
Teaching Statistical Inference
via Simulation using R

A CAUSE Webinar

Daniel Kaplan

Macalester College
St. Paul, Minnesota, USA

Oct. 14, 2008

Supplementary Material Teaching Inference via Simulation



Outline

1. BEFORE THE WEBINAR:

1.1 Install R.
1.2 Download the seminar software and data files from the web.
1.3 Learn a few basic R commands.

2. Inference as simulation.

3. Using R for simulation.

4. Confidence Intervals & Coverage

5. Hypothesis Testing

6. Simulations using Causal Networks to illustrate Confounding
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BEFORE THE WEBINAR: Objectives

1. Show how computer-based simulations can be used to teach
students the logic of statistical inference.

2. Show a good computer notation, based in R, that provides an
effective way for students to observe the consequences of
randomness.

3. Help participants to see that the power of R is quite accessible
to them. The start-up costs of learning the necessary
commands are not great.
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BEFORE THE WEBINAR: Some Claims
Behind each of the objectives is a claim.

1. Motivating CLAIM: Students can more easily learn the
principles of inference when they can see directly the role that
randomness plays. The formulas that are commonly used in
teaching statistics describe the randomness but in a way that
is too abstract for any but a handful of students to
understand.

2. Motivating CLAIM: A language-based approach to computing
let’s students see the structure of statistical inference: how
the parts fit together. (For some background, see
http://repositories.cdlib.org/cgi/viewcontent.
cgi?article=1003&context=uclastat/cts/tise.)

3. Motivating CLAIM: There are start-up costs to the
language-based approach: a few hours of practice and some
frustration when you make mistakes. But the investment pays
off.
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BEFORE THE WEBINAR: Limitations of the Webinar
Format

Presenting this material in a classroom setting requires
approximately 4 hours spread around the semester. This gives time
to provide enough time for the concepts to sink in, for students to
develop fluency with the notation, and to work with students at a
humane pace that allows them to make natural mistakes and then
correct them.

I We have only 30 minutes for this webinar.
This means that there is not enough time for you to become
fluent with the notation. You will make typographical
mistakes and you may make mistakes of a more conceptual
nature. You won’t have much time to correct them.

I I cannot see what you are typing.
When you make a mistake, I will not be able to point it out to
you and show you what’s wrong.
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BEFORE THE WEBINAR: Dealing with the limitations

I If you can, practice a bit before the webinar with the
commands given after the installation instructions.

I I’m going to show you the basic structure of the notation and
give some simple statistical examples of using it to understand
inference.

I The slides marked “Supplemental Material” won’t be reviewed
during the webinar. They provide some background and
detail, and contain extension examples of greater richness.

I I suggest you try to follow along on your own computer. But,
when you make a mistake, do not get obsessed with correcting
it. Let it drop and come back to it later, after the webinar.
Then you will have the time to compare your statement to
that given on the slides.
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BEFORE THE WEBINAR: Install R

I It takes only about 5 minutes to install R. Please do so before
the webinar begins. It will not reconfigure your system or do
any damage to existing software. It’s free and runs on all the
major operating systems: Windows, Mac OS X, Linux. The
web site is www.r-project.org

I Installing R is usually very easy, but not everyone is
experienced with using a web browser to download files,
finding the files once they have been downloaded to their
computer, or installing new software. If you have problems,
contact the webinar presenter: Danny Kaplan,
kaplan@macalester.edu, 651-695-1877. I’ll talk you
through it.

I If you already have R installed on your system, make sure that
it is a relatively recent version (2.6 or more recent). If not,
install the newest version.
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BEFORE THE WEBINAR: Install R

I To install R, you download one file using your web browser.
Links to the current version are given below.

I Windows To install R, execute the downloaded file. You will
be prompted with several questions; you can accept all of the
default settings. Link: http://streaming.stat.iastate.
edu/CRAN/bin/windows/base/release.htm

I Mac OS X The file is a “disk image” and will appear in the
Finder as such. To install R simply double-click on icon of the
multi-package ”R.mpkg” contained in the R-2.7.2.dmg disk
image. Link: http://streaming.stat.iastate.edu/CRAN/

More generally you can access the latest version of the
software through the Download/CRAN link on the main R
web page. You will want the “base” distribution, which is
distributed as a “binary” file appropriate for your operating
system.
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BEFORE THE WEBINAR: Install the software and data.

All of the data that we need for this webinar, and some special
software in R that makes simulations easy, is contained in a single
file available on the web:

I Data/software file:
http://www.macalester.edu/~kaplan/ISM/ISM.Rdata

Use your browser to download this file onto your computer.
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BEFORE THE WEBINAR: Starting R

To start R, find the ISM.Rdata file that you installed in the
previous step. Double-click on it. This should start R and read in
the software and data sets. The window should look something like
this:
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BEFORE THE WEBINAR: Checking that things work
Just to make sure that everything is working, try two simple R
commands.
In the R window, you type commands at the prompt, the little >
character that starts the last line.
First, do this one:

> 3 * 7

When you press return, R should print a line that looks like this:

[1] 21

Next, do this one (taking care to spell out the word “five”):

> five * 7

The response should be

[1] 7 7 7 7 7

If either of these commands doesn’t work, contact the webinar
presenter by phone or email: Danny Kaplan
(kaplan@macalester.edu) 651-695-1877
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BEFORE THE WEBINAR: Review some R Notation

Please try out these few statements, just to develop some “finger
memory” so that you’ll be better able to follow the webinar.
These examples are more abstract than the ones in the actual
webinar. Don’t worry. We’ll be using real data in the webinar.
Remember, you will type just the statement to the right of the >
prompt. When you press return, R will do its work.

1. Do a computation (3 + 2) and view the result.

> 3 + 2
[1] 5

2. Re-do the computation and store the resulting value in an
object named x:

> x = 3 + 2

This is called “assignment” to x.
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BEFORE THE WEBINAR: Reviewing R Notation

3. Look at the value stored in x:

> x
[1] 5

4. Create a small set of numbers, store it in y, and look at the
value:

> y = 1:5
> y
[1] 1 2 3 4 5

5. Add x and y, without storing the result:

> x + y
[1] 6 7 8 9 10
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6. Randomly sample from y with replacement:

> resample(y)
[1] 3 4 4 2 3

7. Use the “up arrow” key to recall the previous statement so
that you don’t have to type it. Modify it so that it looks like
this:

> resample(y, 40)
[1] 5 2 5 5 5 3 1 5 5 2 1 3 3 1 1 3 1 5 1 2 5 3 3 2 3 2 1 3
[29] 1 4 4 4 3 3 2 3 2 2 5 2

Note that the two arguments to resample are separated by a
comma.

8. Randomly sample from y without replacement:

> resample(y, replace=FALSE)
[1] 5 2 1 3 4

The argument replace=FALSE is called a “named argument.”
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9. Calculate the mean of a n = 40 random sample drawn from y,
without replacement:

> mean( resample(y, 40))
[1] 3.15

10. Do this again, many times, using the up-arrow to recall the
previous statement so that you don’t have to type it. You’ll
see some variability in the result.

11. Last one ... Generate 100 trials of the mean of an n = 40
random sample drawn from y, store it in an object, and
calculate the standard deviation of the result:

> s = do(100)*mean( resample(y, 40) )
> s
[1] 2.650 3.000 2.875 3.400 3.125 3.375 2.675 2.850 2.675
[10] 3.075 3.075 2.875 2.850 2.825 2.775 3.125 2.750 3.125

... and so on.
> sd(s)
[1] 0.2437568
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Editing Commands

The use of language in computer commands makes it easier (I
claim) to see the structure of the logic of statistical inference. But,
undeniably, it makes it easier to make typographical mistakes. This
is a trade-off, but it is a worthwhile trade-off.

R provides an editing capability that makes it easier to build new
commands out of old ones. At the heart of this are the arrow keys
on your keyboard.

I If you start with the cursor at the latest prompt, the up
arrow will recall the previous command.

I Successive presses of the up arrow navigate up the history of
commands. The down key moves down the history.

I Use the left and right arrows to move within the command.
Typing and deleting do the expected thing.

Three minutes of practicing will get you familiar with this.
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BEFORE THE WEBINAR: Practice editing within R
1) Within R, enter and evaluate
this command

> 3 + 2
[1] 5

2) Now use the up arrow (don’t
retype!) to bring back that
command and edit it to look like
this:

> 32 + sqrt(2)
[1] 33.41421

3) Use the up arrow again to
recall that command and edit it
to look like this

> x = 32 + sqrt(2)

4) Now use the arrow to get all
the way to the first command
(3+2) and edit it to look like this:

> y = do(5) * 3 + sqrt(2)

5) Finally, just type y to see the
result

> y
[1] 4.414214 4.414214 4.414214
[4] 4.414214 4.414214

Practice such editing until you
feel comfortable with it.
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BEFORE THE WEBINAR: Incomplete statements

A very common mistake involves omitting the closing parethesis in
a statement around a file name. R handles this gracefully, but you
should be aware of what it does.
Try typing this statement, which misses a closing parethesis:

> sqrt( 4

When you press return, R will recognize that the statement is
incomplete and prompt you to complete it with a +:

> sqrt( 4
+

Just type the closing parenthesis after the + and press ENTER.

Sometimes the mistake will be more involved and R will keep
prompting with +. In such a situation, you can bail out by pressing
ESC and, perhaps, additional closing parentheses or quotes.
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BEFORE THE WEBINAR: Last step.
If the commands are working, you are all set.

I Quit R using the usual menu commands. You will be asked if
you want to save the workspace. Say no.

I Keep track of the location of the ISM.Rdata file. You will
need this on the day of the webinar.

I If you like, you may want to read a short tutorial on using R.
This is at http:
//www.macalester.edu/~kaplan/ISM/draft-intro.pdf.
Just read Section 1.4.

I Ahead of time on the day of the webinar, start up R with the
ISM.Rdata file. Then just leave R running until the webinar
begins.

Congratulations! You are all set for the webinar. Also, you now
have installed on your computer a powerful, professional-level
system for statistical computation which you can use for many
purposes beyond those of the webinar.
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AFTER THE WEBINAR

My hope is that, after the webinar, you will want to bring some of
these ideas to your classes.

I I have included many extra slides containing elaborations or
further examples — more than we could possibly do in the 30
minutes of this webinar.

I I encourage you to think about using R for the non-simulation
computations in your courses. This works well and makes it
easier for students to make the transition from descriptive
statistics to inference. Some resources that you might find
helpful:

I Daniel Kaplan, Introduction to Statistical Modeling
I John Verzani Using R for Introductory Statistics
I Michael J. Crawley. Statistics: An Introduction using R.
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Inference as Simulation

I Statistical inference is often presented in terms of formulas
and distributions.

I Underlying those formulas is a conception of a process.
George Cobb has described that process in terms of three
components:

I Randomize
I Repeat
I Reject

I Formulas such as t = (m1 −m2)/sp
√

1/n1 + 1/n2) present
the results of the inference process as worked out by the rules
of probability calculus.

I Another way: simulate the process and base the inference on
the outcomes of the simulation. Technical terms are
bootstrapping and resampling.



Algebra and Computer Notation

For half a century, from the days of FORTRAN, computer
languages have provided an algebra-like notation for arithmetic,
e.g.,

> sqrt( 3^2 + 4^2)
[1] 5

Most people have little trouble with the idea of assignment:
storing a result for re-use.

> n = 10
> x = 1/sqrt(n)
> x
[1] 0.3162278



Computer Concepts

Admittedly, the computer notation has differences from the
algebraic notation. For example, the statement

x = x + 1

is perfectly sensible to the computer, but not valid algebraically. (It
means: give x a new value that will be the old value plus 1.)
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Randomization

There is no standard algebraic notation for “randomize.” And
randomization can mean different things: shuffling, sampling with
replacement, shuffling within groups, etc.
However, a single, simple operator will do what’s needed to
understand many forms of statistical inference: random sampling
with replacement.

1 > pop = 1:5
2 > pop
3 [1] 1 2 3 4 5
4 > resample(pop)
5 [1] 4 2 5 2 5
6 > resample(pop)
7 [1] 4 5 1 4 5

Samples of different sizes:

8 > resample(pop,3)
9 [1] 1 3 1

10 > resample(pop,3)
11 [1] 5 5 2
12 > resample(pop,10)
13 [1] 2 3 4 4 2 1 3 3 1 1



Computer Concepts

Resample can also sample without replacement, e.g., shuffling:

> resample(pop,replace=FALSE)
[1] 3 2 4 5 1

There is a shuffle operator that makes this easier:

> shuffle(pop)
[1] 2 5 3 4 1
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A Simple Notation for “Repeat”

The do notation makes it straightforward to do many of the sorts
of repetition used in statistical inference.

> do(10) * mean(resample(pop))
[1] 3.0 2.4 4.0 3.4 2.8 2.8 2.8 2.2 3.2 4.0

> do(10) * max(resample(pop))
[1] 3 5 4 5 5 5 4 5 5 4

> do(10) * sd(resample(pop))
[1] 1.6733201 1.4832397 1.5165751 0.8366600 0.8944272
[6] 1.6431677 1.0954451 0.8366600 1.5165751 0.8366600



Computer Concepts

In most computer languages, the process of “repeating” involves
somewhat complicated syntax: loops, counters, accumulators, and
such. Teaching this to students is not so easy and arguably
distracts them from statistical concepts. The do notation is less
general than a loop, but easier to use for simple tasks involving
repetition.
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Computing with Real Data

Real data consists of cases and variables, not just simple sets of
numbers.

I Read in some data. I name this pop because I want you to
think of this as a population.

> pop = ISMdata("ten-mile-race.csv")

It looks like this

state time net age sex
1 VA 6060 5978 12 M
2 MD 4515 4457 13 M
3 VA 5026 4928 13 M
... and so on ...
8635 ND 9726 9231 75 F
8636 VA 7058 7058 87 F

From the Cherry Blossom 10-mile
road race held in Washington,
DC in 2004. Variables: the age
and sex of the runner, the state
where the person lived, and the
time (in seconds) from the start
gun to crossing the finish line;
net is the time from the start line
to the finish line.



Simple Statistics

I Calculate the mean of a variable.

> with( pop, mean(time))
[1] 5813.148
> with( pop, median(age))
[1] 35

I Select a random sample of size n = 100

> mysamp = resample( pop, 100 )

I Calculate sample statistics

> with(mysamp, mean(time))
[1] 5845.5
> with(mysamp, median(age))
[1] 34.5



EXTENSION: Statistical Models
Due to the 30-minute time constraint of this workshop, I’m working
with simple statistics such as the sample mean, sd, IQR, etc.
It’s a bit richer to work with linear models, as I do in my courses.
R has a particularly strong notation for models. Example: Model
running time by age:

> with(pop, lm( time ~ age) )
(Intercept) age

5547.829 7.199

> with( pop, lm( time ~ age + sex))
(Intercept) age sexM

5592.61 16.49 -775.91

> with( pop, lm( time ~ age * sex))
(Intercept) age sexM age:sexM

5630.490 15.384 -845.526 1.911
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The Process behind Sampling Distributions

I Randomize: Draw a new random sample from the population
and calculate your sample statistic.

I Repeat: Do this many times and form the distribution of the
results: this is the sampling distribution.



The Process behind Sampling Distributions

Population

A B C D E F

G H I J K L

M N O P Q R

S T U V W X

Y Z

Sampling Distribution

stat 1

Sample 1

V C Y K O

Sample 2

stat 2J E P G K

Sample 3

stat 3Q E O L M



Simulating this on the Computer

My sample statistic:

> with(mysamp, mean(time))
[1] 5845.5

Now, draw a new random sample and find the mean time. Three
times, as in the diagram:

> with( resample(pop, 100), mean(time))
[1] 5851.84
> with( resample(pop, 100), mean(time))
[1] 5775.59
> with( resample(pop, 100), mean(time))
[1] 5886.71



Drawing from The Sampling Distribution

The do operator lets you collect many trials. Here are a dozen:

> do(12) * with( resample(pop, 100), mean(time))
[1] 5606.31 5996.19 5732.24 5868.49 5607.31 5893.15 5962.55
[8] 5826.24 5692.76 5871.56 5869.97 5684.92

500 trials can give a good picture of the sampling distribution:

> trials = do(500) * with( resample(pop,100), mean(time) )



Describing the Sampling Distribution

Each of the 500 entries in trials is a draw from the sampling
distribution.

I Plot a histogram

> hist(trials)

I Describe the distribution:

> mean(trials)
[1] 5816.408
> sd(trials)
[1] 103.7016

The standard deviation of the
sampling distribution is the
standard error.

Sampling Distribution

Mean time

Fr
eq
ue
nc
y

5500 5700 5900 6100

0
20

40
60

80
10
0



Resampling

Typically, it’s impractical to draw repeated samples from the
population. We acquire our sample with difficulty; repeating it is
not feasible.

Instead of repeating the draws from the population, we draw
instead from the sample. This is a matter of copying the entries
from the sample rather than going to the field for new data.

Sampling from a sample: RE-sampling.



Population

A B C D E F

G H I J K L
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Y Z

Sample
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Resampling
Distribution
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Resample 3
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The Resampling Operator

The resampling operator samples with replacement. Some cases
may be omitted, some duplicated in the resample.

> resample(mysamp)
state time net age sex

2337 MD 4042 4028 40 M
800 MD 5555 5505 29 M
3897 NJ 6562 6362 55 M
2054 VA 4126 4110 38 M
2054.1 VA 4126 4110 38 M
2202 DC 4063 4050 39 M
3828 MD 6479 6210 54 M
2899 VA 4850 4679 44 M
800.1 MD 5555 5505 29 M
2928 VA 5746 5507 44 M

Note that case
2054 appears twice
in the resample, as
does case 800.



Constructing the Resampling Distribution

Just like the sampling distribution, but sample from our original
sample, not the population.

> trials = do(500)*with(resample(mysamp), mean(time))
> mean(trials)
[1] 5934.294
> sd(trials)
[1] 93.60788
> hist(trials)
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The Resampling Distribution is Different!

The resampling distribution is systematically different from the
sampling distribution — it has the wrong mean.
But the shape and standard deviation are about right.
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Confidence Intervals and the Resampling Distribution

The standard deviation of the resampling distribution approximates
the standard deviation of the sampling distribution. So use it as
the standard error in constructing confidence intervals.

> with(mysamp, mean(time))
[1] 5935.02
> trials = do(500) * with(resample(mysamp), mean(time) )
> sd(trials)
[1] 93.60788

Giving 5935 ± 2 × 94, that is, 5748 to 6124.

Or, take the coverage interval on the resampling distribution:

> quantile( trials, c(.025, .975))
2.5% 97.5%

5753.5 6117.3



Not just the mean!
This core logic of Randomize and Repeat can be used to find the
confidence interval on other sample statistics.
Example: Correlation coefficient.

> with( mysamp, cor(time,age))
[1] 0.05003829
> with( resample(mysamp), cor(time,age))
[1] -0.06575366
> trials = do(500)*with( resample(mysamp), cor(time,age))
> hist(trials)

Correlation time vs age
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Not just the mean!

Some other sample statistics. Note the common structure to the
simulations:
>trials=do(500)*with(resample(mysamp),median(age))
>trials=do(500)*with(resample(mysamp),sd(age))
>trials=do(500)*with(resample(mysamp),IQR(age))

>trials=do(500)*with(resample(mysamp),quantile(age,.8))



How does the SE depend on n?

Do an experiment, varying n.

> s25 = do(500)*with( resample(pop,25), mean(time))
> sd(s25)
[1] 199.9869
> s100 = do(500)*with( resample(pop,100), mean(time))
> sd(s100)
[1] 106.2490
> s400 = do(500)*with( resample(pop,400), mean(time))
> sd(s400)
[1] 53.0887
> s1600 = do(500)*with( resample(pop,1600), mean(time))
> sd(s1600)
[1] 25.27962

Quadrupling the sample size halves the SE.
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Inference on Models

Because the same core logic applies broadly, you can discuss more
interesting statistics.
Example: What is the time difference between the sexes?

> with( pop, lm( time ~ sex))
(Intercept) sexM

6156.2 -687.1

Men are 687 seconds faster. What’s the SE?

> trials = do(500) * with(resample(pop), lm( time ~ sex))
> sd(trials)
(Intercept) sexM

15.51795 21.50236

So, 666 to 709 seconds faster.

Supplementary Material Teaching Inference via Simulation



Including covariates

Example: What is the time difference between the sexes, taking
age into account.

> with( pop, lm( time ~ age + sex) )
Coefficients:
(Intercept) age sexM

5592.61 16.49 -775.91

Men are faster by 776 seconds. What’s the SE?

> trials = do(500)*with(resample(pop), lm( time ~ age + sex) )
> sd(trials)
(Intercept) age sexM
39.671063 1.099228 21.617360

About 100 seconds of the faster speed is accounted for by the
different ages of men and women.
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Computer Concepts: with

Both pop and mysamp are data frames, consisting of cases and
variables. Think of a data frame as a family, with the family
members consisting of the variables.
When you are within a family, you can refer to the members just
with their first name. This is what the with operator lets you do.
The with operator takes two arguments: the data frame and the
calculation to do with that frame.
Another style, which might be preferable to some people, involves
giving the full name of each variable. This is as if you referred to
people always with both their last name (to identify the family)
and their first name. This is done with the $ notation, as in
mysamp$time or pop$age. Think of this as specifying both the
last name and the first name of a person, using $ to separate
them. As you might expect, this notation is helpful when there is
more than one “family” involved in a single computation. But this
is rarely the case in introductory statistics.
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Computer Concepts: with

Computer Concepts
For computer mavens ...
The do(12) operator is special. You can ask your local computer
scientist how it works (mention “operator overloading” and “lazy
evaluation”). For the student, however, what’s key is that it provides a
simple and transparent way to repeat a command many times.

The with operator is also special in that it avoids evaluating its second

argument until an environment has been set up with the variables

contained in the second argument.



Hypothesis Testing

A hypothesis test creates a world where the null hypothesis is true.
and examines, in that hypothetical world, whether the outcome of
a study are likely to be different from the actual results that we
observed in the actual world.

Steps:

1. Record your actual outcome on the data collected in the
actual world.

2. Randomly select a sample in the null hypothesis world.

3. Repeat many times

4. Rejection step: check whether the actual outcome is
implausible as an outcome from the null-hypothesis world.



Hypothesis Testing using the Sample Mean

PEDAGOGICAL WARNING: I argue below that the sample mean
(or the sample proportion) is a bad place to start. But since it’s
where people often start, that’s what I’ll do here.

Setting: Conventional wisdom is that the average age of runners is
35. You collect a sample of size n = 100, and compute the sample
mean

> with(mysamp, mean(age))
[1] 37.38

The sample age is 2.38 years larger than the null hypothesis age.
Is this sample an implausible trial in the world where the average
age of runners is 35? If so, you should doubt the null hypothesis
based on these data.



Living in the Null Hypothesis World

1. Create a world in which the null hypothesis is true, by
modifying the sample accordingly:

> nullworld = with(mysamp, age - 2.38)
> mean(nullworld)
[1] 35

2. In that world, randomly sample and collect the results

> samps = do(1000)* mean( resample(nullworld) )

3. See how different our samples (in the null-world) are from the
hypothetical value:

> table(abs(samps - 35) > 2.38)
FALSE TRUE
939 61

61 out of 1000 trials were as far off from the hypothetical
value as our actual trial. So the p-value is 0.061.



Comparing to a conventional one-sample t-test

If you like, you can also do a t-test. The reported p-value is
0.06075. (It’s accidental that the simulation results were so close.)

> with(mysamp, t.test(age,mu=35) )

One Sample t-test

data: age
t = 1.897, df = 99, p-value = 0.06075
alternative hypothesis: true mean is not equal to 35
95 percent confidence interval:
34.89054 39.86946

sample estimates:
mean of x

37.38

Now the editorial: Why not to do this?
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EDITORIAL

Don’t start with sample means and proportions for hypothesis
testing!

I It’s generally a specialized (and often artificial) setting. Why
did I pick 35 for the null hypothesis age?

I It obscures a more important general convention for the null
hypothesis: no difference among groups or no relationship
between variables.

I The calculations of hypothesis testing on sample means and
proportions overlaps with that of confidence intervals. But
one involves the null hypothesis world and one does not.
Confusing!

True, the formula for a one-sample t-test is pretty simple (so long
as you ignore the need to look up a p-value in a table).
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A more natural setting for hypothesis testing.
Compare two groups.
EXAMPLE: Are the ages of men and women different? Null
hypothesis: No relationship between age and sex.

1. What’s the observed difference in the actual sample?

> with(mysamp, lm( age ~ sex))
(Intercept) sexM

33.73 6.63
The observed age difference is 6.63 years — the 2nd
coefficient

2. Simulate the null hypothesis world by randomizing the
explanatory variable:

> with(mysamp, lm( age ~ resample(sex)))
(Intercept) resample(sex)M

35.895 2.396
Notice that randomization is applied only to one of the
variables. In the simulation we are breaking the relationship
between sex and age.
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Repeating the simulation in the null world

Idea: count how many times in the simulated null world, the
difference between men and women was as large as that observed
in the actual sample.

> samps = do(1000)*with(mysamp, lm( age ~ resample(sex)))
> head(samps)
(Intercept) resample(sex)M

1 34.93750 4.6971154
2 37.81395 -0.7613219
3 38.40426 -1.9325572

... and so on

Now the count:

> table( abs(samps[[2]]) > 6.63)
FALSE TRUE

995 5
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Another example
The logic of hypothesis testing is the same for comparing groups
as for regression. Example: Running time modeled by age.

1. Observe the actual sample:

> with( mysamp, lm( time ~ age))
(Intercept) age

6145 -8

Running time goes down by 8 seconds per year in our sample.

2. Simulate the null hypothesis world and repeat.

> samps = do(1000)*with( mysamp,
+ lm( time ~ resample(age)))

3. Count how often the simulation produces “big” results:

> table( abs(samps[[2]]) > 8 )
FALSE TRUE
644 356

About 36% of the time, so p=0.36.
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Compare to the Regression Report

The point of the simulations here is to demonstrate the logic of
hypothesis testing. Once students understand this logic, they can
use conventional tests to do the calculations.

> mod = with( mysamp, lm( time ~ age ) )
> summary(mod)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6144.534 342.333 17.949 <2e-16
age -8.000 8.687 -0.921 0.359

Supplementary Material Teaching Inference via Simulation



ELABORATION: ANOVA and R2

ANOVA fits into this same framework, but instead of checking the
size of coefficients, check the size of R2.
Do running times differ among the states of origin?

1. Observe in the actual sample:

> with(mysamp, r.squared( time ~ state) )
[1] 0.0602297

2. Simulate the null hypothesis world:

> samps=do(1000)*
with(mysamp, r.squared(time~shuffle(state)))

3. Count

> table( samps > 0.0602297)
FALSE TRUE
339 661

The p-value is 0.66.
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ELABORATION: ANOVA (cont)

Compare the results of the simulation to the standard ANOVA
table.

> mod = with(mysamp, lm(time ~ state))
> anova(mod)
Analysis of Variance Table

Response: time
Df Sum Sq Mean Sq F value Pr(>F)

state 8 7000731 875091 0.729 0.6655
Residuals 91 109233128 1200364

For the link between two-way ANOVA and ANCOVA and R2, see
Introduction to Statistical Modeling.
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With or without replacement?

When randomizing an explanatory variable, it makes sense to
sample without replacement, that is, to shuffle. Generally, it
doesn’t make much difference which you do, so for introductory
students, I just stick with resampling with replacement.
This ANOVA example is one situation where it does make a
difference. Some of the states in the sample get dropped when
resampling without replacement.
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Coverage and Confidence Intervals

I The interpretation of confidence intervals is difficult. They
don’t really describe the sampling distribution.

I But when properly constructed, they have a useful relationship
with the population parameter.

I Your task: Construct a 68% coverage interval for a model of
your choosing and a sample size of your choosing. Then
compare that interval to the population parameter and see if
your interval covered it.



Did your interval cover the population parameter?

1. Pick your own sample

> newsamp = resample( pop, 150, replace=FALSE )

2. Compute your own sample statistic and the 68% confidence
interval

> with( newsamp, IQR(age))
[1] 13
> samps = do(500)*with( resample(newsamp), IQR(age))
> sd(samps)
[1] 1.717770

The 68% interval is 13 ± 1SE = 13 ± 1.72 or 11.28 to 14.72.

3. Check if the population parameter is in the interval.

> with(pop, IQR(age))
[1] 16

No! I lost! But I don’t feel bad since I should win only 68% of the
time.



ELABORATION: Doing this with models
Examples of models:

I mod=with(newsamp,lm(time~age))
I mod=with(newsamp,lm(time~sex*age))

You can have students do intervals “by hand,” but here we’ll just
use software. Remember: it’s a 68% confidence interval.

> mod = with(mysamp, lm( time ~ age))
> intervals(mod, level=0.68)

lower upper
(Intercept) 5802.36245 6486.7056551
age -16.68233 0.6826484

Now compute the population parameter:

> with(pop, lm( time ~ age))
(Intercept) age

5547.829 7.199

Again, for this sample, the population parameters fall outside of
the interval.

Supplementary Material Teaching Inference via Simulation



Simulating Causal Connections

I There is a strong (and correct) disposition to teach statistics
with “authentic data.”

I Since inference is about how to reason from data to the real
world, it helps to have examples where we know what the real
world is. That’s why teachers often use data from familiar
settings, e.g., heights.

I But for teaching process (selecting covariates, designing
experiments, etc.), it helps to be able to simulate the real
world.
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Simulation Example: Campaign Spending

Does spending by incumbent politicians increase their fraction of
the vote? Studies have claimed not: there is a negative correlation
between incumbent spending and vote percentage.
But, the reason that incumbents spend a lot is that they are in
hotly contested elections. That’s why the vote percentage goes
down when incumbents spend a lot.

Popularity

Polls

Spending

Vote
Outcome

incre
ase

s
decreases

incre
ase

sincreases

?

?

?
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Running the Simulation

> campaign.spending
Causal Network with 4 vars:
========================================
popularity is exogenous
polls <== popularity
spending <== polls
vote <== popularity & spending
> run.sim(campaign.spending)
popularity polls spending vote

1 43.95159 48.09180 38.976502 37.46474
2 81.62916 88.35420 2.815538 70.69485
3 79.69063 81.30378 12.343475 55.90033
4 77.35416 75.77626 14.712796 55.08223
5 76.67314 76.16270 26.461983 61.39772
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Running the Simulation

Collect the data and build models:

> spend = run.sim(campaign.spending, 1000)
> mod1 = with(spend, lm( vote ~ spending))
> summary(mod1)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 67.27230 0.64925 103.62 <2e-16 ***
spending -0.33736 0.01171 -28.81 <2e-16 ***

Spending is significantly negatively associated with votes. But ...
Is popularity confounding the relationship between votes and
spending?
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Another model of the same data shows the opposite.

> mod2 = with(spend, lm( vote ~ spending + polls) )
> summary(mod2)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.43022 1.83616 0.234 0.815
spending 0.25407 0.01753 14.493 <2e-16
polls 0.74139 0.01983 37.390 <2e-16

Which is right?
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Do an Experiment!

We can’t control spending, but we can donate money to the
campaigns and see what the results are:

> donations = resample( c(0,10), 1000)
> exper = run.sim(campaign.spending, spending=donations,

inject=TRUE,1000)
> mod3 = with( exper, lm( vote ~ donations) )
> summary(mod3)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 49.66413 0.51296 96.818 < 2e-16
donations 0.32163 0.07269 4.425 1.07e-05

The experiment says that spending increases votes.
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Summary

I The formula-based approach to test statistics hides the core
logic of inference: Randomize, Repeat, Reject.

I Computer simulations let students see the core logic in action.

I Since the core logic is the same for a wide range of statistics,
inference can easily be extended to models.

I Simulations based on causal networks let students observe
confounding, test out experimental design, and explore other
statistical concepts.

I The text for a complete introductory-level course, based on
modeling and simulation, is available from the presenter. See
http://www.macalester.edu/~kaplan/ISM

http://www.macalester.edu/~kaplan/ISM

