Chance News 33: Difference between revisions
Simon66217 (talk | contribs) |
Simon66217 (talk | contribs) |
||
Line 32: | Line 32: | ||
<blockquote>(i) the probability of a win, (ii) the number of goals scored, (iii) the number of goals conceded, and (iv) the altitude difference between the home venue of a specific team and that of the opposition.</blockquote> | <blockquote>(i) the probability of a win, (ii) the number of goals scored, (iii) the number of goals conceded, and (iv) the altitude difference between the home venue of a specific team and that of the opposition.</blockquote> | ||
as well as indicators for individual countries. This study used a logistic regression model to predict the probability of a win, and two Poisson regression models to predict number of goals | as well as indicators for individual countries. This study used a logistic regression model to predict the probability of a win by the home team, and two Poisson regression models: one to predict number of goals scored by the home team and a second to predict the number of goals conceded by the home team. | ||
http://www.bmj.com/content/vol335/issue7633/images/medium/mcsp457549.f2.gif | http://www.bmj.com/content/vol335/issue7633/images/medium/mcsp457549.f2.gif | ||
The graph of the predicted equations appears above. These graphs show clearly that a | The graph of the predicted equations appears above. These graphs show clearly that a thousand meter difference in altitude between the home team and the opposition produces a large change in the estimated probability of a win for the home team, the expected number of goals scored by the home team, and the expected number of goals allowed by the home team. | ||
===Questions=== | ===Questions=== |
Revision as of 16:37, 7 January 2008
Quotation
It is the mark of a truly intelligent person to be moved by statistics.
George Bernard Shaw
Forsooth
The following Forsooths are from the January 2008 issue of RSS NEWS.
In terms of platform use trends among the respondents, 53% cited Windows as their primary technical computing platform, with Linux following closely at 51%.
NAGNews email (NAG User Survey 2006 on technical
computing trends)
August 2006
Clearly, any product with a large user base is going to throw up some problems. Dell, for example, is shipping almost 40m PCs a year, so even if 95% of it users are happy, there could still be 6m or so with significant gripes.
The Guardian
25 January 2007
High altitude effects on athletic performance
Effect of altitude on physiological performance: a statistical analysis using results of international football games. Patrick E McSharry. BMJ 2007; 335: 1278-1281 (22 December).
There is a strong belief that athletes who live and train at high altitudes have an unfair advantage over those athletes visiting from lower altitudes. In response,
football’s governing body, the Federation of International Football Associations (FIFA), banned international matches from being played at more than 2500 m above sea level.
There is a plausible mechanistic explanation for this concern.
At high altitude hypoxia, cold, and dehydration can lead to breathlessness, headaches, nausea, dizziness, and fatigue, and possibly altitude illness including syndromes such as acute mountain sickness, high altitude pulmonary oedema, and cerebral oedema. Activities such as football can exacerbate symptoms, preventing players from performing at full capacity.
What would the data say. An ideal database exists to explore whether high altitude has a detrimental effect on athletes visiting from lower altitudes. In South America, which has three large cities at high altitude (Bogota, Columbia, Quito, Ecuador, and La Paz, Bolivia), there are records of 1460 football matches played over a 100 year period at a wide range of altitudes. This data set included four variables:
(i) the probability of a win, (ii) the number of goals scored, (iii) the number of goals conceded, and (iv) the altitude difference between the home venue of a specific team and that of the opposition.
as well as indicators for individual countries. This study used a logistic regression model to predict the probability of a win by the home team, and two Poisson regression models: one to predict number of goals scored by the home team and a second to predict the number of goals conceded by the home team.
http://www.bmj.com/content/vol335/issue7633/images/medium/mcsp457549.f2.gif
The graph of the predicted equations appears above. These graphs show clearly that a thousand meter difference in altitude between the home team and the opposition produces a large change in the estimated probability of a win for the home team, the expected number of goals scored by the home team, and the expected number of goals allowed by the home team.
Questions
1. Although the graphs are non-linear, a linear approximation is quite reasonable for the predicted values. Estimate how much change in probability of home team winning, goals scored by the home team, and goals allowed by the home team changes for each 1,000 meter change in altitude.
2. There are many variables that were not considered in this analysis. List some of the more important variables that were not included. Consider whether these variables are easy to measure or hard to measure.
3. Is there an alternate explanation other than change in altitude that could account for the differential in home team win probability, goals scored by the home team, and goals allowed by the home team?
4. Should international football matches be allowed in high altitude locations?
Submitted by Steve Simon