
Comparative Analysis of Speaker Diarization Techniques using Different
Clustering Methods on CNN-Based Speaker Segmentation for Enhanced

Precision and Recognition

Abstract. Speaker diarization is an important part of audio processing, which is critical for identifying and dis-
tinguishing individual speakers within a continuous audio stream. To address this need, our research
focuses on speaker segmentation, which involves partitioning an audio signal into segments based on
speaker identity. Convolutional Neural Networks (CNNs) are used to extract meaningful acoustic
features, particularly Mel Frequency Cepstral Coefficients (MFCCs), from audio data. We explore
various clustering techniques, including agglomerative clustering with PLDA scoring, segmentation
by weighted aggregation, and spectral clustering, to group similar speaker representations and assess
the efficacy of different clustering methods for speaker recognition. Our findings have significant im-
plications for enhancing the precision and efficiency of speaker identification in diverse audio-based
applications.

1

1. Introduction. In the realm of audio processing, the accurate identification and segmen-
tation of speakers is crucial for applications such as enhancing accessibility in audiobooks for
the visually impaired, improving the accuracy of video transcriptions, and enabling efficient
analysis of meeting recordings. To address this need, our research focuses on speaker diariza-
tion, which involves partitioning an audio signal into segments based on speaker identity. This
process is essential for efficiently organizing and analyzing spoken content.

Traditional speaker diarization systems often rely on Hidden Markov Models (HMMs) or
Gaussian Mixture Models (GMMs). However, recent advances in deep learning have shown
promising results in this area. Our methodology explores the use of CNNs [6, 14, 11] to
extract discriminative acoustic features, or Mel Frequency Cepstral Coefficients, from audio
data, building upon the success of deep learning in related audio processing tasks. These
features serve as the foundation for speaker representation, facilitating the effective clustering
of speakers. We explore various clustering techniques, including agglomerative with PLDA
and CSS scoring, K-means, and spectral clustering, to group similar speaker representations
and assess the effectiveness of each method based on various feature classification techniques.

Through this research, our goal was not only to improve the accuracy of speaker diarization
but also to gain a deeper understanding of the strengths and weaknesses of different clustering
methods in this context. Our findings could lead to more robust and efficient speaker diariza-
tion systems for companies like Netflix and YouTube with high demand for audio transcription
tasks.

The paper is organized as follows. We start with our research question in section 2. We
then discuss the background and related works of speaker diarization in section 3, followed by
introducing our methods in section 4, our main results in section 5, a discussion of our work
in section 6, and concluded with our future work and conclusion in section 7 and section 8.
Our code base can be found in this repository1.

2. Research Question. How do clustering methods, specifically agglomerative clustering,
spectral clustering, and K-means, compare in terms of computational efficiency and clus-
tering accuracy across segmented audio datasets for speaker diarization, and what are the
implications of these differences for optimizing real-time audio processing systems?

3. Background and Related Works. Speaker diarization is pivotal for distinguishing in-
dividual speakers within a continuous audio stream, and recent advancements in clustering
and feature extraction have pushed the boundaries of what is possible in this field [1, 11].
Companies that leverage transcription technology for their applications require speaker di-
arization to ensure an inclusive environment is provided for their users. For example, the
work done at Netflix emphasizes the importance of accurate transcription in media produc-
tion, where speaker identification is crucial for their multilingual environment and customer
base [7]. For media companies like Netflix, properly transcribing their content is essential
for an enhanced user experience, not to mention its implications for deafness or hearing loss.
Netflix’s Timed Text Authoring Lineage (TTAL) [7] highlights the complexity of transcription
tasks, particularly when working with multiple speakers or noisy audio environments. Their
approach migrates crucial information, dialogue, timecodes, metadata, and language details,

1Our code base and data can be found on our GitHub

2

to their third-party applications for accurate subtitles. Issues arise because a key component
of TTAL is pre-supplied scripts that provide most of the data needed for transcription, reduc-
ing algorithmic overhead. Our approach considers a broader application with no reliance on
third-party software, using our method of integrating CNN-based feature extraction leveraging
Mel Frequency Cepstral Coefficients with various customized clustering algorithms to extract
the speaker identities. While TTAL proves to be a non-intrusive process, we aim to provide a
one-size-fits-all approach. The application of MFCCs enables our clustering models to oper-
ate with enhanced precision, particularly in separating overlapping speech, which traditional
methods struggle with [10]. In particular, SVMs and LDA, as shown in the research by [9],
demonstrated adequate results in low-dimensional datasets compared to higher-dimensional
data with noisier environments. Our approach aims to reanalyze such techniques and build
upon the limitations of past models. By embedding speaker data into a lower-dimensional
space, PCA-K-means makes it easier to differentiate speakers even when their voice patterns
are similar, something we have adopted for our more complex datasets [17].

In comparison to previous works, such as [2]’s exploration of diarization techniques, we
adopt a multi-clustering approach that includes agglomerative clustering with PLDA scoring,
enhancing scalability while preserving high accuracy across diverse data sets. By evaluating
the strengths of each clustering method, our system becomes more adaptive and capable
of handling real-world audio scenarios. This flexibility in handling both high-quality and
challenging audio data, along with innovative feature extraction and clustering, positions our
research at the forefront of speaker diarization advancements.

With these in mind, our research has two main goals, transcription accuracy and content
understanding. We hope to address these concerns and provide a more comprehensive model
for audio transcriptions.

3.1. Transcription Accuracy. Speaker diarization helps improve the accuracy of speech-
to-text transcription by clustering each segment of audio to the correct speaker [1]. This is
crucial in scenarios where multiple speakers are present, such as meetings, interviews, con-
ference calls, or even audiobooks. With modern technologies lacking speaker recognition
capabilities, this is increasingly important for users who may have disabilities that require
technical support.

3.2. Content Understanding. Diarization helps in understanding the conversation flow
and context by distinguishing between speakers [17]. It allows for better analysis of who
said what, which can be valuable for content summarizing, which can be very important in
high-stakes situations like trial proceedings or executive meetings.

4. Methods. In this section, we detail the datasets utilized in this study and summarize
the algorithm used to perform the analysis and the variety of clustering methods used.

4.1. Datasets. In testing, we utilized two datasets. The preliminary tests used a pre-
trained MATLAB dataset, discussed in subsection 4.1.1, and our latest testing utilized a more
dynamic dataset provided under the Creative Commons Attribution 4.0 International Licence
by the International Computer Science Institute (ICSI), discussed in subsection 4.1.2.

4.1.1. MATLAB Dataset. Our initial training data consists of a pretrained speaker di-
arization system and a corresponding dataset from the Statistics and Machine Learning Tool-

3

box [6]. The audio recordings, visualized in Figure 1, contain a maximum of five speakers
along with corresponding ground truth annotations stored in a table format. The ground
truth annotations include timestamps and speaker labels indicating exactly when each speaker
is talking throughout the recording. The entire dataset is approximately 22 MB in size, with
enough audio data for basic testing and evaluation purposes.

Figure 1. Original MATLAB Dataset Audio Map

This specific dataset was chosen for a couple of reasons. Firstly, having the annotated data
is crucial for evaluating the performance of our speaker diarization system since it provides
the correct answers to compare against the system’s predictions. Additionally, the multiple
speakers in the audio allow for reliable testing of the system’s diarization ability in differ-
entiating a many-speaker setting. Lastly, the audios were chosen for their length, as testing
multiple clustering algorithms can be taxing with larger datasets.

4.1.2. International Computer Science Institute Meeting Corpus. The International
Computer Science Institute corpus [3] is a collection of recorded meetings with corresponding
transcripts and annotations. The dataset is structured with two main components: annota-
tions, available in two packages - a 19MB core package with basic transcripts and dialogue
acts, and a 53MB extended package including additional annotations for topics, hotspots,
summaries, and audio signals from various meetings. Each meeting is identified by a unique
code - like Bed002, Bmr001, etc. - and can be downloaded individually. The audio files are
available in different formats, including headset mix, approximately 120MB per meeting, and
individual channel headset recordings, around 350MB per meeting. For our purposes, the
initial testing occurred with the Bed002 meeting data, consisting of a 119MB audio file and a
239KB transcript, providing a complete recording and detailed transcription of a single meet-
ing session. The data is formatted in NXT (NITE XML Toolkit) format, requiring version
1.4.4 for proper usage. Further testing utilizied the entirety of the ICSI dataset.

This corpus was utilized in the second stage of our testing for its comprehensive meeting
recordings and high-quality annotations. The ICSI dataset provided ideal testing conditions
with its diverse speaker interactions, detailed transcripts, and substantial audio duration,
as opposed to our first dataset. The meeting recordings allowed us to thoroughly evaluate
our speaker diarization system under realistic meeting conditions where multiple participants
engage in natural conversation. The availability of precise transcriptions and dialogue act
annotations enabled comprehensive validation of our system’s speaker segmentation accuracy.

4.2. Extracting x-Vectors and MFCC features. Our speaker diarization system utilizes
a pretrained x-vector system [14] to characterize audio segments. The system first extracts
MFCCs using an audioFeatureExtractor object. These MFCCs are then standardized using
pre-computed mean and standard deviation factors derived from a representative dataset. The

4

standardized MFCCs are grouped into 2-second segments with 0.1-second hops. A pretrained
deep neural network [14] processes each segment to extract an x-vector, a compact repre-
sentation of the speaker’s voice characteristics. Finally, a linear discriminant analysis (LDA)
projection matrix is applied to reduce the dimensionality of the x-vectors. This process results
in a set of low-dimensional x-vectors that effectively capture speaker-specific information.

4.3. Clustering Methods. After extracting x-vectors, we employ various clustering meth-
ods to group similar audio segments and identify different speakers. This study explores
five distinct clustering approaches: agglomerative clustering with Probabilistic Linear Dis-
criminant Analysis (PLDA) scoring, agglomerative clustering with Cosine Similarity Scoring
(CSS), K-means with CSS scoring, spectral clustering, and Principal Component Analysis
(PCA) with K-means. These methods are implemented in MATLAB and are available online
[6]. We provide a detailed explanation of each method below.

4.3.1. Agglomerative with PLDA Scoring. Agglomerative clustering, a hierarchical clus-
tering method with roots in biological taxonomy [15], is combined with PLDA scoring in this
approach. PLDA, as described in [5], is a technique commonly employed in speaker verifica-
tion and diarization to model the relationship between speaker embeddings (x-vectors) and
speaker identities [14, 11]. In this approach, the similarity between x-vectors, denoted as xi for
the i-th speaker, is evaluated using PLDA scores, facilitating the merging of clusters, repre-
sented by Ck, based on the likelihood that they originate from the same speaker. The distance
between clusters is denoted as d(A,B). The algorithm iteratively merges pairs of clusters with
the highest similarity, represented by the similarity score S(i, j) between x-vectors xi and xj ,
until a predefined stopping criterion is met.

While agglomerative clustering does not have a direct objective function, its goal is to
maximize the similarity within clusters and minimize the similarity between clusters. This
can be represented informally as:

(4.1) max
K∑
k=1

∑
i,j∈Ck

S(i, j)

where S(i, j) is the similarity between x-vectors xi and xj , and Ck represents the k-th cluster.

Algorithm 4.1 Agglomerative Clustering with PLDA Scoring

Require: A set of x-vectors {xi}, PLDA model
Ensure: Cluster assignments T
1: Compute pairwise similarity scores S(i, j) = PLDA(xi, xj)
2: Initialize each x-vector as its own cluster Ck = {xk}
3: while number of clusters > maxclusters do
4: Find clusters A and B with highest similarity S(A,B)
5: Merge clusters A and B
6: Update similarity scores
7: end while
8: return Cluster assignments T

5

4.3.2. Agglomerative with CSS Scoring. Agglomerative clustering, originating from work
like [15], is enhanced with Consistency Scoring of Segments (CSS) in this method. CSS evalu-
ates the stability of clusters by comparing cluster assignments across multiple iterations of the
algorithm. This helps assess the consistency with which x-vectors, denoted as xi, are assigned
to the same cluster, providing a measure of cluster reliability. Higher CSS scores, represented
by CSS(Ck) for cluster Ck, indicate more stable and well-defined clusters. This method aids
in determining the optimal number of clusters, as the stability measure ensures that speaker
segments are robustly assigned to their respective clusters. Nk represents the number of data
points in cluster Ck.

Given that

(4.2) CSS(Ck) =
1

Nk

∑
i∈Ck

∑
j∈Ck

S(i, j),

the objective function of agglomerative clustering with CSS scoring can be expressed as:

(4.3) max

K∑
k=1

CSS(Ck),

where K is the number of clusters. This objective aims to maximize the overall stability of
the clustering solution.

Algorithm 4.2 Agglomerative Clustering with CSS Scoring

Require: A set of x-vectors {xi}, number of clusters K
Ensure: Cluster assignments T
1: Perform agglomerative clustering to obtain initial clusters Ck

2: for each cluster Ck do
3: Calculate CSS(Ck)
4: end for
5: Evaluate cluster stability based on CSS(Ck) scores
6: Merge or split clusters to optimize stability
7: return Cluster assignments T

4.3.3. K-means. The K-means algorithm, a classic clustering technique with origins in
[4], partitions a set of x-vectors, denoted as xi, intoK distinct clusters, represented by Ck. This
iterative algorithm begins by assigning each x-vector to the cluster with the nearest centroid,
denoted as µk for cluster Ck. Subsequently, the centroids are updated to reflect the mean of
the x-vectors assigned to each cluster. This process is repeated until the cluster assignments
stabilize, indicating convergence. In the context of speaker diarization, K-means groups x-
vectors corresponding to different speakers, where the number of clusters (K) typically aligns
with the anticipated number of speakers in the audio. The objective function of K-means,
denoted as J , is to minimize the total variance within clusters.

The objective function of K-means can be expressed as:

(4.4) J =
K∑
k=1

∑
i∈Ck

∥xi − µk∥2,

6

This objective aims to find cluster assignments and centroids that minimize the sum of squared
distances between x-vectors and their corresponding cluster centroids.

Algorithm 4.3 K-means Clustering

Require: A set of x-vectors {xi}, number of clusters K
Ensure: Cluster assignments T
1: Randomly initialize K cluster centroids µk

2: repeat
3: for each x-vector xi do
4: Assign xi to the cluster Ck with the nearest centroid µk

5: end for
6: for each cluster Ck do
7: Update centroid µk as the mean of x-vectors in Ck

8: end for
9: until cluster assignments stabilize

10: return Cluster assignments T

The objective function (J) of K-means aims to minimize the total variance within clusters:

J =

K∑
k=1

∑
i∈Ck

∥xi − µk∥2.

4.3.4. Spectral Clustering. Spectral clustering, with roots in graph theory and spectral
analysis [16], offers a powerful approach to partitioning data points into clusters based on the
eigenvalues of a similarity matrix. Early influential work in this area includes the normalized
cuts algorithm proposed by Shi and Malik [13], which aims to find balanced partitions of a
graph. In the context of speaker diarization, the x-vectors, denoted as xi, are represented
as nodes in a graph, with edges connecting nodes based on the similarity between the corre-
sponding speakers, represented by the similarity score Sij between x-vectors xi and xj . The
algorithm constructs a graph Laplacian matrix, denoted as L, and utilizes its eigenvectors
to embed the x-vectors into a lower-dimensional space. The degree matrix is denoted as D.
Clusters are then formed in this transformed space, often using a traditional clustering method
like K-means. Spectral clustering excels in scenarios where clusters exhibit non-convex shapes
or when data points deviate from forming spherical clusters, as frequently observed in speaker
data.

A common objective in spectral clustering, particularly when using the normalized graph
Laplacian (Lnorm = D−1/2LD−1/2), is to minimize the following:

(4.5) min
U

Tr(UTLnormU) subject to UTU = I,

where U is a matrix whose columns are the eigenvectors of Lnorm corresponding to the
K smallest eigenvalues, and I is the identity matrix. This objective effectively aims to find

7

a low-dimensional embedding that minimizes the weighted cut between clusters, as captured
by the normalized graph Laplacian.

Algorithm 4.4 Spectral Clustering

Require: A set of x-vectors {xi}, number of clusters K
Ensure: Cluster assignments T
1: Construct similarity matrix S using a similarity function (e.g., Gaussian kernel)
2: Compute graph Laplacian matrix L = D − S, where D is the degree matrix of S
3: Perform eigenvalue decomposition of L and select the top K eigenvectors
4: Apply K-means clustering to the selected eigenvectors to obtain cluster assignments
5: return Cluster assignments T

4.3.5. PCA with K-means. Principal Component Analysis (PCA) withK-means cluster-
ing is a two-step dimensionality reduction and clustering technique. First, PCA, a technique
with roots in [8], reduces the dimensionality of the x-vectors, denoted as xi, by projecting
them onto a lower-dimensional subspace while preserving the most significant variance in the
data. This simplifies the subsequent clustering process. Then, K-means, as described in [4],
is applied to the transformed data, resulting in a reduced feature matrix Z, to partition the
x-vectors into clusters, represented by Ck. This combined approach can enhance the perfor-
mance of K-means by mitigating the impact of noise and irrelevant features in the original
x-vector data. The covariance matrix is denoted as C, the matrix of eigenvectors from PCA
is denoted as V , and the dimensionality of the reduced space is denoted as d.

While PCA itself aims to maximize variance, the K-means step has the objective of
minimizing within-cluster variance. Combining these, the overall objective can be informally
represented as:

(4.6)

max
Vd

Var(XVd)

min
{Ck},{µk}

K∑
k=1

∑
i∈Ck

∥zi − µk∥2,

where X is the matrix of x-vectors, Vd is the matrix of the top d eigenvectors, zi is the i-th
row of the reduced feature matrix Z, and µk is the centroid of cluster Ck.

8

Algorithm 4.5 PCA with K-means Clustering

Require: A set of x-vectors {xi}, number of clusters K
Ensure: Cluster assignments T
1: Standardize the x-vectors by subtracting the mean and dividing by the standard deviation

2: Compute the covariance matrix C of the standardized x-vectors
3: Perform eigenvalue decomposition of C to obtain eigenvectors V
4: Project the standardized x-vectors onto the subspace spanned by the top d eigenvectors

to obtain reduced feature matrix Z
5: Apply K-means clustering to Z to obtain cluster assignments
6: return Cluster assignments T

5. Results. In this section, we break down the results obtained from testing our two main
datasets. First, we discuss the speaker diarization error calculation in the methodology we
employed to calculate the most accurate error. We then address our preliminary tests on our
MATLAB dataset and follow it up with our results on the more intricate ICSI corpus. Note
that the results of both look significantly different due to differences in the datasets.

5.1. Speaker Diarization Error Rate Calculation. Speaker diarization involves partition-
ing audio recordings into regions corresponding to individual speakers. The Diarization Error
Rate (DER) [12] evaluates performance by combining three components: miss error (speech
incorrectly classified as non-speech), false alarm error (non-speech incorrectly classified as
speech), and speaker error (speech regions attributed to the wrong speaker). Our algorithm
mainly focuses on the Speaker Error Rate (SER), as miss and false alarm errors are negligible
in our experiments.

The speaker error rate quantifies the proportion of speech regions incorrectly assigned to
clusters. To compute this, the unique true speaker labels, ltrue, and detected cluster labels,
lguess, are identified. For each ltrue, the lguess that minimizes mismatched regions is determined,
defined as:

(5.1) l⋆guess = arg min
lguess

|Sltrue \ Slguess |

where Sltrue and Slguess represent the sets of speech regions for the true and guessed labels,
respectively. | · | denotes the cardinality of a set. The total number of errors is computed by
summing over all mismatched regions:

(5.2) TotalErrors =
∑
ltrue

min
lguess

|Sltrue \ Slguess |

The speaker error rate is then calculated as:

(5.3) SpeakerErrorRate =
TotalErrors

Total True Speech Regions

This approach evaluates speaker assignment accuracy independently of speech activity
detection, aligning with established methodologies in [12].

9

5.2. Preliminary Results. We utilized various clustering methods to parse through audio
recordings to distinguish individuals. Each clustering method exhibited varying levels of
accuracy in speaker diarization, which will be shown below. K-Means clustering and PCA
K-Means clustering emerged as the most effective approaches.

Specifically, it was found that the combination of PCA with K-Means clustering yielded
the most compelling results in our experiments, both in speaker recognition and CPU us-
age. By reducing dimensionality and extracting essential speaker features, PCA enhanced the
clustering process, leading to a quick and precise speaker diarization outcome. The synergy
between PCA and K-Means not only improved accuracy but also enhanced the scalability of
our speaker diarization system.

Below, we showcase representations of the results of each audio clustering algorithm. This
analysis compares ground truth speaker labels, denoted by SP1 through SP5, against each
algorithm’s predictions, represented by the colored clusters in the legend and imposed upon
the audio waves. This evaluation highlights how well the algorithms performed in segmenting
speakers and identifies their strengths and weaknesses across various scenarios. Note that the
color-coded legends exhibit corresponding numerics that at times do not match ground truth
labels. Such errors were excluded from analysis as the focus was on ensuring each SP label
occurred under their own unique colored cluster.

Figure 2. Agglomerative - PLDA Scoring Speaker Recognition Results

Agglomerative clustering results using PLDA scoring, as shown in Figure 2, demonstrated
several shortcomings in accurately segmenting the five speakers (SP1 to SP5). One of the
primary issues is the overestimation of speakers, as the model identifies six distinct clusters
instead of five, indicating an over-segmentation problem. This additional cluster, represented
in cyan, disrupts the intended alignment between the predictions and the ground truth.

While SP1, SP2, SP3, and SP5 are labeled incorrectly per the legend, all instances are
clustered within the same label, indicating accurate clustering performance and recognition
of the individual speakers. SP4’s representation suffered from misclassifications, with it being
considered two separate speakers in the two speaking instances. SP4 was classified as SP4
and with the cyan sixth cluster, or the non-existant SP6.

Figure 3. Agglomerative - CSS Scoring Speaker Recognition Results

10

Agglomerative clustering with cosine similarity scoring demonstrated reasonable success in
capturing speaker boundaries and grouping acoustically similar segments. As seen in Figure 3,
SP3, SP4, and SP5 regions align well with their respective predicted clusters, indicating
that the algorithm effectively separates distinct speakers when their acoustic profiles differ
significantly. However, challenges arise in scenarios with within-speaker variability or brief, less
distinguishable audio segments. In clusters representing SP1’s region, the parts are fragmented
into multiple clusters, suggesting the algorithm struggles with consistent classification when
acoustic features vary, such as shifts in tone or volume. Additionally, boundary confusion
occurs where transitions between speakers are misclassified; SP2 is incorrectly assigned to
SP1, highlighting difficulty in modeling seamless speaker transitions.

Overall, the agglomerative clustering with CSS scoring method shows promise in capturing
broad speaker patterns but exhibits weaknesses in handling edge cases, such as overlapping
or dynamically changing speaker characteristics.

Figure 4. K-Means Speaker Recognition Results

The K-means clustering result in Figure 4 highlights several key observations and chal-
lenges in speaker diarization. The visualization illustrates six predicted clusters with only five
clusters depicted, indicating a numbering error within the model cluster characterization step.
Of the five existent speakers, all were found and while K-means identifies the speaker clusters
perfectly, discrepancies emerge in its segmentation quality and alignment with ground truth.

The clustering process introduces an extra sixth cluster that does not correspond to any
real speaker, and rather removes the first one, indicating only five were found, further compli-
cating the interpretation. This situation likely results from noise or the inability of K-means
to determine the correct number of speakers dynamically, causing algorithmic overcorrection.
These issues reflect inherent limitations of K-means for speaker diarization tasks but also
concerns with the ability of algorithms to consistently and dynamically label speakers. While
its results depend heavily on feature separability, making it insensitive to speaker similarity
and noise, labeling is a concern that is just as important in situations that drive change.

Figure 5. Spectral Clustering Speaker Recognition Results

Based on the spectral clustering results shown in Figure 5, the algorithm identifies five
clusters corresponding to the speakers SP1–SP5. Spectral clustering turned out to be the

11

worst of our clustering algorithms, where there were very noticeable inaccuracies and points
of confusion in the segmentation.

For SP1, the algorithm generally performed well at capturing speaker turns, especially at
the start of the timeline. However, SP2 segments were misclassified as SP1 segments. SP4 and
SP5 exhibited good alignment with their respective ground truths, but SP3 experienced the
worst segmentation, with the speaker being classified as speakers two and three according to
the legend. SP3 is the most problematic; segments expected to belong to SP3 are occasionally
split across SP3 and SP4, suggesting difficulties in delineating cluster boundaries.

Overall, while spectral clustering achieves the accurate number of unique speaker regions,
it struggles with boundary precision, particularly at speaker transitions, example shown with
SP1 and SP2, and in cases of overlapping spectral features. This results in misclassifications
and an inconsistent separation of clusters. These issues highlight the overall impracticality of
specific clustering methods for speaker diarization.

Figure 6. PCA K-Means Speaker Recognition Results

In analyzing Figure 6, it is demonstrated that K-means clustering algorithm with PCA
dimensionality reduction identified five distinct speakers, SP1 through SP5, matching the
given ground truths. Similar to K-means, the results indicated the usefulness of K-means
clustering for speaker diarization, but the use of PCA removed the indexing and incorrect
speaker number issues. The results showed some notable patterns in its clustering approach.
The algorithm demonstrated a tendency to consistently identify SP1, which appears three
times in the recording, suggesting the PCA features for this speaker are well-separated in the
reduced dimensional space. Similar results are noted for speakers: SP2, SP3, and SP4. SP5,
with only one contribution to the audio, is also properly characterized. While the algorithm
handled amplitude variations well, the rigid cluster boundaries inherent to K-means appear
to cause no issues following a dimensionality reduction.

Table 1
Algorithm Performance Summary

Algorithm Speakers Errors Error Rate CPU Time

PLDA 6 1 0.1 0.0776
CSS 4 5 0.5 0.0105
K-Means 5 0 0.0 0.0557
Spectral Clustering 5 6 0.6 0.1464
PCA K-Means 5 0 0.0 0.0343

As shown in Table 1, each clustering method demonstrates different performance char-
acteristics. Below are all the numbers associated with each model and its respective run-

12

time. Error rate equations are found in subsection 5.1. Agglomerative clustering with PLDA
achieved moderate performance with 6 speakers and 1 error, resulting in an error rate of 0.1.
Its CPU time of 0.0776 seconds suggests that it is reasonably effective, though not the fastest
in terms of computational efficiency. Agglomerative clustering with CSS showed a higher error
rate of 0.5, with 4 speakers and 5 errors. However, its CPU time of 0.0105 seconds indicates
high computational efficiency, making it a fast method, although its accuracy could be im-
proved. K-means performed excellently with 5 speakers and 0 errors, resulting in an error rate
of 0.0. It also exhibited a moderate CPU time of 0.0557 seconds, maintaining perfect accuracy
while being computationally efficient. Spectral clustering had a higher error rate of 0.6, with
5 speakers and 6 errors. It took the longest CPU time of 0.1464 seconds, indicating that it is
computationally more intensive, but it may offer more complex clustering capabilities. PCA
with K-means also achieved an error rate of 0.0, with 5 speakers and no errors. It was the
fastest method with a CPU time of 0.0343 seconds, demonstrating both high accuracy and
efficiency.

5.3. ICSI Corpus Results. For the evaluation of the ICSI corpus, we utilized all of the
same clustering methods, including agglomerative clustering with CSS scoring, K-means,
spectral clustering, and PCA K-means. Our PLDA method used on the MATLAB dataset
was excluded from consideration due to its prohibitive CPU usage, which made it unsuitable
for efficient processing across multiple large datasets. We therefore concluded that PLDA is
only useful for small test runs and can be excluded from usability for the broader applications
of speaker diarization.

Figure 7 through Figure 14 present the results of the most unique audio file results, par-
ticularly with Bdb001, Bed005, Bed008, Bed009, Bed014, Bed015, Bmr010, and Bmr013. For
each figure, the left-hand graphic shows the CPU time for each method, while the right-hand
side illustrates the corresponding error rates for our methods. These results provide a compre-
hensive view of the performance of each clustering approach, highlighting their computational
efficiency and accuracy across different audio files. The other tests were excluded for redun-
dancy, but a complete set of results is available in our GitHub repository, as referenced in the
introduction, within the /results/ICSI/figs/ folder.

The error and CPU usage analysis across all test cases reveals consistent patterns and key
distinctions among agglomerative clustering with CSS scoring, spectral clustering, K-means,
and PCA K-means methods.

In Bed001, Figure 7, CSS scoring demonstrated a gradual and steady increase in CPU
usage while maintaining relatively low utilization overall. In contrast, spectral clustering ex-
hibited a sharp and continuous rise in CPU consumption, indicating significant computational
demands. Both K-means and PCA K-means operated with nearly constant, low CPU usage,
with PCA K-means consuming slightly less CPU overall. Error rates revealed that agglom-
erative clustering with CSS scoring fluctuated erratically over time, particularly for longer
audio files, while spectral clustering presented frequent large spikes and periods of stability.
K-means and PCA K-means displayed much more consistent and lower error rates, often
aligning closely.

For Bed005, Figure 8, CSS scoring continued to show low CPU usage with a slow, linear
increase. Spectral clustering followed a similar trend to Bed001, with progressively higher

13

Figure 7. CPU time and Error Rate for the audio file Bdb001.wav

usage, reflecting its computationally intensive nature. K-means and PCA K-means demon-
strated near-zero CPU consumption, punctuated by minor spikes. Error rates were more
erratic with CSS scoring and spectral clustering fluctuated within a range of 0.8 to 1.6, with
spectral clustering at times achieving greater stability. However, K-means demonstrated the
most variable error rates, reaching the highest peaks, often accompanied by PCA K-means
following a similar trend but slightly lower.

Figure 8. CPU time and Error Rate for the audio file Bed005.wav

In Bed008, Figure 9, CPU usage for CSS scoring showed a slight linear increase, while spec-
tral clustering again demonstrated drastic upward trends. Both K-means and PCA K-means
remained relatively constant, with PCA consuming the least CPU resources. Agglomerative
clustering with CSS scoring error rates were highly variable and increased over time, whereas
spectral clustering displayed less drastic fluctuations but mirrored the trend. K-means and
PCA K-means aligned closely, presenting stable, lower error rates compared to CSS scoring
and spectral clustering.

For Bed009, Figure 10, CSS scoring exhibited a linear increase in CPU usage with generally
low overall utilization. Spectral clustering, however, demonstrated its characteristic drastic

14

Figure 9. CPU time and Error Rate for the audio file Bed008.wav

spikes in CPU consumption. K-means displayed periodic increases, with occasional spikes,
while PCA K-means remained low and consistent. Error rates for CSS scoring and spectral
clustering were erratic, with frequent large spikes and increases over time. K-means and PCA
K-means continued to reflect each other’s error rates, maintaining medium, consistent errors
that were lower than the other methods.

Figure 10. CPU time and Error Rate for the audio file Bed009.wav

In Bed014, Figure 11, CSS scoring and spectral clustering demonstrated distinct CPU
usage trends. CSS scoring exhibited a gradual decline in CPU usage over time, while spectral
clustering’s resource demands were less drastic compared to other cases and showed periods
of drops in usage. K-means CPU usage increased over time, with occasional spikes, whereas
PCA K-means remained constant with minimal fluctuations. Error rates across all methods
were very similar, with spectral clustering occasionally producing high spikes. Interestingly,
PCA K-means displayed a unique dip near the end, differentiating it from the other methods,
despite no distinct difference in audio data.

For Bed015, Figure 12, CSS scoring CPU usage increased gradually but remained relatively
low. Spectral clustering exhibited drastic and sharp increases in CPU consumption. K-means

15

Figure 11. CPU time and Error Rate for the audio file Bed014.wav

displayed slightly more erratic behavior compared to previous cases, with periodic spikes, while
PCA K-means maintained its characteristic low, near-constant CPU usage. In terms of error,
CSS scoring and spectral clustering were highly erratic, with large spikes that reached the
highest recorded error values. K-means and PCA K-means maintained steady error trends,
with PCA occasionally achieving the lowest error rates overall. Generally, all methods had
very similar error trends.

Figure 12. CPU time and Error Rate for the audio file Bed015.wav

In Bmr010, Figure 13, CSS scoring’s CPU usage showed a higher overall trend compared to
previous cases, with consistent linear growth. Spectral clustering continued to display sharp
increases, while K-means and PCA K-means remained constant and efficient, consuming
minimal CPU resources. Error rates for CSS scoring were persistently high, with frequent
dips and peaks. Spectral clustering error rates remained more stable, with occasional dips
and smaller spikes. K-means and PCA K-means maintained low, steady error rates around
the 1.3 error mark, demonstrating their reliability.

Finally, for Bmr013, Figure 14, agglomerative clustering with CSS scoring’s CPU usage
exhibited a progressive increase over time, while spectral clustering retained its usual sharp

16

Figure 13. CPU time and Error Rate for the audio file Bmr010.wav

upward trend. Notably, K-means CPU usage featured large spikes, deviating from its previous
constant behavior. PCA K-means remained stable with minimal resource demands. CSS scor-
ing error rates were the highest, displaying frequent spikes and increasing trends. Uniquely,
spectral clustering demonstrated the lowest error rates overall, with stability punctuated by
minor dips and small spikes. K-means and PCA K-means followed their characteristic pat-
terns, maintaining consistent error rates that closely aligned.

Figure 14. CPU time and Error Rate for the audio file Bmr013.wav

To summarize these chosen tests, agglomerative clustering with CSS scoring exhibited the
most variable and often highest error rates across all cases, particularly for longer audio files,
while spectral clustering displayed erratic yet occasionally stable behavior. K-means and PCA
K-means consistently aligned in both error rates and CPU usage, demonstrating lower vari-
ability and computational cost. Spectral clustering showed the most drastic CPU increases,
while PCA K-means maintained consistently minimal usage across all test cases. These find-
ings highlight the trade-offs between computational efficiency and accuracy, particularly for
resource-constrained environments.

17

6. Discussion. In our analysis with the MATLAB dataset, PCA K-means clustering
proved the most effective for speaker diarization, combining dimensionality reduction with
clustering to improve accuracy and computational efficiency. Spectral clustering, on the other
hand, struggled with boundary precision, leading to misclassifications. While K-means clus-
tering showed potential, it faced challenges with over-segmentation and noise. Agglomerative
clustering had moderate success but struggled with complex speaker transitions. Overall,
PCA K-means demonstrated the best performance, suggesting that combining dimensional-
ity reduction with clustering enhances speaker diarization accuracy and scalability.

When evaluating the performance of our clustering methods with the ICSI corpus, spectral
clustering proved to be the most time-consuming algorithm. It consistently required higher
CPU time as it processed the data, particularly as the model continued to iterate over larger
datasets. This trend suggests that spectral clustering’s complexity and reliance on pairwise
similarity matrices contribute to its slower performance. Conversely, K-means showed vari-
ability in its performance depending on the problem, but it was generally not as efficient as
PCA K-means. The latter demonstrated a very consistent performance profile with minimal
fluctuations in CPU usage, which likely contributed to its more efficient execution. Agglomer-
ative clustering with CSS scoring, while providing a smooth CPU time curve, never surpassed
PCA K-means and exhibited a steady, linear increase in processing time across all tests.
This suggests that CSS, though stable, lacks the optimization seen in PCA K-means, where
dimensionality reduction leads to more efficient processing.

Regarding accuracy, agglomerative clustering with CSS scoring and spectral clustering
exhibited the most volatile performance. Spectral clustering, in particular, showed significant
accuracy fluctuations, with error rates spiking and dropping unpredictably. These inconsisten-
cies may stem from the algorithm’s sensitivity to noise and the underlying data distribution,
leading to erratic speaker segmentation. CSS scoring also struggled with drastic inflection
points in accuracy, reflecting similar instability in its segmentation results. On the other
hand, both K-means and PCA K-means demonstrated much more stable accuracy levels,
rarely deviating significantly in their error rates. This consistency is a strength, as it indicates
these methods are less affected by small variations in the data and provide more reliable per-
formance. PCA K-means, in particular, showed a slight improvement over K-means, which
can be attributed to the PCA step, where dimensionality reduction helps filter out irrelevant
features, thus improving both computational efficiency and accuracy.

While spectral clustering and CSS scoring occasionally produced lower error rates, their
performance inconsistencies and high CPU time costs make them less reliable choices for prac-
tical applications. Interestingly, although spectral clustering sometimes achieved the lowest
error rates, it also displayed the highest error rates in almost all the tests, occasionally being
outperformed by CSS scoring. Over time, however, spectral clustering did show improve-
ments, with its error rate becoming more linear as processing progressed, suggesting that it
may be more adaptable in long-running tasks. Nonetheless, its overall performance remains
less predictable compared to K-means and PCA K-means, which combines accuracy with
stable computational efficiency.

7. Future Work. Future research could expand on our findings by testing our models with
live data streams from diverse sources such as Zoom meetings, Netflix movies, and podcasts,

18

all of which would be primary utilizations for speaker diarization algorithms. This would help
assess the scalability and adaptability of the algorithms to real-world conditions, including
variations in data quality and noise. A promising direction would be to train the Convolutional
Neural Networks on live data, experimenting with tuning techniques such as adding more
layers or increasing the number of epochs to improve training accuracy. This could enhance the
robustness of the models and provide more precise, real-time results for dynamic environments.
Additionally, further exploration into hybrid methods combining dimensionality reduction
techniques like PCA with deep learning could potentially optimize both speed and accuracy
across larger datasets, making the models even more suitable for large-scale and real-world
applications.

8. Conclusions. We present this research as a cutting-edge solution to current speaker
diarization applications. Our research explored the performance of several cutting edge clus-
tering algorithms, with a primary focus on CPU usage and accuracy calculated based on
Diarization Error Rate when handling diverse datasets. Our findings suggest that while spec-
tral clustering and CSS scoring showed considerable fluctuation in performance and compu-
tational time, PCA K-means stood out for its consistency and efficiency, delivering reliable
results across varying conditions with minimal CPU usage. Overall, the study underscores the
importance of balancing accuracy with efficiency, particularly when handling large datasets,
and sets the stage for further refinements in clustering techniques for more dynamic, real-
world applications. We expect more research to delve into fine-tuning neural networks and
testing with machine learning models such as NLPs and transformers.

We present this research as a cutting-edge solution to current speaker diarization appli-
cations. Our research explored the performance of several cutting edge clustering algorithms,
with a primary focus on CPU usage and accuracy calculated based on Diarization Error Rate
when handling diverse datasets. Our findings suggest that while spectral clustering and CSS
scoring showed considerable fluctuation in performance and computational time, PCA K-
means stood out for its consistency and efficiency, delivering reliable results across varying
conditions with minimal CPU usage. Overall, the study underscores the importance of bal-
ancing accuracy with efficiency, particularly when handling large datasets, and sets the stage
for further refinements in clustering techniques for more dynamic, real-world applications. We
expect more research to delve into fine-tuning neural networks and testing with machine learn-
ing models including Natural Language Processing (NLP), Transformers, and Large Language
Models (LLM).

19

REFERENCES

[1] X. Anguera, Speaker diarization: A review of recent research, IEEE Transactions on Audio, Speech, and
Language Processing, 20 (2012), pp. 356–370.

[2] A. Gomizelj, A Netflix original closed captioning study: How Netflix closed captions make audiovisual
content accessible to deaf audiences, PhD thesis, Universite d’Ottawa / University of Ottawa, 2022.

[3] A. Janin, D. Baron, J. Edwards, D. Ellis, D. Gelbart, N. Morgan, B. Peskin, T. Pfau,
E. Shriberg, A. Stolcke, et al., The icsi meeting corpus, in 2003 IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing, 2003. Proceedings.(ICASSP’03)., vol. 1, IEEE,
2003, pp. I–364.

[4] J. B. MacQueen, Some methods for classification and analysis of multivariate observations, Proceedings
of the fifth Berkeley symposium on mathematical statistics and probability, 1 (1967), pp. 281–297.

[5] P. Matejka, O. Glembek, F. Castaldo, M. Alam, O. Plchot, P. Kenny, L. Burget, and J. er-
nocky, Full-covariance ubm and heavy-tailed plda in i-vector speaker verification, in 2011 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2011, pp. 4628–
4631.

[6] Mathworks, Speaker diarization using x-vectors, https://www.mathworks.com/help/audio/ug/
speaker-diarization-using-x-vectors.html#mw rtc SpeakerDiarizationUsingXVectorsExample
DB133825.

[7] Netflix, Introducing netflix timed text authoring lineage. https://netflixtechblog.com/
introducing-netflix-timed-text-authoring-lineage-6fb57b72ad41, 2023. Accessed: 2024-11-26.

[8] K. Pearson, Liii. on lines and planes of closest fit to systems of points in space, The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science, 2 (1901), pp. 559–572.

[9] O. G. Ploscaru, P. S. Popescu, M. C. Mihaescu, S. Heras, and V. Julian, Detection of topics
from video transcripts by ml/dl techniques, in 2024 International Conference on INnovations in In-
telligent SysTems and Applications (INISTA), 2024, pp. 1–6, https://doi.org/10.1109/INISTA62901.
2024.10683753.

[10] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, Speaker identification and verification using
gaussian mixture speaker models, in Speech communication, vol. 31, Elsevier, 2000, pp. 173–190.

[11] G. Sell, D. Snyder, A. McCree, D. Garcia-Romero, J. Villalba, M. Maciejewski, V. Manohar,
N. Dehak, D. Povey, S. Watanabe, and S. Khudanpur, Diarization is hard: Some experiences
and lessons learned for the jhu team in the inaugural dihard challenge, in Proc. Interspeech 2018,
2018, pp. 2808–2812, https://doi.org/10.21437/Interspeech.2018-1893.

[12] G. Sell, D. Snyder, A. McCree, D. Garcia-Romero, J. Villalba, M. Maciejewski, V. Manohar,
N. Dehak, D. Povey, S. Watanabe, and S. Khudanpur, Diarization is hard: Some experiences
and lessons learned for the jhu team in the inaugural dihard challenge, in Proc. Interspeech 2018,
2018, pp. 2808–2812, https://doi.org/10.21437/Interspeech.2018-1893.

[13] J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Transactions on pattern analysis
and machine intelligence, 22 (2000), pp. 888–905.

[14] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur, X-vectors: Robust dnn
embeddings for speaker recognition, in 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), IEEE, 2018, pp. 5329–5333.

[15] R. R. Sokal and C. D. Michener, A statistical method for evaluating systematic relationships, Uni-
versity of Kansas science bulletin, 38 (1958), pp. 1409–1438.

[16] U. Von Luxburg, A tutorial on spectral clustering, Statistics and computing, 17 (2007), pp. 395–416.
[17] Q. Wang, C. Downey, L. Wan, P. A. Mansfield, and I. L. Moreno, Speaker diarization with lstm,

arXiv preprint arXiv:1806.07630, (2018).

20

	Introduction
	Research Question
	Background and Related Works
	Transcription Accuracy
	Content Understanding

	Methods
	Datasets
	MATLAB Dataset
	International Computer Science Institute Meeting Corpus

	Extracting x-Vectors and MFCC features
	Clustering Methods
	Agglomerative with PLDA Scoring
	Agglomerative with CSS Scoring
	K-means
	Spectral Clustering
	PCA with K-means

	Results
	Speaker Diarization Error Rate Calculation
	Preliminary Results
	ICSI Corpus Results

	Discussion
	Future Work
	Conclusions

