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Abstract

In a world increasingly powered by data aggregation and analysis, the secure release of infor-
mation has become a cornerstone of privacy protection. Traditionally, agencies have relied on
microdata risk assessment procedures based on checklist criteria, ad hoc rules, and data-based
summary measures. However, the growing demand for quantitative risk measures calls for a
more objective criteria for data release (Taylor, Zhou, and Rise 2017). Taylor, Zhou, and Rise
(2017) focus on the risk analysis stage within the disclosure control framework, defining the
existing measures and how to estimate them via software. This paper goes a step further,
investigating a practical solution for datasets deemed high-risk: synthetic data generation as
a means to balance data utility with privacy. Using the National Health and Nutrition Ex-
amination Survey (NHANES) as a case study, this paper explores the R package synthpop
and evaluates its effectiveness in preserving key statistical properties of the original data while
reducing disclosure risks.

Keywords: Microdata, Statistical Disclosure Control, Risk Analysis, Synthetic Data,
synthpop
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Introduction

“Getting information from the Internet is like taking a drink from a hydrant,” says Mitchell
Kapor, personal computing pioneer and investor (Buttice 2022). In today’s era of data abun-
dance, the challenge is no longer just uncovering data, but also safeguarding the privacy of
individuals whose identities are embedded within it. National statistical agencies face increas-
ing pressure to release microdata, or data that contains record-level or detailed information
about individual entities, on a number of variables. This data is often used to facilitate break-
through discoveries or research that help inform policy decisions, whether it be in the realm
of public health, economics, or the social sciences (Taylor, Zhou, and Rise 2017).

With the growing momentum around increased access to microdata, it is essential to under-
stand how to safely release such information. Disclosure, or reidentification, occurs when a
person or organization uncovers new and often confidential information about an entity due
to the release of data. For instance, as demonstrated by Emam, Dankar, and Jonker (2013),
combining public obituary records with a deidentified clinical trial dataset can reveal the iden-
tities of deceased subjects. In cases like this, privacy is compromised, stripping individuals –
and sometimes their friends and families – of control over sensitive personal information.

Disclosure even has ramifications for the agencies that release data. If a breach occurs, the
agency may face legal consequences, a loss of trust, and a decrease in the quality of data that
they collect (Taylor, Zhou, and Rise 2017).

To reduce the risk of reidentification, organizations deidentify data before its release. The
United States’ Health Insurance Portability and Accountability Act (HIPAA) offers a dei-
dentification framework, which involves removing 18 categories of identifiers from a dataset.
However, research by Benitez and Malin (2010) shows that even when datasets comply with
HIPAA standards, the risk of reidentification remains significant. This is because demographic
variables – such as gender and state of residency – can still be linked with publicly accessible
databases (Taylor, Zhou, and Rise 2017).

In their article, Taylor, Zhou, and Rise (2017) focus on statistical methods to assess disclosure
risk, where the microdata are obtained as a sample of the original population dataset. They
propose three approaches to measuring disclosure risk and outline different measures and
modeling methods. These measures strive to detect high-risk datasets as an entirety as well
as which records within the dataset may be of high risk. Taylor, Zhou, and Rise (2017) thus
investigate Stage 3 of the statistical disclosure control process:

• Stage 1: Determine whether confidentiality protection is needed
• Stage 2: Identify key data characteristics (e.g. whether the data comes from a sample or

census) and how the data will be used
• Stage 3: Define and estimate measures of disclosure risk
• Stage 4: Choose appropriate disclosure control methods (DCMs) if high risk was detected

in Stage 3
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• Stage 5: Implement the risk analysis and subsequent DCMs to produce the final dataset
for release

This paper builds on the work of Taylor, Zhou, and Rise (2017) by focusing on Stage 4. Given
that high risk was identified in Stage 3, a possible next step involves generating synthetic data
that retains the essential statistical properties of the original data while reducing reidentifi-
cation risk. This aims to strike a balance between safeguarding privacy and maximizing the
utility of the released data.

The report will begin with a brief overview of a set of statistical measures used to assess
disclosure risk, as outlined by Taylor, Zhou, and Rise (2017). This background will provide a
foundation for understanding how these measures can be applied to a given dataset. Next, the
true data, drawn from the National Health and Nutrition Examination Survey (NHANES),
will be introduced. NHANES is a comprehensive program designed to assess the health and
nutritional status of adults and children in the United States. The dataset contains a wealth
of information on demographics, health conditions, and lifestyle factors (Pruim 2015).

Following the introduction of the NHANES data, the report will discuss the use of the synthpop
package in R, which is employed to generate two synthetic datasets. The primary focus of
the analysis will be on the first synthetic dataset, while the second synthetic dataset will
be included in the multivariate analysis to emphasize the stochastic nature of the synthesis
process. The synthpop package replaces sensitive records with values simulated from proba-
bility distributions specified to preserve key features of the actual observed data. Additionally,
synthpop can assess the quality of these synthetic datasets and provide additional means of
confidentiality protections (Nowok, Raab, and Dibben 2016).

To guide the analysis, this paper will outline methods for assessing whether the generated
synthetic datasets maintain the important relationships and dependencies within the original
data. Further, the paper will outline techniques for evaluating the reduction in disclosure risk
when employing such synthetic processes.

Methods

Expository Review

Taylor, Zhou, and Rise (2017) assume that an intruder aims to identify an individual in the
microdata by matching records to known individuals in the population. This process involves
using key variables – identifying variables whose values are known for both the microdata and
the population. An individual is at risk of disclosure if they can be easily distinguished from
others, making disclosure analysis a measure of how uniquely identifiable a unit is within the
sample or population. Taylor, Zhou, and Rise (2017) focus on statistical modeling to measure
disclosure risk, making assumptions about the nature of the external (population) file within a
modeling framework and estimating the probability of disclosure within this framework. The
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approach enables file and record level risk estimation without the need to physically construct
the external file.

The following risk estimates are considered conservative as they are built around a “worst
case” scenario:

• The intruder’s external file contains individual identifiers and categorical key variables
that overlap with the sample microdata

• The intruder’s external data covers the entire population so that each record in the
sample microdata can be matched to a record in the external dataset

• There are no error or missing values in the key variables

Consider microdata to be released that contains a set of records, each corresponding to a
subject in a sample s selected from a finite population U. Let n and N represent the number
of subjects in sample s and population U, respectively. The microdata contains a set of
categorical variables, k, which the intruder uses to match records with the intruder’s external
dataset. Risk measures are based on the categorical variable formed by cross-classifying all
key variables, X, with values j = 1, …, J. A hypothetical value for individual i might be 𝑋𝑖 =
(57, male, doctor, married). The number of cells, J, is expected to be very large. Frequencies
in the population are defined as

𝐹𝑗 = ∑
𝑖∈𝑈

𝐼[𝑋𝑖=𝑗], 𝑗 = 1, ..., 𝐽

and the observed frequencies in the microdata are defined as

𝑓𝑗 = ∑
𝑖∈𝑠

𝐼[𝑋𝑖=𝑗], 𝑗 = 1, ..., 𝐽

where I() is the indicator function. If there is only one subject in the population having value
j for X, a population unique, then 𝐹𝑗 = 1. Similarly, a value j of X is sample unique if 𝑓𝑗 =
1.

Disclosure risk literature commonly references five key measures of disclosure risk, all of which
are primarily global, file-level measures, though some have significant record-level variants.

Measure 1 is the expected number of population uniques:

∑
𝑗

𝑃𝑟(𝐹𝑗 = 1).

If a subject is unique in the population, and is found in the released data, then the subject is
reidentifiable by linking such records.

Measure 2 concentrates on those that are sample unique and measures the expected number
of sample uniques that are population unique:
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∑
𝑗∶𝑓𝑗=1

𝑃𝑟(𝐹𝑗 = 1|𝑓𝑗 = 1).

In contrast to Measures 1 and 2, Measures 3-5 consider risk arising from records that are
not population unique (e.g. pairs, triplets, etc.). If the population frequency 𝐹𝑗 is known for
combination j, risk is simply measured by 1

𝐹𝑗
for each record in the jth combination. For

instance, if there are 4 records in the population with the same values of key variables, there
is a 1

4 probability of a correct match to a record in the microdata. Measure 3 is the expected
number of correct matches among sample uniques:

∑
𝑗∶𝑓𝑗=1

𝐸( 1
𝐹𝑗

|𝑓𝑗 = 1)

with a record-level form of

𝐸( 1
𝐹𝑗

|𝑓𝑗 = 1).

Measure 4 represents the probability of a correct match given a unique match:

∑𝑗 𝐼(𝑓𝑗 = 1)
∑𝑗 𝐹𝑗𝐼(𝑓𝑗 = 1).

Lastly, Measure 5, or the “Benedetti-Franconi risk measure,” estimates the probability of a
correct match even among records that are not sample unique:

𝐽
∑
𝑗=1

𝐸( 1
𝐹𝑗

|𝑓𝑗) =
𝐽

∑
𝑗=1

(∑
𝑟≥𝑓𝑗

1
𝑟 𝑃𝑟(𝐹𝑗 = 𝑟|𝑓𝑗))

with a record level form of

𝐸( 1
𝐹𝑗

|𝑓𝑗) = ∑
𝑟≥𝑓𝑗

1
𝑟 𝑃𝑟(𝐹𝑗 = 𝑟|𝑓𝑗).

Although beyond the scope of this paper, Taylor, Zhou, and Rise (2017) discuss existing meth-
ods for modeling file- and record-level measures. Estimating these measures requires specific
modeling assumptions and estimation techniques, which can be categorized into parametric,
semiparametric, and nonparametric approaches.

The R package sdcMicro contains a modRisk function that estimates global risk Measures
2 and 3 using log-linear models and estimation methods developed in Rinott and Shlomo
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(2006) and can account for hierarchy in the data structure. The indivRisk function estimates
individual risk Measure 4 by Bayesian methods (Templ, Kowarik, and Meindl 2015). The
package is intuitive and user-friendly, making it simple to implement in practice:

# example implementation of statistical disclosure control (sdc)
sdc <- createSdcObj(data,

# key categorical variables
keyVars = c('Profession', 'Marital'),
# quantitative variables
numVars = c('Age', 'Income', 'Height', 'Weight'),)

modRisk(sdc, method = "default",
formula = ~ Profession + Marital + Age + Income + Height + Weight)

# how to view results
sdc@risk

Application to NHANES Data

Imagine we collected the NHANES dataset and were asked to publicly share it. Due to the
complexity of these methods and limited available computer memory, let’s assume that utilizing
sdcMicro indicates very dangerous risk levels. What can we do?

A solution mentioned in Taylor, Zhou, and Rise (2017) entails generating synthetic data that
preserves important statistical properties of the original data.

Let’s take a random sample of 500 individuals from the NHANES dataset to use as the true
data. The key variables, or variables that the intruder can theoretically use to merge the
deidentified dataset with the identified dataset, consist of gender (Gender), age in years (Age),
race (Race1), ratio of family income to poverty guidelines (Poverty), weight in kilograms
(Weight), and body mass index (BMI).

For this true, or usually unobservable, data, Table 1 shows there are 58 missing values across the
six variables – 41 in Poverty, 13 in BMI, and four in Weight. The patterns of this missingness
are also intended to be synthesized.

Table 1: Distribution of Missing Values Across True-Data Variables: The missingness patterns,
with a notable concentration in the Poverty variable, are intended to be synthesized.

Variable # Missing Values
Poverty 41
BMI 13
Weight 4
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Gender 0
Age 0
Race1 0

The frequency of distribution counts, 𝑓𝑗, for cross-classified categories is shown in Table 2.
This table refers to the number of categories j that contain only one person, two people, three
people, etc. Using the variables of Gender, Age, Race1, Poverty, Weight, and BMI, there are
467 uniques, 13 pairs, one triplet, and one quartet.

Table 2: True Data Frequency of Distribution Counts: Disclosure analysis evaluates the
uniqueness of individual units within a dataset. In this context, the 467 unique
cases in the true data underscore the critical importance of deidentification.

Count(fj) Frequency % of Records
1 467 93.4
2 13 5.2
3 1 0.6
4 1 0.8

Figure 1 illustrates the univariate and bivariate relationships among the quantitative variables
in the true data. While the correlation between Weight and BMI is very strong, which is
plausible as BMI is calculated using weight, BMI shares no correlation with Poverty. Apart
from BMI and Poverty, all other bivariate relationships are statistically significant, meaning
the relationship between the variables is not due to random chance. While the distributions of
Weight and BMI are right skewed, the distribution of Age appears approximately normal and
the distribution of Poverty appears bimodal. As shown in the scatterplots, outliers appear to
exist in the data, particularly in the top right corner of the Weight-BMI plot and the top of
the Poverty-BMI and Age-BMI plot. These specific points may pose a disclosure risk due to
their uniqueness, accentuating the synthetic dataset’s essential nature in anonymizing these
individuals.

A contingency table for the categorical variables presents the joint distribution of Gender and
Race1. As illustrated in Table 3, the distribution of males and females is nearly balanced,
with the majority of individuals identifying as White. Furthermore, the Gender distribution
within each racial group is also almost equal.

Table 3: 2x5 Contingency Table of True Data: The overall Gender distribution is nearly equal,
with a balanced gender split within each race and a high volume of White observations.

Black Hispanic Mexican White Other Sum
female 24 18 26 158 23 249
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male 30 15 26 159 21 251
Sum 54 33 52 317 44 500

Synthetic Data Generation

In real-world applications, specifying the exact joint distribution of all variables in a dataset
is challenging. To address this, synthpop approximates the joint distribution using a series
of conditional distributions. Synthesis occurs on a variable-by-variable basis: each variable is
modeled sequentially by fitting a sequence of regression models and drawing synthetic values
from the corresponding predictive distributions. Each model conditions on variables processed
earlier in the sequence, resulting in a cumulative increase in covariates, with the final variable
conditioned on all preceding variables. For missing data, synthpop synthesizes on the observed
patterns of missingness, preserving the structure of missing values in the true data (Nowok).

The syn() function creates synthetic versions of a dataset provided as its argument, with the
process being largely automated when using default settings. These default settings apply
a “cart” method, which uses classification and regression trees, to all variables except the
first in the visit sequence (Nowok). Given that the true data contains both quantitative and
categorical variables, the synthesis method has been manually specified for each type: “norm”
is used for quantitative variables and “cart” for categorical variables, with the exception of
the first in the visit sequence (Gender), which is retained as sampling with replacement.
“norm” is favored for quantitative variables because continuous data is often symmetrically
distributed or transformable to approximate normality. “cart” is better suited for categorical
variables, splitting the data based on decision rules and segmenting the data into categories and
subcategories based on patterns without presuming a specific distribution. Additional post
processing is conducted via the sdc() function to strengthen the protection of information
confidentiality. Through sdc(), all unique cases in the synthetic data that are identical to
unique individuals in the real dataset are removed by setting the rm.replicated.uniques
command to TRUE (Nowok). This approach represents the most conservative scenario, where
all actual values are substituted.

To evaluate how well the synthetic datasets preserve relationships from the true data, various
bivariate and multivariate analyses are conducted. A scatterplot matrix will illustrate the
relationships among quantitative variables across the first synthetic dataset. This matrix,
displaying each variable’s distribution as well as its pairwise relationship with others, allows
for visual comparison between the true and synthetic data. A 2x5 contingency table is used to
summarize the joint distribution of the two categorical variables, Gender and Race1, offering
another direct comparison between the actual and synthetic data. The compare() function in
synthpop analyzes the relative frequency of distributions of each variable, providing tabular
and graphical measures of alignment.
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Figure 1: Scatterplot Matrix of True Data: Notice the non-normal univariate distributions and
the presence of outliers in the bivariate relationships, which will be crucial to address
during the synthetic data generation process.

In the multivariate analysis, a linear regression model is fitted to the true dataset as well as
the two synthetic datasets. The model is defined as follows:

̂𝐵𝑀𝐼 = 𝛽0 + 𝛽1𝐺𝑒𝑛𝑑𝑒𝑟 + 𝛽2𝐴𝑔𝑒 + 𝛽3𝑅𝑎𝑐𝑒1 + 𝛽4𝑃𝑜𝑣𝑒𝑟𝑡𝑦 + 𝛽5𝑊𝑒𝑖𝑔ℎ𝑡

where 𝛽0 is the intercept, 𝛽1 to 𝛽5 are the coefficients for each predictor variable, and female
and Black are the reference categories. Comparing these coefficients across the true and
synthetic data will indicate the extent to which the synthetic data captures the multivariate
relationships present in the true data. By incorporating lm_synds(), estimates based on the
synthesized data are compared to those based on the true data, and 95% confidence intervals
for the Z statistics for observed and synthetic data are calculated and plotted (Nowok).

Finally, the disclosure risk associated with the first synthetic dataset is assessed. Specific
measures will be taken to quantify the potential risk, such as applying the synthetic model
to the true data to see if it can reidentify observations. This will involve predicting BMI and
calculating the mean squared error (MSE) and mean absolute error (MAE). A small MSE and
MAE would indicate that the synthetic model is accurately predicting true data BMI values,
which poses disclosure risk. Another approach involves comparing outliers between the true
and synthetic data. A unit is defined as an outlier if its value is two standard deviations above
the mean. Comparing outliers across quantitative and categorical variables can also reveal
potential disclosure risks.
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Results

After generating the first synthetic dataset, the scatterplot matrix in Figure 2 visualizes the
relationships among the quantitative variables, showing correlations that closely mirror those
in the true data in Figure 1. The relationship between Weight and BMI remains notably
strong, while the correlation between Poverty and BMI remains weak. The distributions of
each quantitative variable in the synthetic data approximate normality – a distinct contrast to
the true data, where certain variables displayed non-normal patterns, such as Poverty with its
bimodal distribution. Perhaps most importantly, the noticeable outliers in the true data are
not present in Figure 2. The scatterplots are more clustered and cloud-like, suggesting that
the synthetic data has effectively anonymized these individuals.
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Figure 2: Scatterplot Matrix of Synthetic Data: Notice the normal univariate relationships and
the absence of outliers in the bivariate relationships, with distinct clouds forming.

In terms of the contingency table for the synthetic data, Table 4 indicates that the distribution
across Gender almost perfectly resembles the distribution in the true data, with only a one
person increase in males and a one person decrease in females. The total number of individuals
falling under each race is also consistent, as well as the distribution of Gender within each racial
group. Two exceptions are the Mexican and White groups. Although the true data had equal
numbers of male and female individuals in the Mexican group and only a one person difference
in the White group, the synthetic data shows more of a discrepancy: there are 20 more Mexican
females than males and 17 more White males than females.
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Table 4: 2x5 Contingency Table of Synthetic Data: Similar to the true data, the overall Gender
distribution is nearly equal, with a balanced gender split within each race, except for
the Mexican and White groups. The distribution of each race also closely matches
the true data.

Black Hispanic Mexican White Other Sum
female 24 14 40 149 21 248
male 28 20 20 166 18 252
Sum 52 34 60 315 39 500

Relative frequency distributions for the true and synthetic data are depicted in Figure 3 and
Figure 4. These graphical displays, provided by the compare function, emphasize that the
synthetic data decently emulates the true data’s distribution patterns. The synthetic data
appears to have more prevalence in the (unreasonable) extremes, meaning that some synthetic
values have negative Poverty, negative or extremely old Age, or negative Weight. This is a
common issue with synthetic data – in its effort to capture the true data’s complexity, it is
susceptible to generating unrealistic values.

Propensity scores represent probabilities of group memberships, where small distinguishability
relates to high distributional similarity between the original and masked data. The set of pre-
dictors is specified/calculated for the original and synthetic datasets, which are then combined
with the addition of an indicator variable I to denote the dataset (0 for original, 1 for altered).
A propensity score is estimated for each of the rows of the combined data as a probability of
classification for the indicator variable. By taking the mean-squared difference between the
estimated probabilities and the true proportion of records from the masked data in the com-
bined data, the propensity score mean-squared error is found (pMSE). The desired result is
poor classification, and thus a lower pMSE. The standardized propensity mean-squared error
(S_pMSE) is designed to have an expectation of zero and a standard deviation of 1 under
the null hypothesis, where the synthetic data is generated from a model that mirrors the true
data’s distribution. This measure adjusts for the expected value and the variability of pMSE
under the null, and is expected to increase if correct synthesis does not hold (Snoke et al.
2018).

Figure 3 and Figure 4 reveal that these standardized propensity scores are much lower for the
categorical variables, indicating high distributional similarity. The standardized propensity
scores for the quantitative variables are notably higher, with a particularly concerning increase
for Poverty. This increase may be partially influenced by the high concentration of observed
Poverty values around 4.5.

Measuring the synthetic data’s ability to preserve multivariate relationships starts by fitting
a linear model to predict BMI based on the true data, incorporating all other variables as
predictors. Observing the Residual vs. Fitted plot in Figure 5, there is a relatively scattered
distribution of points. Lower fitted values have positive residuals and higher fitted values lead
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Race1: S_pMSE = 0.47 Poverty: S_pMSE = 26.89

Gender: S_pMSE = 0.01 Age: S_pMSE = 8.18
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Figure 3: Relative Frequency Distribution for True and Synthetic Data: The synthetic data
closely mirrors the true data’s distribution patterns, especially among the categor-
ical variables (which have lower S_pMSE). The quantitative variables have higher
S_pMSE and synthetic values in unrealistic extremes.
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Weight: S_pMSE = 8.76 BMI: S_pMSE = 5.74
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Figure 4: Relative Frequency Distribution for True and Synthetic Data: This second set of
plots echo the quantitiative findings from the above plot - comparable distributions
are observed across data type (observed/synthetic), with higher S_pMSE for the
quantitative variables and synthetic values extending into unrealistic extremes.
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to a small increase in the spread of residuals. The red line, or scatterplot smoother, displays
a convex shape, warranting analysis/interpretation with caution. Almost all points on the
Normal Q-Q plot fall on the line, conveying that the linearity condition of the model – that
the errors are normally distributed – is met.
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Figure 5: Residual vs. Fitted Plot for Linear Regression of BMI using True Data: There is
some heteroscedasticity, particularly as fitted values deviate from the center of the
plot. The analysis will proceed with caution.
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Figure 6: Normal Q-Q Plot for Linear Regression of BMI using True Data: The residuals
closely follow the line, indicating that the errors are normally distributed and the
condition is met.

By applying lm_synds() to the function compare() as its object argument, the estimates
derived from the synthetic data and an additional synthetic dataset are compared against the
original data. Table 5 and Table 6 illustrate that the difference in coefficients between the
data are minimal, never exceeding one unit (disregarding the Intercept). The standardized
coefficient difference, which accounts for the scale of the variables involved, is also small, with
the largest difference being just -2.16 in the first synthetic dataset and 2.05 in the second.
The final column presents the percentage of overlap between the estimated synthetic confidence
intervals and the original sample confidence intervals for each parameter at the 95% confidence
level (Nowok, Raab, and Dibben 2016). When considering both tables, only three coefficients
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– Age, Race1White, and Intercept – have confidence interval overlaps below 0.5, at 0.48, 0.45,
and 0.48 respectively. All overlap values suggest that while the model exhibits some differences,
the estimates share a significant degree of similarity.

Table 5: Comparison of Coefficients and Confidence Interval Overlaps for Linear Regression of
BMI (Observed vs. Synthetic Dataset 1): The differences in coefficients are minimal
and the confidence intervals overlap to a substantial degree.

Observed Synthetic Difference Std. Coef. Diff CI Overlap
(Intercept) 10.49 10.93 0.43 0.80 0.80
Gendermale -2.21 -2.35 -0.15 -0.57 0.86
Age -0.01 0.00 0.01 2.04 0.48
Race1Hispanic 1.40 1.31 -0.09 -0.14 0.96
Race1Mexican 0.16 -0.83 -0.99 -1.75 0.55
Race1White -0.36 -1.29 -0.93 -2.16 0.45
Race1Other 0.53 -0.04 -0.57 -0.97 0.75
Poverty -0.29 -0.21 0.08 1.03 0.74
Weight 0.25 0.25 -0.01 -1.00 0.74

Table 6: Comparison of Coefficients and Confidence Interval Overlaps for Linear Regression
of BMI (Observed vs. Synthetic Dataset 2): Note the change in estimates due to the
stochastic nature of the synthesis process. Nonetheless, the differences in coefficients
remain minimal and the confidence intervals still overlap to a substantial degree.

Observed Synthetic Difference Std. Coef. Diff CI Overlap
(Intercept) 10.49 11.60 1.11 2.05 0.48
Gendermale -2.21 -2.21 0.00 0.00 1.00
Age -0.01 0.00 0.01 0.94 0.76
Race1Hispanic 1.40 1.14 -0.26 -0.42 0.89
Race1Mexican 0.16 -0.44 -0.60 -1.05 0.73
Race1White -0.36 -0.87 -0.51 -1.19 0.70
Race1Other 0.53 0.08 -0.45 -0.76 0.81
Poverty -0.29 -0.39 -0.10 -1.24 0.68
Weight 0.25 0.24 -0.01 -1.40 0.64

A more holistic overview of the linear models is provided in Table 7, displaying a substan-
tial mean CI overlap and a minimal mean absolute standardized difference in both synthetic
datasets. The lack-of-fit test is applied to determine how well the synthetic data linear regres-
sion model fits the observed data model. In the test, the vector of mean differences between the
coefficients calculated from the synthetic and original data provides a standardized lack-of-fit.
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This value follows a chi-squared distribution with nine degrees of freedom, corresponding to
the number of parameters in the fitted model. The p-value for the lack-of-fit test evaluates the
null hypothesis that the method used for synthesis retains all relationships between variables
that influence the parameters of the fit (Nowok, Raab, and Dibben 2016). Since the p-values
for both synthetic datasets are above any reasonable significance level, we fail to reject the
null that the synthesis method retains these relationships.

Table 7: Linear Model Comparison Metrics Between True and Synthetic Datasets: The high
mean confidence interval overlap, low mean absolute standardized difference, and
non-significant lack-of-fit test p-values illustrate the synthetic datasets’ capacity to
preserve the true data’s multivariate relationships.

Synthetic Mean CI Overlap Mean Abs Std Diff L.O.F. Test Stat L.O.F. P-value
Synthetic 1 0.70 1.16 11.63 0.23
Synthetic 2 0.74 1.01 6.74 0.66

Figure 7 and Figure 8 accentuate the synthetic datasets’ capacity to preserve the true data’s
multivariate relationships when predicting BMI. The Z-values for the coefficients for each pre-
dictor in these synthetic datasets strongly resemble those in the true data, with the confidence
intervals for each coefficient overlapping, as expressed above. Despite establishing synthetic
preservation, how well has the synthetic data decreased disclosure risk?

Weight
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Figure 7: Estimates and 95% Confidence Intervals for Z Statistics from a Linear Regression of
BMI for Observed and Synthetic Dataset 1: These Z values among the observed and
synthetic data are very similar, accentuating the findings from Table 5.
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Figure 8: Estimates and 95% Confidence Intervals for Z Statistics from a Linear Regression of
BMI for Observed and Synthetic Dataset 2: These Z values among the observed and
synthetic data are very similar, accentuating the findings from Table 6.

The coefficients from the linear model of the first synthetic dataset are applied to the true
data to predict individuals’ actual BMI values. A small MSE and MAE would indicate that
the synthetic model predicts BMI values accurately. Conversely, larger MSE and MAE values
would signify greater deviation between the synthetic model’s predictions and the actual data,
making it more difficult for an intruder to reverse-engineer the data or infer sensitive details
about the true dataset.

Focusing on MAE, Table 8 highlights that the absolute difference between predicted and
observed BMI values averages 2.11 units. For MSE, which is more sensitive to outliers, the
average squared difference between the predicted and observed BMI values is 7.26. Considering
that BMI values in the true data range from 12.90 to 63.30, these errors are moderately small.
This magnitude signals that the true data’s relationships are preserved while simultaneously
complicating any effort towards reidentification.

Table 8: Error Metrics for Predicted BMI in True Data Using Synthetic Model 1: The mod-
erately small MSE and MAE highlight the synthetic data’s ability to balance two
critical objectives: preserving key relationships and complicating reidentification ef-
forts. This contrasts very small MSE and MAE values, where the synthetic data
is overly accurate and potentially compromising, or much larger values, where the
synthetic data would bear little resemblance to the original dataset.

Metric Value
Mean Squared Error 7.26
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Mean Absolute Error 2.11

The distribution of outliers in the true data is visualized in Figure 9. The race categories
with the highest concentration of outliers are White and Black, whereas Hispanic and Other
categories exhibit comparatively low counts. Interestingly, the distribution of outliers does
not vary significantly across Gender categories, and no outliers are observed for the Poverty
variable.

If the synthetic data were to precisely replicate these sensitive patterns, it could inadvertently
expose private information about that group (or individual). Consider an example from the
healthcare domain: suppose a rare genetic condition, uncommon in the general population but
more prevalent in a specific ethnic group, appears as outliers in the true data. If the synthetic
data reproduces this outlier pattern exactly, it could lead to the identification of the affected
group or individuals within that group, revealing their health condition. While it is important
for the synthetic data to reflect the overall distribution of the true data for analytical utility,
it must carefully balance this realism with safeguards to prevent the tracing of such patterns
back to individuals.

The distribution of outliers in the first synthetic dataset is shown in Figure 10. Apart from
White, which retains a higher volume of outliers, there are no substantial differences among
the other races, as the magnitude of outlier disparities between them is less pronounced.
The absence of substantial differences among these race categories suggests that the synthetic
data attempts to balance the distribution of outliers more evenly across the groups, reducing
disproportionate representation. The Poverty variable, which had no outliers in the true data,
now contains at least one in every Gender and Race1 combination except Mexican males.

Conclusion

This report began with a thorough exploration of the risk analysis landscape within the statis-
tical disclosure control framework. By providing background information and defining existing
disclosure risk measures in accordance with Taylor, Zhou, and Rise (2017), it stressed the key
methodologies and considerations vital for protecting sensitive data. The five distinct risk mea-
sures, derived from modeling methods detailed in Taylor, Zhou, and Rise (2017), are crucial
for statistical agencies worldwide to adopt when assessing disclosure risk.

The subsequent sections built upon Taylor, Zhou, and Rise (2017)’s work, focusing specifically
on one action that can be taken when high risk is identified in a dataset – generating synthetic
data. The synthpop package was introduced and applied to a real-world dataset, the National
Health and Nutrition Examination Survey, to generate synthetic data that aimed at preserving
the true data’s key characteristics while minimizing disclosure risk. Univariate, bivariate, and
multivariate analyses were conducted to assess the synthetic data’s capacity to maintain these
relationships. Results from the scatterplots, contingency tables, frequency distributions, and
linear model coefficient comparisons demonstrated that the synthetic data effectively imitated
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Figure 9: Distribution of Outliers in True Data across Gender and Race: There is a noticeable
concentration of outliers in the White and Black groups compared to the Hispanic
and Other groups. Ideally, the synthetic data should obscure these patterns to
prevent the tracing of sensitive information back to such groups/individuals.
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Figure 10: Distribution of Outliers in Synthetic Data across Gender and Race: Other than
White, the differences in outlier concentration among racial groups is less pro-
nounced.

the true data, with the scatterplots also depicting the reduced presence of outliers. Despite
the absence of overlapping observations between the true and synthetic datasets, reduction in
disclosure risk was still analyzed by applying the synthetic model to the true data to predict
BMI values. The moderately small MSE and MAE values illustrated the synthetic data’s
ability to balance preserving important statistical properties with complicating reidentification
efforts. Furthermore, comparing the heatmap of outliers in the true and synthetic data revealed
that the synthetic data muted the concentration of outliers among racial groups (with the
exception of White) – a pivotal characteristic in safeguarding personal, private information.

Limitations

The results presented above relied on linear regression to explore multivariate relationships,
which may not fully capture the complexity inherent in the data. The Residual vs. Fitted plot
revealed signs of heteroscedasticity, suggesting a potential violation of the assumption of con-
stant variance in the error terms. Alternative modeling approaches, such as generalized linear
models or machine learning algorithms, could provide a more comprehensive understanding of
the true data’s underlying relationships.

Within the linear regression framework, only BMI was considered as the outcome variable.
To gain better insight into the synthetic data’s ability to maintain key statistical properties,
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additional outcome variables could be explored.

The synthetic data generation process was conducted assuming the disclosure risk was high in
the true data, which may have not been the case. Although this assumption is plausible given
the large number of unique counts in the true data, if the disclosure risk was not as high as
assumed, the generation process might have been overly cautious and could have unnecessarily
compromised the utility of the synthetic data.

There was also the assumption that outlier patterns across races were dangerous and needed to
be obscured. However, in some cases, outlier patterns may be essential for answering specific
research questions. The disclosure control methods/synthetic data generation process should
try to tailor to the specific needs of the research questions that are being addressed.

Future Directions

Future work could consider the optimal MAE and MSE thresholds for determining the syn-
thetic data’s utility and disclosure risk. The current analysis holds that moderate errors are
ideal, symbolizing the middle ground between emulating the true data and preventing rei-
dentification. Discussions on the acceptable range of these errors could offer a more concrete
framework for evaluating synthetic data quality. How small is too small, and how large is too
large? Is this an appropriate statistic to consider, or are there other measures that could be
computationally equivalent and more informative?

Future research could also take into account several other methods to alter data prior to release.
Taylor, Zhou, and Rise (2017) mention nonpertrubative masking methods that do not distort
the data, like reducing detail by categorizing variables or suppressing some variables. Economic
Statistics (2024) reports on the implications of new privacy protection methods for economic
research, and includes differential privacy as a growing statistical disclosure limitation method.
Chapter 3 of Hundepool et al. (2012) covers disclosure control methods in intricate detail,
which could be a valuable resource for future research and implementation in this domain.
As the desire for digital information expands and computing firepower advances, disclosure
risk and disclosure control methods will be a critical area of development – one that will be
exciting to follow.
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