
Spatial Modeling of Bird Populations
using Citizen Science Data

Abstract

Observation count data from eBird can be used to model the relative abundance of bird species.
We found that such data is generally overdispersed compared to a Poisson distribution and that
a quasi-Poisson generalized additive model is appropriate for the data. Expanding on previous
research for eBird data, we incorporated spatial dependence into the modeling task by perform-
ing hierarchical generalized additive modeling with a spatial conditional autoregressive structure
for random effects. We found that our data contains moderate spatial dependence and that mod-
els that account for spatial dependence have superior predictive performance to those that do
not. We conclude that quasi-Poisson hierarchical generalized additive models with spatial ran-
dom effects provide the best representation of the relative abundance of bird populations. More-
over, our spatially explicit models are more realistic based on domain knowledge when regarding
the impact of environmental covariates, which is important when considering conservation impli-
cations and future projections.
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1 Introduction

Birds across the United States and Canada are disappearing at an alarming rate. 2.9 billion birds,
over one-fourth of the total bird population in this region, have been lost since 1970. This is a
crisis that affects even common species not generally thought to be under threat. The blue jay
population has lost a quarter of its birds; the red-winged blackbird population has lost a third [9]
[16]. It is critical to have methods for understanding the current population distributions of bird
species so that we can better protect them.

1.1 eBird

eBird is a citizen science project managed by the Cornell Lab of Ornithology where registered
users record the observations of birds they identify in the form of checklists. A checklist is a list
of birds observed by one or more eBird users during a specific birdwatching session accompanied
by relevant metadata. Such metadata includes the time duration of the event, the distance trav-
eled during the event, and the number of observers. The survey protocol type of the checklist
is also recorded; the two standard types are stationary and traveling [4]. Additionally, an eBird
user must select a geographic point location to represent each checklist. Finally, an eBird user
must mark each checklist as either complete or incomplete.

The complete checklist is a key concept of the eBird checklist system. A checklist is complete if
an eBird user gave their full effort to noticing all the birds around them; they tried to identify
every bird they observed to the best level of precision and accuracy possible; and they included
every species that they noticed and identified on their checklist [2]. A complete checklist does
not require an eBird user to identify every bird they encountered by species, since this would re-
quire expert-level ability. Instead, a checklist is incomplete if an eBird user intentionally does not
record any wild bird species “that was present, detected, and identified” [2].

Checklists submitted to eBird are put through an automatic data verification process. Filters flag
any problematic checklists or species observations; expert volunteers then manually review this
flagged data. There are specific protocols for both individual species observations in a checklist,
hereafter referred to as “observations”, and checklists overall [3]. In our research, we will use only
observations and checklists that have successfully passed through this process.

1.2 Study Area and Selected Species

Our study area was Bird Conservation Region (BCR) 31, which corresponds to peninsular Florida.
BCRs are defined by the North American Bird Conservation Initiative as “ecologically distinct
regions in North America with similar bird communities, habitats, and resource management
issues” [1]. BCR 31 is biologically rich in species thanks in part to its humid and conducive cli-
mate and also in part to its position between the tropical Caribbean and temperate North Amer-
ican climates [26]. It contains a variety of saltwater, freshwater, and terrestrial habitats. In par-
ticular, there are many coastal and interior wetlands that provide habitat for wading birds [26].
Unfortunately, these wetlands have been harmed by agricultural and urban runoff that degrades
water quality, in addition to drainage [26]. In general, the Floridian peninsula faces population
and land development pressure from humans.

In our research, we will work with the following ten species: white ibis (Eudocimus albus), glossy
ibis (Plegadis falcinellus), roseate spoonbill (Platalea ajaja), great egret (Ardea alba), cattle egret
(Bubulcus ibis), snowy egret (Egretta thula), great blue heron (Ardea herodias), little blue heron
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(Egretta caerulea), tricolored heron (Egretta tricolor), and green heron (Butorides virescens).
Each species is resident in peninsular Florida year-round [7]. Since these species are fairly similar
and all present across BCR 31, we are able to make reasonable comparisons of the models gener-
ated for each species. Furthermore, all species are easy to both find and identify correctly due to
their large body sizes and distinct characteristics. The observation data for these species is likely
to be more accurate than it would be for species that are easier to miss or identify incorrectly. It
has been proposed that citizen science data may be of higher quality for species that have large
body sizes and are easy to identify correctly [37].

1.3 Previous Research

In [24], Johnston et al. propose statistical processes to refine citizen science data, in particular
eBird data, to estimate species distributions. The authors recommend the use of the following
two strategies in conjunction: imposing a structured protocol onto citizen science data using
filters and including covariates that account for variation in effort on the part of observers. To-
gether, these strategies improve the predictive performance of models fit using citizen science
data. While the models in [24] are made for the metrics of encounter rate and occupancy prob-
ability, the results of the article can be extended to similar metrics of species distribution.

Johnston et al. provide a supplement that explains how to implement the procedures of [24] us-
ing eBird data and the R software [25]. In this supplement, the authors also discuss the concept
of relative abundance and techniques for modeling it, such as a quasi-Poisson generalized addi-
tive model (GAM). The abundance of a species is the true number of individuals of that species
in a given area. However, we cannot measure abundance directly due to the nature of eBird data
collection and birds themselves as animals that frequently move. We therefore have to use rela-
tive abundance to stand in for true abundance. In the context of eBird, relative abundance is the
count of individuals of a species observed in an eBird checklist.

Given the spatial nature of bird observation data, it could be beneficial to explicitly account for
spatial dependence when modeling such data. Spatial autocorrelation, a type of spatial depen-
dence, exists when observations gathered from closer locations have either higher or lower simi-
larity. When modeling species distributions with ecological data, incorporating spatial autocorre-
lation has been shown to improve both model fits and predictions for species occurrence; if spa-
tial autocorrelation is present, failing to incorporate it into the modeling process will lead to a
biased model fit [15] [28].

There are three categories of factors that introduce spatial autocorrelation into species occur-
rence data. The first category is internal factors; these originate from the true patterns of the
species under consideration and can not be addressed with any non-spatial modeling method.
Internal factors include species dispersal patterns and colonial breeding habits [15]. The second
category is external environmental factors, which have their own pattern of spatial autocorrela-
tion that they introduce into species data [12]. Potential external factors include humidity, rain-
fall, and soil type. If external factors can be included in the model as environmental covariates,
then spatial autocorrelation in model residuals can be reduced or even eliminated. However, if
these factors cannot be included in modeling due to a lack of data, incorporating spatial depen-
dence into the modeling process is a good strategy. The final category is additional missing fac-
tors such as conservation management practices or uneven effort on the behalf of data collectors.
Adding non-environmental covariates to the model, such as covariates to represent observer ef-
fort, can resolve spatial autocorrelation caused by these miscellaneous factors. As with external
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factors, if we cannot include these factors as covariates, we can resolve the issue by incorporating
spatial dependence into our modeling.

In practice, we can examine whether or not our data has spatial autocorrelation, but we cannot
know what factors introduced this spatial dependence into our data. A good method is to in-
clude all environmental and non-environmental covariates relevant to our data and then examine
if there is any remaining spatial autocorrelation. If there is remaining spatial autocorrelation, we
should address it by incorporating it into our modeling.

In [28], Lee et al. used a quasi-Poisson hierarchical generalized linear model (HGLM) with a spa-
tially correlated conditional autoregressive (CAR) structure for random effects to model count
responses from species observation data with excess zeros. The authors achieved strong perfor-
mance results from this model type. These results are applicable to research performed with
eBird count data, since such data are also spatial population data with excess zeros. This is a
suitable method for incorporating spatial autocorrelation into our modeling task.

1.4 Research Question

A slight limitation of the work performed in [25] is that the authors do not evaluate whether or
not using a GAM improves predictive performance when compared to using a generalized linear
model (GLM). Since GLMs are simpler than GAMs, they should be selected over GAMs when
model performance is similar between the two. To address this, we will generate a GLM and a
GAM for each of our selected distributions. We will then compare the predictive performances of
these GLM and GAM model fits to determine if GAMs improves predictive performance.

A crucial limitation of the work performed by Johnston et al. in [24] and [25] is the lack of any
mention of potential spatial dependence in the data. In particular, the model types used for rel-
ative abundance in [25] assume independence between observations. However, eBird observations
are spatial ecological data and may potentially be spatially dependent. To address this limita-
tion, we will create HGLMs with spatial random effects and evaluate the presence of spatial de-
pendence in the data. We will provide more details about these methods in Section 2.

In this paper, we will investigate statistical methods for modeling the relative abundance of bird
populations using eBird citizen science data. We will synthesize and evaluate the practices pro-
posed in [24], [25], and [28] in the context of our data. A key focus of our research is to investi-
gate the effects of incorporating spatial dependence into the modeling of relative abundance. We
will begin in Section 2 by discussing best practices for preparing citizen science data, generalized
additive modeling, and methods for incorporating spatial dependence into a modeling task. In
Section 3 we will investigate the predictive performances of models and evaluate the best model
for our data. Finally, in Section 4 we will discuss the meaning of our results in the context of our
research task and any areas of future research.

2 Methods

2.1 Data Preparation

2.1.1 Data Sources

Our primary data source was the eBird database, which contains all validated observations and
checklists. Each observation can be matched with its corresponding checklist. If a checklist is
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complete and has no corresponding observation for a certain species, we can infer that the given
species was not detected. If a checklist has a corresponding observation for a certain species but
the eBird user did not record a count value for that observation, the species has an ”X count” for
that checklist. X counts must be removed before we can model relative abundance. This is un-
fortunate, since X counts exclusively correspond to species detections, and therefore removing X
counts from a species’ dataset will change the structure of that dataset. However, it is necessary.

eBird checklists do not contain any information on the land surrounding a checklist’s location.
We will use supplementary data sources to generate relevant environmental covariates. For el-
evation data, we will use the EarthEnv project. For information on land cover, we will use the
MODIS Land Cover Type Product, also referred to as MCD12Q1. The MCD12Q1 product is in
the form of annual grids of 500 meter by 500 meter tiles that map land cover classes. We will use
the University of Maryland legend for land cover, which contains 16 land cover classes. For more
information on the MCD12Q1 product, see [39].

2.1.2 Data Filtering

We performed the following procedure for each of the ten species in our analysis.

First, we created a set of filters to extract observations and checklists from the eBird database.
We filtered for observations of the selected species in BCR 31 in the month of June that were
from complete checklists with the stationary or traveling protocol. We also filtered for checklists
that were in BCR 31 in the month of June and were complete with the stationary or traveling
protocol. We then formatted the data by merging observations and checklists such that each row
corresponded to a checklist and contained the observed count for the selected bird species. If no
observation for the selected species existed for a checklist, that checklist was given a count of 0.

Next, we filtered the data to reduce variation in effort. We restricted checklists to those that
were no more than five hours long, had no more than five kilometers in distance traveled, and
had no more than 10 observers. These filters impose a standard method of data collection, which
has been shown to improve the performance of models fit using eBird data [24]. This set of filters
was proposed in [25].

2.1.3 Effort Covariates

Data from citizen science sources such as eBird can be challenging to model due to the uneven ef-
fort put forward by observers when recording checklists. For example, a checklist could be recorded
over ten minutes or over three hours. Both of these checklists are given equal status in the eBird
database. If not accounted for, this bias can interfere with the modeling process. Thankfully,
eBird checklists come with relevant metadata that describe the effort put forth by users while
recording each checklist. We can use this effort information while modeling to account for bias.
Johnston et al. have found that adding effort covariates improves the performance of models
built with eBird data [24]. Furthermore, Adde et al. used effort covariates when modeling with
eBird data. They found that explicit modeling of the observational processes of eBird users by
way of effort covariates was needed for the optimal modeling use of eBird data [5].

We will use four effort covariates in our modeling. They are as follows: the time a checklist was
started, the time duration of a checklist in minutes, the distance traveled in kilometers, and the
number of observers.
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2.1.4 Environmental Covariates

We used [10] to obtain boundaries for BCR 31. These boundaries were then used to acquire the
relevant land cover data from [19] and elevation data from [8].

In generating our environmental covariates, we followed the procedure laid out in [25]. First,
we acquired the MODIS tiles corresponding to BCR 32 for 2016 and 2017. A MODIS tile for a
given year is a 1200 km square tile composed of a grid of 500 m square cells, where each cell cor-
responds to a specific land cover type. MODIS data is recalculated each year using updated data.

We then found the full set of unique checklist locations for 2016 and the set for 2017. Next, we
used the st buffer() function from the sf package to establish a circular neighborhood with a ra-
dius of 2.5 km around each 2016 location and 2017 location [29]. The authors of [25] determined
that a radius of 2.5 km is sufficient to account for the lack of precision in the spatial points that
represent checklists and also ecologically relevant for many bird species. We were then able to
calculate land cover covariates for each 2016 location and 2017 location. For each location’s cir-
cular neighborhood, we calculated the proportion of land that corresponds to each of the sixteen
land cover types. These sixteen land cover covariates necessarily sum to 1 for each location.

We then used an analogous technique with elevation data from the EarthEnv project. The ele-
vation data is the median elevation of a certain area, calculated at a resolution of 1 km, where
elevation is represented by meters above sea level. We generated covariates for elevation mean
and the standard deviation of elevation for each unique location in the data, again using circular
neighborhoods with a radius of 2.5 km. (Unlike the land cover covariates, the elevation covariates
are not affected by year.)

The final data set was created by merging the filtered checklist data and the environmental co-
variates across all of the 10 species of interest, while disposing of X counts. The data from 2016
became training data for that species, while the 2017 data became test data. It is ideal to vali-
date models built from citizen science data with data collected by standardized protocol. How-
ever, we did not have access to such high-quality validation data. We acknowledge this as a limi-
tation of our research.

2.2 Generalized Linear Models

GLMs are extensions of the linear regression method that allow us to model an arbitrary distri-
bution of the response variable. They are formed of three components: the random component,
the systematic component, and the link function. The random component provides the condi-
tional probability distribution of the response variable Y given a predictor X or vector of predic-
tors X⃗. We assume that Y , conditional on X, belongs to a certain family of distributions. The
systematic component is a linear combination of explanatory variables. The link function, known
as g(.), provides the link between the random and the systematic component of a given GLM.
It applies a transformation to the expected value of Y , denoted E[Y ], such that the transformed
mean is equal to the systematic component, the linear combination of explanatory variables [23].

2.2.1 Poisson GLM

A common model used for a response variable Y that takes on non-negative integer values is the
Poisson GLM. The full Poisson GLM regression equation for a response variable Y and predic-
tors x1 through xk, with λi representing the expected Y -count for the ith observation given the
corresponding xi vector, and with i = 1, 2, . . . , n, is:
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{
Yi ∼ Pois(λi), i = 1, 2, . . . , n

log(λi) = β0 + β1xi,1 + · · ·+ βkxi,k
(1)

In the above formulation, Yi ∼ . . . means that the random variable Yi follows the provided dis-
tribution. The Poisson distribution represents the count data for events, such as observing a bird
of a certain species, that are assumed to happen at a fixed assumed rate λi. More specifically, it
implies the following:

P(Yi = k) =
e−λiλk

i

k!
for k = 0, 1, 2 . . . (2)

The right-hand side of the second line in Equation 1, which contains the linear combination of
predictors, constitutes the systematic component of Poisson GLM. The left-hand side, on the
other hand, indicates g(λi) = log(λi) is the link function of Poisson GLM. The vector of parame-
ters β⃗ is estimated using a maximum likelihood approach [23].

2.2.2 Overdispersion and Underdispersion

The Poisson distribution with random variable Yi and the Poisson parameter λi requires that
E[Yi] = V [Yi] = λi, where E[Yi] is the expected value of Yi and V [Yi] is the variance of Yi. If the
variance of Yi is notably greater than λi, then the data does not satisfy this assumption of the
Poisson distribution; this is known as overdispersion. On the other hand, if the variance of Yi is
notably less than λi, then the data is underdispersed. In practice, we can diagnose a fitted model
for potential overdispersion or underdispersion by checking if the residual deviance is higher or
lower, respectively, than the residual degrees of freedom. If the Poisson model is a reasonable fit
for the data, we expect the residual deviance to be approximately equal to the residual degrees of
freedom.

When the E[Yi] = V [Yi] = λi assumption is not satisfied, the legitimacy of inference procedures
made using that Poisson model is called into question. Situations of underdispersion and overdis-
persion can be addressed with different variations on the original Poisson distribution. Here, we
will discuss the quasi-Poisson distribution.

2.2.3 Quasi-Poisson GLM

In the quasi-Poisson model, instead of assuming E[Yi] = V [Yi] = λi, the dispersion parameter
ϕ is introduced such that E[Yi] = λi and V [Yi] = ϕλi. The dispersion parameter ϕ allows the
modeling technique to accommodate either overdispersed (ϕ > 1) or underdispersed (ϕ < 1) data
[17]. For the formula used for ϕ, see [17].

Because we set V [Yi] = ϕλi in quasi-Poisson regression, we cannot use the classic maximum likeli-
hood technique to estimate parameters. In short, this is because we do not have a well-defined
probability distribution available for it (see [17] for more details). Instead, we are required to
use the quasi-likelihood method. Classic and quasi-likelihood methods calculate coefficient esti-
mates using analogous techniques, which therefore results in near-identical coefficient estimates.
The most important difference is present in the calculation of the standard errors for coefficient

estimates. In particular, the SE(β̂j) in quasi-likelihood is equal to

√
ϕ̂ ∗ SE(β̂j)classic, where

SE(β̂j)classic is the standard error for β̂j in the classic maximum likelihood version of the model.
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This allows a quasi-Poisson model to account for more uncertainty in coefficient estimates; it
therefore generates more accurate values for inference procedures.

The quasi-Poisson random component can be written in shorthand as Yi ∼ ind.QPois(λi, ϕ).
Quasi-Poisson regression has the same systematic and link component as Poisson regression.

2.2.4 Other GLMs

We also used the negative binomial distribution and the zero-inflated Poisson distribution (clas-
sic and hurdle formulations) in our modeling of relative abundance data. However, none of these
model types proved to be superior to the quasi-Poisson distribution. Therefore, we will not dis-
cuss them here. For details on how these distributions operate, refer to [17] and [36].

2.3 Nonlinear Modeling Techniques

2.3.1 Smoothing Splines

We can generate splines, piecewise polynomials that are both continuous and smooth at their
knots, via the smoothing spline technique. Smoothing splines result from minimizing an resid-
ual sum of squares criterion that is subject to a smoothness penalty. This minimization process
generates a smooth curve that is designed to fit the observed data well without overfitting. In
particular, to generate a smoothing spline g, we find the function g that minimizes the following,
where λ is a nonnegative parameter that controls the strength of the smoothness penalty, by [23]:

n∑
i=1

(yi − g(xi))
2 + λ

∫
g”(t)2dt (3)

The term
∑n

i=1(yi − g(xi))
2 is a loss function that encourages g to fit the data. λ

∫
g”(t)2dt is

a penalty term that encourages g to be smooth, where g”(t) indicates the second derivative of
the function g. If λ = 0, then the function g will exactly interpolate the provided training data.
On the other hand, as λ approaches infinity, g will be the linear regression of Y on X [23]. The
function g(x) generated by the minimization process will be a natural cubic spline with a knot at
every unique value of X.

2.3.2 Generalized Additive Models

GAMs are a framework for extending nonlinear modeling approaches such that we can incorpo-
rate multiple predictors. A GAM is written as follows:

yi = β0 + g1(xi,1) + · · ·+ gk(xi,k) + ϵi (4)

where each gj for j = 1, 2, . . . , k is a smooth nonlinear function [23]. In particular, smoothing
splines can be used to fit a function gj .

GAMs have several advantages. Because they fit a nonlinear gj to each Xj , they will automat-
ically model nonlinear relationships that would not be included in standard multiple linear re-
gression [23]. Additionally, these nonlinear fits can potentially generate predictions that are more
accurate than those made by an analogous multiple linear regression model. Finally, the additive
nature of the model allows us to examine the partial effect of each covariate on the response [23].
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All but one of our nonlinearly modeled covariates were modeled with smoothing splines where
the effective degrees of freedom K was set at 5. We modeled the covariate for the time a check-
list was started using a cyclic cubic regression spline with K = 7 knots.

While the description of GAMs above directly extends from multiple linear regression, we can
apply GAM techniques to any GLM. In particular, it could be incorporated into the systematic
component of a Poisson GLM from Section 2.2.1 or a HGLM, to be discussed in Section 2.4.2.

2.4 Spatial Dependence Modeling

2.4.1 Spatially Dependent Data

All distributions we use to model our data assume that the observations in the response are in-
dependent. However, we are working with data that was obtained at certain geographic locations
and may therefore be spatially correlated. In general, observations in space can be considered not
mutually independent [11]. If our data is spatially correlated, the modeling assumption of inde-
pendence is violated; this presents a series issue that affects the quality of our fits and how much
trust we should place in inferences based on our models [28].

To represent potential spatial autocorrelation in our data, we will generate neighbor objects.
Each of our locations is represented by a set of longitude and latitude coordinates; note that
there are often multiple checklists that correspond to a single location. For every location, we
will categorize all other locations as either neighbors or non-neighbors of that location [11]. To
build these neighborhoods, we will use the Sphere of Influence method. A Sphere of Influence
neighbor object is created by taking a Delaunay triangulation neighbor object and removing
links between two locations that are relatively long [11]. Two locations are Sphere of Influence
neighbors if circles centered on each of the two locations’ representative coordinates, with radii
equal to each location’s nearest neighbor distance, intersect in two places. The Sphere of Influ-
ence method generates symmetric neighbor objects; that is, if location i is a neighbor of location
j, then j is a neighbor of i.

Once a neighbor object has been created, we can assign spatial weights to each relationship. In
cases where we do not have much knowledge of the spatial process underlying our data, it is best
to use the binary weight style, where all neighbor relationships have a weight of one and all non-
neighbor relationships have a weight of zero [11]. This is what we chose for our analysis.

2.4.2 Hierarchical Generalized Linear Models

To model spatial dependence, we will use HGLMs. An HGLM is a GLM that allows for ran-
dom effects; we can specify a certain distribution or model matrix for the random effects [34].
By specifying a particular type of distribution for the random effects, we can impose the desired
spatial dependence structure on our model. In our research, we will be generating quasi-Poisson
HGLMs with spatially correlated random effects. By this point in our research, quasi-Poisson will
have been shown to be the preferred distribution out of those introduced in Section 2.2.

The systematic component of a quasi-Poisson HGLM is β⃗ ∗ Xi + vi, where vi is a random effect
following a certain specified distribution. For our research, in accordance with standard practice
for spatially correlated random effects [33], we assumed that vj ∼ N(0,Σ), where j indexes the
geographic location of an observation. We then specify Σ with a certain structure. For our re-
search, we will use the CAR structure. Altogether, the model formula for a quasi-Poisson HGLM
with spatially correlated random effects under the CAR structure is as follows:
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Yi,j ∼ QuasiPois(λi,j , ϕ)

log(λi,j) = X⃗i,j β⃗
T + vj

vj ∼ N(0,Σ)

Σ = ρ(I− τ ∗D)−1

ϕ = 1
n−(k+1)

∑n
i=1

(yi,j−λi,j)
2

λi,j

(5)

where k is the number of predictors, n is the number of observations, i is the observation index
that goes from 1 to n, and j is the index for the geographic location of an observation. I is an
identity matrix and D is a symmetric matrix of spatial weights [28]. ρ is a spatial correlation pa-
rameter; it represents the level of spatial dependence present in the response. τ is a spatial vari-
ance component. Parameters ρ and τ are estimated during the process of fitting an HGLM [33].
Estimation of an HGLM model is performed using h-likelihood theory. For more details, see [34].

When we incorporate GAM techniques into the model formula for an HGLM, we can consider
that model to be a hierarchical GAM (HGAM). Techniques that apply to HGLMs can be ex-
tended to apply to HGAMs.

2.4.3 Evaluating Spatial Correlation

After having fit an HGLM model with the CAR structure for random effects, we can use the spa-
tial correlation estimate ρ̂ to consider the level of spatial dependence in the data. As it is a mea-
sure of correlation, it takes on values from −1 to 1, with larger absolute magnitudes indicating
stronger levels of spatial autocorrelation.

2.4.4 Making Predictions with HGLMs

While the systematic component of an HGLM includes a random effect, we can still provide pre-
dictions for new data as follows. Here, we will discuss using a quasi-Poisson HGLM fit to make
predictions. Since vj is distributed according to the Normal distribution with mean 0, and keep-

ing in mind that predictions are made on average, the contribution of v⃗ to the prediction ⃗̂ynew
will be 0. We are then able to predict ⃗̂ynew using exclusively our matrix of new data Xnew and

our vector of coefficient estimates
⃗̂
β. as below, where the exponent is present to reverse the log-

link transformation of the quasi-Poisson HGLM:

⃗̂ynew = e(Xnew∗⃗̂β) (6)

2.5 Evaluating Predictive Performance

Mean absolute deviation (MAD) is a commonly used metric that represent the average distance
of predicted values from their corresponding true values. It is preferable to the similar metric
of root mean squared error because it is robust against extreme observations in the test data.
Lower values of MAD indicate that a model has stronger predictive performance with regards to
predicting exact values [21]. The formula for MAD is below, where y⃗ = y1, y2, . . . yn and ⃗̂y =
ŷ1, ŷ2, . . . ŷn:
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MAD =

∑n
i=1 |yi − ŷi|

n
(7)

3 Results

All analyses in this research were performed using the R software environment, version 4.1.1 [30].
The key R packages we used to complete our analysis are hglm [6] [32], sf [29], car [18], MASS
[40], pscl [22] [45], spdep [38], and auk [38]. We also used the package mgcv [41] [42] [43] [44].

3.1 Preliminary Analysis

We began with an initial suite of effort and environmental covariates inspired by the methods
proposed in [24]. We used the white ibis data as a reference case for instances where we needed
to make a decision that would be applied to all species. First, we removed any covariates that
had at least 95 percent zero values and a small spread of nonzero values, as they would have
been not useful to our modeling. Next, we performed multicollinearity analysis. To resolve prob-
lematic multicollinearity in our data, we dropped one covariate. Our final suite of selected covari-
ates is presented in Table 1. Following the above, we performed influential data analysis on each
species. The minimum number of observations dropped was 0, and the maximum number was 12.

We then conducted exploratory data analysis on the count data for each of our ten species of in-
terest. In all cases, the data was powerfully right-skewed with an excess number of zeroes. Refer
to Figure 1 for the example of the white ibis species.

3.2 Selecting Initial Model Type

First, we fit a Poisson GLM on the filtered training data for all ten species using the covariates
in Table 1. For all species except the roseate spoonbill, the residual deviance was greater than
the residual degrees of freedom, indicating potential overdispersion. Given the overall evidence
of overdispersion in our data, we decided to discard the Poisson GLM fits and move on to more
suitable modeling techniques.

We next fit a quasi-Poisson GLM, a negative binomial GLM, and a zero-inflated Poisson GLM on
each of the ten species. An investigation of the quasi-Poisson GLM fits revealed that all species
had ϕ̂ > 2. This clear evidence of overdispersion in the data provides support for our choice to
model using the quasi-Poisson, negative binomial, and zero-inflated Poisson distributions.

After fitting our GLMs, we prepared to fit GAMs. We first investigated each covariate to see if
it had enough unique values to be sensibly modeled with nonlinear techniques, using a threshold
of 50 unique values. The covariates for number of observers, deciduous broadleaf, cropland, and
mosaic all failed to meet the threshold; we therefore continued to model these covariates linearly.
All other covariates were modeled as discussed in Section 2.3.2. We fit a quasi-Poisson GAM,
negative binomial GAM, and zero-inflated GAM to each of the ten species as above.

We then evaluated each of the six model fits for the ten species in order to select the best model
type for our data. First, we generated predictions for each of our six models types of interest and
each of our ten species using the test data. Next, we calculated MAD values using those predic-
tions for all sixty models.
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Final Suite of Covariates

Name Type Description

Time Checklist Started Effort Time of day checklist was started, with
range of values from 0 to 24

Duration Effort Duration of checklist in minutes

Distance Traveled Effort Distance traveled while completing checklist
in km

Number of Observers Effort Number of people observing birds while
recording the checklist

Evergreen Broadleaf Land cover Percentage of evergreen broadleaf terrain *

Deciduous Broadleaf Land cover Percentage of deciduous broadleaf terrain *

Woody Savanna Land cover Percentage of woody savanna terrain *

Grassland Land cover Percentage of grassland terrain *

Wetland Land cover Percentage of wetland terrain *

Cropland Land cover Percentage of cropland terrain *

Urban Land cover Percentage of urban terrain *

Mosaic Land cover Percentage of mosaic terrain *

Mean Elevation Elevation Mean of elevation *

Standard Deviation of
Elevation

Elevation Standard deviation of elevation *

Table 1: The final set of selected covariates, with type and description. * indicates that the co-
variate was measured in the area around the checklist location.

Figure 1: Left: Histogram of white ibis counts. Right: Bar plot of white ibis counts less than or
equal to 25.
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MAD Values and Percent Change

Quasi-Poisson GLM Quasi-Poisson GAM Percent Change

White Ibis 4.145 3.904 −5.829

Glossy Ibis 1.018 0.996 −2.176

Roseate Spoonbill 0.325 0.334 +2.664

Great Egret 1.405 1.348 −4.096

Cattle Egret 2.570 2.556 −0.556

Snowy Egret 1.480 1.439 −2.791

Great Blue Heron 0.632 0.575 −8.936

Little Blue Heron 0.816 0.786 −3.651

Tricolored Heron 0.985 0.870 −11.623

Green Heron 0.485 0.431 −11.049

Table 2: MAD values by model type; Percent change when switching from GLM to GAM.

For the three GLM fits for each species, we observed that the negative binomial GLM fits gen-
erally had worse predictive performance than the other two GLM fits. Quasi-Poisson GLM and
zero-inflated Poisson GLM fits had fairly similar performances across the ten species. Since the
quasi-Poisson model type is less complex than the zero-inflated Poisson model type, we con-
sidered quasi-Poisson to be superior. Additionally, for the three GAM fits for each species, the
quasi-Poisson GAM fit has the best or near-best performance. Therefore, we decided to select
quasi-Poisson as our preferred distribution.

Our next task was to evaluate whether or not GAM techniques should be implemented, given
their additional interpretation complexity and risks of overfitting. The first two columns of Table
2 show the MAD values for the quasi-Poisson GLM and quasi-Poisson GAM fits for each species.
The final column of Table 2 shows the percent change in MAD with the addition of GAM tech-
niques. Since a smaller MAD value indicates better predictive performance, nine of the ten species
showed an improvement in model performance when GAM techniques were added. The average
percent change was −4.804 percent. Overall, adding GAM techniques to a quasi-Poisson GLM
improved predictive performance quality across species. We selected the quasi-Poisson GAM as
our preferred modeling type.

3.3 Incorporating Spatial Dependence

Following from the above results, we decided to use a quasi-Poisson HGAM with a CAR struc-
ture from random effects to model relative abundance. First, we created a Sphere of Influence
neighbor object and a corresponding binary weights object for each species. We then fit a quasi-
Poisson HGAM as we fit our quasi-Poisson GAM in Section 3.2 but with the addition of a CAR
structure for random effects using our binary weights object. Unfortunately, the model failed to
converge for the roseate spoonbill and tricolored heron species, which is not atypical for complex
models such as HGLMs [20]. For the rest of this paper, we will be exclusively working with the
other eight species.

We then used the CAR ρ̂ statistic for each species’ HGAM fit to investigate the practical level
of spatial correlation in the data. These ρ̂ statistics are provided in Table 3. The minimum ρ̂ is
0.174 and the maximum is 0.214. Our CAR ρ̂ statistics indicate that we do have spatial correla-
tion present in our data. While it is not extremely large, it is still notable.
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CAR ρ̂ Values

Species CAR ρ̂

White Ibis 0.199

Glossy Ibis 0.204

Great Egret 0.198

Cattle Egret 0.174

Snowy Egret 0.192

Great Blue Heron 0.214

Little Blue Heron 0.184

Green Heron 0.196

Table 3: The CAR ρ̂ values for each quasi-Poisson HGAM fit.

MAD Values and Percent Change

Quasi-Poisson
GAM

Quasi-Poisson
HGAM

Percent
Change

White Ibis 3.904 2.790 −28.536

Glossy Ibis 0.996 0.518 −47.987

Great Egret 1.348 1.061 −21.308

Cattle Egret 2.556 1.632 −36.144

Snowy Egret 1.439 0.958 −33.391

Great Blue Heron 0.575 0.424 −26.191

Little Blue Heron 0.786 0.557 −29.141

Green Heron 0.431 0.307 −28.889

Table 4: MAD values by model type; Percent change when switching from GAM to HGAM.

3.4 Selecting Final Model Type

We generated predictions for the 2017 test data using each of our HGAM fits; we then used these
predictions to calculate MAD values. We can now compare these MAD values to the preexist-
ing MAD values for the relevant eight species’ GAM fits; see Table 4. There was quite notable
improvement in MAD when switching from the GAM to HGAM modeling type across all eight
species, with an average percent decrease (improvement) of 31.448 percent. The percent decrease
goes up to 47.987 percent and never drops below 21.308 percent. This clearly demonstrates the
advantages of incorporating spatial autocorrelation into our modeling procedure.

We can further investigate this improvement in predictive performance by splitting the test set
into nondetections (zero counts) and detections (nonzero counts). When considering just nonde-
tections, MAD decreases by 65.737 percent on average, an almost two-thirds improvement. This
shows that the HGAM model type is much better at predicting nondetections than the GAM
model type. However, when considering just detections, MAD increases (worsens) by 11.087 per-
cent on average. In a reversal of the previous result, the GAM models are slightly better at pre-
dicting for detections than the HGAM models. In our opinion, this presents an acceptable trade-
off in predictive performance; the HGAM fits, while being slightly worse at predicting exact counts
for detections, are much better than the GAM fits at identifying true non-detections.
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Figure 2: Effect displays of the selected covariates for the white ibis data. Above: quasi-Poisson
GAM. Below: quasi-Poisson HGAM.

3.5 Results of the Final Model Type

Figure 2 features effect displays for three selected covariates in the context of the quasi-Poisson
GAM and HGAM for the white ibis species. The effect displays were constructed in the following
manner. First, we plotted histograms of each covariate to look for any skew in their distribution.
If a covariate appeared to have extreme low (high) values, we set the minimum (maximum) value
for its effect display to the 0.01 (0.99) quantile of that covariate. Otherwise, we did not adjust
the minimum or maximum. The minimum and maximum were used to create a sequence of 300
evenly spaced values for the covariate. Next, we obtained the median values of all other covari-
ates in the model. Following that, we used the sequence of 300 covariate values and the median
values of the other covariates to make predictions for our selected model fit. Finally, we used
those predictions to plot an effect display for that covariate. These plots represent the effect of
each covariate on the response for the corresponding model fit.

The effect displays for the covariate representing the time a checklist was started are in the left
column of Figure 2. For the GAM fit, relative abundance begins high, drops until approximately
10 a.m., then increases steadily. This suggests that the white ibis is most likely to be observed
during early morning and evening hours and least likely to be observed in the late morning. For
the HGAM fit, relative abundance drops rapidly, is stable from around 10 a.m. to 3 p.m., then
increases again. The HGAM fit provides evidence that the white ibis is more likely to be ob-
served during early morning and evening hours than in the middle of the day. The white ibis is
known to roost in groups at night, then go foraging throughout the day [35]. Both of these effect
displays are plausible in the context of the white ibis species.

The effect displays for the wetland covariate are in the middle column of Figure 2. For the GAM
fit, relative abundance starts low, rises to a peak at approximately 30 percent wetland terrain,
then falls before leveling off at around 60 percent. The effect display for the HGAM fit is more
smooth and less extreme than that of the GAM fit; relative abundance has a slight peak around
30 percent and a slight dip around 60 percent. The white ibis is known to be associated with
wetland habitats [27]. Therefore, we would expect that as the percentage of wetland terrain in-
creases, relative abundance also increases. We find the effect display for the GAM fit to be not
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particularly sensible, as it displays an exaggerated up-and-down relationship instead of a more
steadily positive one. The effect display for the HGAM fit is comparatively less problematic; its
depiction of the effect of wetland on relative abundance is less extreme, and therefore features
less of a decrease in relative abundance for high proportions of wetland terrain.

The effect displays for the urban covariate are in the right column of Figure 2. In the GAM fit,
relative abundance has a dip at around 50 percent urban terrain, with a steeper rise on the right
side of the dip than on the left side. Meanwhile, the dip in the HGAM effect display is less pro-
nounced and located at approximately 25 percent instead of 50 percent. Additionally, the val-
ues of relative abundance are less extreme overall in the HGAM effect display. The white ibis is
known to have increased its presence in urban areas in response to Florida’s urbanization [27].
It is therefore reasonable to think that high percentages of urban terrain correspond with the
highest values of relative abundance. This is reflected in both effect displays. With that being
said, we found the HGAM effect display to be a better representation of the relationship between
the proportion of urban terrain and relative abundance as it depicts a more steady increase. The
pronounced peaks and dip of the GAM effect display imply that areas with low urbanization are
more conducive to the white ibis than areas that are moderately urbanized, which we lack a clear
explanation for in the context of the white ibis.

For all three of the above covariates, in the GAM fit the effect of that covariate on the response
was determined to be statistically significant, which indicates that each respective relationship
was not observed simply due to chance. In the HGAM fit, where we adjusted for spatial depen-
dence, only the covariate for the time a checklist was started was found to be statistically signif-
icant; the environmental covariates for wetland and urban were not deemed so. This aligns with
the results of other research, which have found that adjusting for spatial dependence has a ten-
dency to impact coefficient estimates and the significances of environmental covariates in particu-
lar [15] [31]. Additionally, the pattern of environmental covariates decreasing in statistical signifi-
cance with the incorporation of spatial autocorrelation, and doing so more than effort covariates,
generally persisted for the other species in our study.

Incorporating spatial autocorrelation after having already accounted for the environmental and
effort covariates present in our model allows us to control for spatial factors such as climate infor-
mation, species dispersal patterns, and colonial breeding habits that we cannot easily include as
explicit covariates. Therefore, the coefficient estimates and inferences drawn from a model that
accounts for spatial dependence (in our case, an HGAM) are generally more reliable than those
from the corresponding non-spatial model (a GAM). In particular, our spatially explicit models
can protect us from overstating the relationships between certain environmental covariates and
relative abundance.

As an alternative method of assessing the GAM and HGAM fits, we made prediction plots for
the white ibis species across our study area; see Figure 3. To make these plots, we obtained the
true values of environmental covariates across BCR 31 for 2016. We then set standard values for
our effort covariates. In particular, we set checklist start time to noon, duration to one hour, dis-
tance to one kilometer, and number of observers to one. We then generated predictions using our
model fits. This is best practice when making predictions across a geographic region with models
that use both effort and environmental covariates, as it implies the assumption of spatially homo-
geneous observer effort [13].

The prediction plot for the GAM fit has areas of extreme low and extreme high relative abun-
dance scattered across the study area. The prediction plot for the HGAM fit is more stable with
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0.05 0.25 1.22 5.99 29.51

White Ibis Relative Abundance

0.09 0.35 1.38 5.37 20.89

White Ibis Relative Abundance

Figure 3: Left: Prediction plot map for quasi-Poisson GAM. Right: Prediction plot map for
quasi-Poisson HGAM. The scale for relative abundance changes slightly between maps.

Figure 4: The proportion of wetland land cover across BCR 31 in 2016.
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regards to its predictions across the study area. Considering that the white ibis population is
known to be spread across peninsular Florida, this appears to be more sensible. For both model
fits, the area roughly corresponding to the Everglades has generally higher values of predicted
relative abundance. This corresponds with our domain knowledge and is a sign that our model
fits have been at least partially successful.

From the prediction plot, we observed that the HGAM fit identified areas in BCR 31 with very
high proportions of wetland as corresponding to high values of relative abundance. The dark
streaks in the bottom of the HGAM plot in Figure 3 correspond to areas with high proportions
of wetland in Figure 4. This indicates that the wetland covariate has practical significance, which
is interesting as this covariate was not found to be statistically significant in the HGAM fit. Of
further note is the fact that this result contrasts with what we observed in the effect display for
wetland in the HGAM fit (see Figure 2), where there was less dependence of relative abundance
on the proportion of wetland terrain. This could potentially indicate that the HGAM fit adapts
differently to actual combinations of environmental covariates present in BCR 31.

4 Discussion

4.1 Discussion of Results

We found that the quasi-Poisson distribution has superior predictive performance over the nega-
tive binomial distribution and the zero-inflated Poisson distribution in the context of both GLM
fits and GAM fits. We then observed that the quasi-Poisson GAM had stronger predictive per-
formance than the quasi-Poisson GLM. To make both of these conclusions, we used MAD values
generated by predicting for our 2017 test data.

We then incorporated any remaining spatial autocorrelation into our modeling using a quasi-
Poisson HGAM with spatially correlated random effects. CAR ρ̂ values for our eight HGAM fits
indicated approximate spatial autocorrelation of around 0.2 for our data. We therefore observed
a moderate level of spatial dependence in our relative abundance data after having already ac-
counted for our environmental and effort covariates. This supports our decision to incorporate
spatial dependence into the modeling task. Continuing to use non-spatial models for relative
abundance in the context of eBird data will result in biased and untrustworthy model fits. Ad-
ditionally, our MAD values showed that HGAMs perform better than GAMs when predicting
counts for new data.

Using effect displays, we observed that the GAM fit for the white ibis had more extreme and
nonlinear relationships for environmental covariates as compared to the corresponding relation-
ships of the HGAM fit. In other words, the HGAM fit had adjusted coefficient estimates such
that the environmental variables had less pronounced effects on relative abundance. This result
matches that of previous studies [14] [15] [31]. Our prediction plots showed that the HGAM fit
was able to predict more smoothly across the study area. Interestingly, we also observed using
the prediction plots that the HGAM fit identified the impact of very high wetland proportions
on relative abundance in the context of real geographic locations. Together, these results suggest
that incorporating spatial dependence into the modeling task provides a more nuanced and reli-
able understanding of relative abundance for a bird species across a given geographic region.

Our study provides a thorough approach for modeling the relative abundance of bird species by
making the best use of information available in eBird citizen science data. With the incorpora-
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tion of spatial dependence, we obtained a more accurate understanding of species’ reliance on
environmental covariates. Our modeling approach can be used to identify suitable areas for bird
species which, in turn, could be used as recommendations for conservation efforts. Our modeling
technique also has use for climate change planning, as it can be applied to assess species’ relative
abundance in areas with changing environmental characteristics. Through incorporating spatial
dependence, such conclusions will be more realistic and reliable [14]. As bird populations decline,
our study presents an opportunity to understand both the areas currently most relevant to their
abundance and sites that may gain or lose suitability with potential shifting environmental char-
acteristics.

4.2 Areas of Future Research

There remain areas of future research relating to this study.

One matter is the issue of X counts, which we had to remove in order to model relative abun-
dance. Our modeling would have been stronger if we had some way to fill in predicted values for
these X counts. We know that all X counts are nonzero values. This is therefore lost information.
Filtering out a specific type of observation from our data harms the modeling process.

Another issue is the non-convergence of the roseate spoonbill and tricolored heron species. For
both of these species, the quasi-Poisson HGAM failed to fit. Overdispersed species data with ex-
cess zeros are supposed to be suited to a quasi-Poisson HGLM with spatially correlated random
effects [28]. Even though convergence issues are not unheard of for hierarchical models, investiga-
tion into this topic is required [20].

Furthermore, we are in need of better methods for measuring the statistical significance of spa-
tial dependence in our research context. eBird data is not suitable for traditional tests for spa-
tial dependence such as Moran’s I, which require that each location has exactly one observation.
Additionally, we were unable to use a likelihood ratio test to measure the statistical significance
of spatial random effects in a quasi-Poisson HGAM. This is because likelihood statistics are not
available for the quasi-Poisson family in the hglm package. Better procedures should be devel-
oped for this context.

Finally, future research could look into methods for creating confidence bands for HGAM fits and
their predictions. Our effect displays would have been more informative with confidence bands.
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