leading to a p-value of about .06. Perform a chi-square test to duplicate their result. Perform a difference of proportions test using Fisher's exact test and show that the p-value is closer to .093. Why is the authors' p-value result of .06 incorrect?