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Bayesian Supplement
To Freedman, Pisani, Purvis and Adhikari’s

Statistics

Dalene Stangl

Three Parts
Bayes’ Inference (Discrete)

Bayes’ Inference (Continuous)
GUSTO Case Study
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Review Bayes’ Theorem: 
Lie Detector Example 

A lie detector test is such that when given to an innocent person the probability of this 
person being judged guilty is .05.  On the other hand, when given to a guilty person, the 
probability this person is judged innocent is .12.  Suppose 18% of the people in a 
population are guilty.  Given that a person picked at random is judged guilty, what is the 
probability that he/she is innocent?

Define the events:
G+ : person is guilty G- : person is not guilty
L+  : lie detector says guilty  L- : lie detector says not guilty

The problem gives the following

P(L+|G-)=  ______   P(L-|G+)=______  P(G+)=_______

http://www.police-test.net/clickbankpolygraph.htm
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Note that
P(G-) = 1-P(G+) = 1-_____ =______

P(L+|G+)=1-P(L-|G+) = 1-_____ =______

By Bayes Theorem: P(G-|L+)=P(G-)P(L+|G-)/P(L+)

P(G-|L+)=P(G-)P(L+|G-) / P(G-)P(L+|G-)+P(G+)P(L+|G+)

=___*___ / ___*___ + ___*___ = ____

P(G-) represents chance of guilt before lie detector test (prior)

P(L+|G-) is information in the lie detector test that helps us update our belief about 
one’s guilt

P(G-|L+) is chance of guilt after lie detector test (posterior)
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Bayes Theorem: Big Picture

P(A|B)=P(B|A)P(A)
P(B)

This theorem is a formalism for how we learn.

P(A) is what we know about the chances of A prior to getting information 
from B.  Then we combine our prior information with our current 
information, P(B|A), to come up with what we now know about the 
chances of A, P(A|B).

P(A) is our prior state of knowledge.
P(A|B) is our posterior state of knowledge.



5

Binomial Probabilities 
P(X=k)= n! pk (1-p)n-k

(k!(n-k)! 
p ___    

n k       .1        .2  
5 0   .5905   .3277

1   .3280   .4906
2   .0729   .2048
3   .0081   .0512
4   .0004   .0064
5   .0000   .0003

10 0   .3487   .1074
1   .3874   .2684
2   .1937   .3020
3   .0574   .2013
4   .0112   .0881
5   .0015   .0264
6   .0001   .0055
7   .0000   .0008
8               .0001
9               .0000
10 

p ___    
n k       .1        .2  
15 0   .2059   .0352

1   .3432   .1319
2   .2669   .2309
3   .1285   .2501
4   .0428   .1876 
5   .0105   .1032
6   .0019   .0430
7   .0003   .0138
8   .0000   .0035
9                .0007
10              .0001
11              .0000
12 
13 
14 
15 

p ___    
n k       .1        .2  
20 0   .1216   .0115

1   .2702   .0576
2   .2852   .1369
3   .1901   .2045
4   .0898   .1821
5   .0319   .1028
6   .0089   .1091
7   .0020   .0545
8   .0004   .0222
9   .0001   .0074
10 .0000   .0020
11             .0005
12             .0001
13             .0000
14 
15 
16 
17 
18 
19 
20 

Presenter
Presentation Notes
Rig this so that you get 0 of 5, 2 of 10, 3 of 15, and 4 of 20.
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Choose a partner in the class. 

I have a population of M & Ms. The percentage of yellow M & Ms is either p=10% or 
p=20%.  You have been hired as a statistical consultant to decide whether the true 
percentage of yellow M & Ms is 10%.  Here is your decision table with associated 
payoffs/losses. 

TRUE STATE OF THE BAG 
H0 is true: p=10%   H0 is false: p=20% 

Decision 
Fail to reject H0 Your boss gives you a bonus, You lose your job, and you  

and Dalene buys you lunch. and you must buy Dalene lunch. 

Reject H0 You lose your job, and you Your boss gives you a bonus, 
must buy Dalene lunch. and Dalene buys you lunch. 

I will show you a random sample from the bag, but you must pay 20 cents for each 
M & M you see, and you must buy M & Ms in $1 increments.  That is, you may see 
5, 10, 15, or 20 M & Ms.

Example: Estimating % Yellow M&M
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Using FPPA (frequentist) methods

H0 : % yellow=p=10%
HA : % yellow=p=20%

Your test statistic will be the number of yellow M & Ms you observe in the sample.
The observed significance level (p-value) will be the probability of observing this many or 

more yellow M & Ms given the null hypothesis is true.

How many M & Ms, n, would you like to buy? 5  10  15  20 
At what significance level will you reject the null hypothesis? ____________

Now record the number of yellows in the first n draws.

Number of yellows in the first n draws = ______ = k.

Now calculate your observed significance level (p-value). (The Binomial table will help.)

P(k or more yellows | n, p=10%) =  _______

Do you reject the null hypothesis?  Yes   No
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Using Bayesian Inference

Now we will start over, reworking the problem from a Bayesian perspective.  

Before you sample any M & Ms, what is your probability that the %yellow is 10%, and what is 
your probability that the %yellow is 20%?  These are your prior probabilities for the 
percentage of yellow M & Ms, or equivalently, these are your prior probabilities for the null 
and alternative hypotheses. That is, these probabilities represent what you believe before 
seeing any data.

Prior probabilities: What you think before seeing the sample data.
P(p=10%) = _______.
P(p=20%) = _______.  

In the Bayesian paradigm, you do not need to pick your final sample size.  You can pick it 
sequentially.  That is you can buy 5, see the data, and then decide whether to buy 5 more, 
etc.  At each stage calculate P(p=10%|data) and P(p=20%|data).  Decide to accept, reject 
or buy 5 more.

Number of      P(data | p=10%)    P(data | p=20%)       P(p=10%|data)     P(p=20%|data)      Buy 5      Conclusion 
yellow in 1st Binomial(n, p=.1, k) Binomial(n, p=.2, k) More? 

n draws (k) _______
n=5        YES  NO   10%   20% 
n=10 YES  NO   10%   20% 
n=15 YES  NO   10%   20% 
n=20 YES  NO   10%   20% 
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Frequentist Paradigm of Statistics
I.  Science as “objective”

II. Probability as long-run frequency

III. Statistical Inference - parameters as fixed quantities

• Specify a null hypothesis, model (including sample size), and significance level

• Collect data

• Calculate the probability of the observed or more extreme data given the null 
model is true

• Draw inferences based on significance levels and use size of observed effects 
to guide decisions.
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Bayesian Paradigm of Statistics
I.  Science as “subjective”

II.  Probability as quantified belief

III.  Statistical Inference - parameters as random

•Specify a set of plausible models

•Assign a (prior) probability to each model

•Collect data

•Use Bayes theorem to calculate the posterior probability of each model given 
the observed data

•Draw inferences based on posterior probabilities

•Use posterior probabilities to calculate predictive probabilities of future data 
and use utility analysis to guide decisions
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RU486 Example
Abortion drug as a ‘morning after’ contraceptive. Example modified from Don A. Berry’s 
Statistics: A Bayesian Perspective, 1995, Ch. 6, pg 15. 

A study reported in Science News, Oct. 10, 1992, addressed the question of whether the 
controversial abortion drug RU 486 could be an effective “morning after” contraceptive.  
The study participants were women who came to a health clinic in Edinburgh, Scotland 
asking for emergency contraception after having had sex within the previous 72 hours.  
Investigators randomly assigned the women to receive either RU486 or standard therapy 
consisting of high doses of the sex hormones estrogen and a synthetic version of 
progesterone.  Of the women assigned to RU486 (R), 0 became pregnant.  Of the women 
who received standard therapy (C for Control), 4 became pregnant.  How strongly does 
this information indicate that R is  more effective than C?
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Let’s assume that the sample sizes for the RU486 and the control group were each 400.  
We can turn this two-proportion problem into a one-proportion problem by considering 
only the 4 pregnancies, and asking how likely is it that a pregnancy occurs in the R 
group?  If R and C are equally effective then the chance the pregnancy come from the R 
group is simply then number of women in the R group divided by the total number of 
women, i.e. 400/800=50%.
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In the classical framework we can set up the null hypothesis of no difference between 
the treatments as:

Ho: p=50%
Ha: p<50%

The data consists of binomial data where n=4, p=.5, and k=0, because under the null 
hypothesis p=50%.

The goal is to calculate P(observed data or data more extreme|Ho is true).

Because there is no data more extreme than k=0, this is just the binomial probability for 

P(k=0|n=4,p=.50) = (1-.5)4 =.0625.

We conclude that the chances of observing 0 pregnancies from the R group given that 
pregnancy was equally likely in the two groups is .0613.  Depending on the alpha level 
we choose, we would accept or reject this null hypothesis.
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In the Bayesian paradigm, we begin by delineating each of the models we consider 
plausible.  

To demonstrate the method, we will assume that it is plausible that the chances that a 
pregnancy comes from the R group (p) could be 

10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90%.

Hence we are considering 9 models, not 1 as in the classical paradigm. 
The model for 20% is saying that given a pregnancy occurs, there is a 2:8 or 1:4 chance 
that it will occur in the R group.  The model for 80% is saying that given a pregnancy 
occurs, there is a 4:1 chance that it will occur in the R group.
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Step students through the process from prior to posterior. 

Applying Bayes’ Theorem
Model      Prior   P(data|model) Product  Posterior
(p)            P(p)     P(k=0|p)                     P(pldata)

.1 .06 .656 .0349 .326

.2 .06 .410 .0246 .204

.3 .06 .240 .0144 .119

.4 .06 .130 .0078 .064

.5 .52 .063 .0325 .269

.6 .06 .026 .0015 .013

.7 .06 .008 .0005 .004

.8 .06 .002 .0001 .001

.9 .06 .000 .0000 .000
1.00 P(data)=.1208 1.00
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•From column 5 we can make the statement, the posterior probability that p=.1 is 
32.6%.  This model, p=.1, has the highest posterior probability.  

•Notice that these posterior probabilities sum to 1, and in calculating them we 
considered only the data we observed.  Data more extreme than that observed 
data plays no part in the Bayesian paradigm.  

•Also note, that the probability that p=.5 dropped from 52% in the prior, to about 
27% in the posterior.  This demonstrates how we update our beliefs based on 
observed data.
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The Bayesian paradigm allows us to make direct probability statements about 
our models.  We can also calculate the probability that RU486 is more effective 
than the control treatment.  This event corresponds to the sum of the models 
where p<.5.  
By summing the posterior probabilities for these 4 models, we get the probability 

that RU486 is more effective is  32.6%+20.4%+11.9%+6.4%=71.3%.
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Predictive Probabilities

Often probabilities for the parameter are not the quantity of most interest to us.  
What we really want to know is what are the chances of particular outcomes for 
the next observation. What are the chances the next pregnancy will come from 
the RU486 group?  These are called predictive probabilities.  Predictive 
probabilities are a weighted average of the possible parameter values.  The 
weights are the posterior probabilities of each value.

Table 5. Predictive probabilities
Model  Posterior p*Posterior
_p___P(pldata) _p*P(p|data)

.1 .326 .033

.2 .204 .041

.3 .119 .036

.4 .064 .026

.5 .269 .135

.6 .013 .008

.7 .004 .003

.8 .001 .001

.9 .000 .000
1.00 .281
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In this example we considered only 9 possible values for p.  Using 
calculus, we can consider any value of p between 0 and 1.  This simply 
requires us to use integration rather than summations in the calculations 
presented above. Next time I’ll show you how to do this in simple models in 
which you can circumvent the calculus.
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