
An Evaluation of Regularization Methods:

When There Are More Predictors than
Observations

Abstract

In the era of big data, the number of predictors often surpasses the number of ob-

servations. In these situations, ordinary least squares regression is no longer viable.

We explore regularization methods, also known as shrinkage methods, to address

the issue of high dimensionality. Shrinkage methods like Ridge, LASSO, and Elastic

Network work by “shrinking” coe�cient estimates to zero and sometimes even per-

forming variable selection (LASSO and Elastic Net). We conduct simulation studies

to explore how all three perform and then apply it to real world data on milk yield

and milk yield related genes. Shrinkage takes advantage of the bias-variance tradeo↵

and may help with estimation in high dimension settings. We find that there is no

one size fits all solution and that the appropiate shrinkage method depends much on

the makeup of the data.
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1 Introduction

Suppose a biostatistician was interested in examining the linear relationship between gene
expression and milk production in cows.

They could consider looking at a linear regression model:

Yi = �i0 + �1Xi1 + . . .+ �pXip + ✏i where i = 1, . . . , n (1)

which describes the relationship between a response variable Yi (milk production) and
p explanatory variables (genes), Xi1, Xi2, ..., Xip, for i = 1, . . . , n observations (cows).

This model is near and dear to many of us and for a good portion of the statistics
courses in the department, we have only learned to fit a linear model using the ordinary
least squares method where we minimize the residual sum of squares in order to obtain
estimates of � = {�0, �1, ..., �p}. This fitting procedure has certain advantages, but many
alternatives have been proposed to yield better results in two categories:

• Prediction Accuracy: When n >> p, that is, the number of observations is greater
than the number of predictors, the least squares procedure tends to have low variance
but if n is not much larger than p, there can be a lot of variability and if p > n, then
there does not exist a unique least squares coe�cient estimate, meaning the method
is not usable. In the era of big data, especially in the field of genomic research, the
number of genes as predictors, p, is often much larger than the number of observations,
n, at our disposal so this is a prevalent issue. We will examine alternative methods in
this paper that address these issues concerning large variance and high dimensionality.

• Model Interpretability: Some methods addressed in this paper will also perform vari-
able selection as it is often the case that some variables in the model are irrelevant.
As we will show, some of these methods shrink coe�cient estimates to zero to create
a more interpretable model.

We begin by examining three regularization (also known as shrinkage) methods, Ridge
regression, Least Absolute Shrinkage and Selection Operator (LASSO) regression, and Elas-
tic Net regression that aim to have better results in the above categories by regularizing
the coe�cient estimates (shrinking the coe�cients towards zero). These methods do this
by incorporating a shrinkage penalty when minimizing the residual sum of squares. Section
2 briefly explores each method and their advantages and disadvantages. Then simulation
results comparing Ridge, LASSO, and Elastic Net are shown in Section 3. Milk yield based
genomic data are used to illustrate our methods in Section 4.

2 Methods

All three methods (Ridge, LASSO, and Elastic Net) are based o↵ the ordinary least squares
method which minimizes the residual sum of squares defined below but are modified in
distinct ways.
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2.1 Ridge Regression

Ridge regression was first proposed by Hoerl & Kennard (1970) in their paper, “Ridge
Regression: Biased Estimation for Nonorthogonal Problems”. This method is similar to
ordinary least squares, but a shrinkage penalty is added on when estimating the coe�cients
as defined below.
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where � � 0 is called the tuning parameter that is not determined automatically.
Breaking down equation 3, we can see that we still want to make the residual sum of
squares as small, similar to ordinary least squares, but now we also must consider the
shrinkage penalty which has the e↵ect of making �̂1, �̂2, . . . , �̂p shrink towards zero. This

shrinkage penalty is based on the `2 norm of the coe�cients (||�||2 =
qP

�2
j ) which is the

distance between the estimates from 0.
The tuning parameter, �, then tunes the relative influence of these two terms on the

estimates. As � ! 1, the coe�cients approach zero and when � = 0, we are simply mini-
mizing the residual sum of squares. We can also view this process in another formulation
as shown below:

minimize
�

(
nX

i=1

⇣
yi � �0 �

pX

j=1

�jxij

⌘2
)

subject to
pX

j=1

�2
j  t for some t. (4)

This states that there exists some t such that 3 and 4 will produce the same �̂1, �̂2, . . . , �̂p.
When p = 2, the Ridge coe�cient estimates will have the smallest residual sum of squares
out of all the points that are bounded by the circle �2

1 + �2
2  t.

2.1.1 Example of Shrinkage

We show a quick example of how the coe�cient parameters shrink as � gets larger. We
look at the mtcars dataset which contains information on 32 cars from 1973-1974 on their
performance and design. We provide Table 1 that is a code book of all the variables.

Suppose we want to predict the cars’ miles per gallon using all available predictors using
Ridge regression.

In Figure 1, we can see Ridge regression in action. As log(�) increases, all the coe�cients
tend towards 0 and no matter how small the coe�cient estimates get, they are still nonzero
as indicated by the 10’s across the top.
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Table 1: Codebook for mtcars (n = 32)

Variable Description
mpg Miles Per Gallon
cyl Number of cylinders
disp Displacement (cu.in.)
hp Gross horsepower
drat Rear axle ratio
wt Weight (1000 lbs)
qsec 1/4 mile time
vs Engine (0 = V-shaped, 1 = straight)
am Transmission (0 = automatic, 1 = manual)
gear Number of forward gears
carb Number of carburetors

2.1.2 Necessity of Standardizing

For Ridge regression coe�cients, it is important to standardize the predictors before ap-
plying Ridge regression. Consider the previous example where we used various aspects of
the car to predict their miles per gallon. The model included the weight of the car mea-
sured in thousands of pounds. It could very well have been measured in pounds in which
case, it would change by a factor of 1000. Lucky for us, most packages in R standardize
automatically.

2.1.3 Advantages of Ridge Regression

Advantages of Ridge regression can be noticed when we look at it in terms of the bias-
variance tradeo↵. The bias-variance tradeo↵ means that Ridge regression will introduce
a little bias but in doing so, decrease the variance, ultimately leading to a lower mean
squared error and better predictive accuracy.

Figure 2 demonstrates how the mean squared error changes as � changes for the mtcars
example from 2.1.1. Mean squared errors (red dots) are displayed with error bars for the
lower and upper standard error. Also displayed are two vertical dotted lines. The leftmost
line indicates the value of � that returns the smallest mean squared error. Here, we get
the lowest test mean squared error when � = 2.502 which we will denote as �min. The
rightmost vertical line indicates the largest � that is within 1 standard error of �min, also
known as �1se. People might prefer to use the larger value, �1se, as a deterrent to overfitting.
Moreover, the numbers at the top represent the number of nonzero coe�cient estimates.
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Figure 1: Ridge regression coe�cient estimates for mtcars as function of Log(�). The
numbers across the top are the number of nonzero coe�cient estimates.
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Figure 2: Mean squared errors for the mtcars example in 2.1.1. Mean squared errors (red
dots) are displayed with error bars for the lower and upper standard error. Also displayed
are two vertical dotted lines. The leftmost vertical dotted line represents �min which is the
value of � that gives the minimum mean squared error. Rightmost vertical line represents
�1se which is the largest � that is within 1 standard error of �min. The numbers at the top
represent the number of nonzero coe�cient estimates.
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In addition to the bias-variance tradeo↵, when p > n, the least squares estimate will not
have a unique solution and the ordinary least squares method will overfit and match the
data. Table 2 displays the predicted vs observed mpg when we fit an ordinary least squares
model on only 7 observations from mtcars but still using all variables (p = 10). Overfitting
is an issue because our regression coe�cients are useless when it comes to prediction.

Table 2: OLS Predicted vs Observed mpg

Predicted Values Observed Values
Mazda RX4 21.0 21.0
Mazda RX4 Wag 21.0 21.0
Datsun 710 22.8 22.8
Hornet 4 Drive 21.4 21.4
Hornet Sportabout 18.7 18.7
Valiant 18.1 18.1
Duster 360 14.3 14.3

We can see that the model over fitted and predicted the exact values of the 7 cars. Ridge
regression on the other hand regularizes the coe�cients to combat against overfitting.

Moreover, Ridge regression can also deal with multicollinearity which is an issue in
ordinary least squares. Marquardt & Snee (1975) show how ridge regression is able to
estimate coe�cients which perform better in predictions than ordinary least squares when
multicollinearity is present.

2.1.4 Disadvantages of Ridge Regression

Ridge regression includes all p predictors in the final model. While the shrinkage penalty
term will shrink the coe�cients towards zero, none of them will be exactly zero unless
� = 1. By including all the predictors in the model, it often leads to uninterpretable
models.

2.2 Least Absolute Shrinkage and Selection Operator (LASSO)

Regression

LASSO regression introduced by Tibshirani (1996), performs variable selection, thus solving
the issue that Ridge regression su↵ers from. The LASSO is very similar to Ridge regression
but minimizes the equation below using a di↵erent shrinkage penalty:

RSS + �
pX

j=1

|�j| =
nX

i=1

(yi � �0 �
pX

j=1

�ixij)
2 + �

pX

j=1

|�j| (5)

In this modified equation, the shrinkage penalty is based on the `1 norm instead of the `2
used in Ridge regression. The `1 norm of a coe�cient vector � is given by ||�||1 =

Pp
j |�j|.
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Moreover, LASSO can also be thought of as solving this problem:

minimize
�

(
nX

i=1

⇣
yi � �0 �

pX

j=1

�jxij

⌘2
)

subject to
pX

j=1

|�j|  t for some t. (6)

Here we also constrain by some t but instead of the circle defined in 4 when p = 2, we
have a diamond now defined by |�1|+ |�2|  t.

Notice the similarities between Ridge regression and LASSO regression but due to the
`1 penalty, LASSO shrinks the coe�cients towards 0 and can even make some be 0 when
� is large enough.

Figure 3: Error and constraint function contours for LASSO (left) and Ridge (right).
Shaded blue shapes represent the constraints |�1| + |�2|  t and �2

1 + �2
2  t respectively.

Red ellipses represent the contours of the residual sum of squares (source James et al.
2021).

Figure 3 demonstrates how LASSO (left) is able to shrink coe�cients to zero while
Ridge (right) does not in the two-dimensional case. �̂ here marks the ordinary least squares
estimates and the red ellipses represent contours of the residual sum of squares. Every point
in each ellipse has the same residual sum of squares value and as the ellipses get larger, the
value gets larger. Moreover, the blue diamond and circle represent the constraint functions
|�1| + |�2|  t and �2

1 + �2
2  t respectively. The point at which the red lines and blue

shape touches is the LASSO and Ridge regression coe�cient estimates (hence minimizing
the residual sum of squares while constraining based o↵ some criteria). Notice that because
the LASSO has a diamond shape, the red lines will often touch the diamond on an axis,
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Figure 4: LASSO regression coe�cient estimates for mtcars as function of Log(�). The
numbers across the top are the number of nonzero coe�cient estimates.

and when this occurs, one of the coe�cients will equal to 0. While James et al. (2021)
explains this in the 2-dimensional case, this idea can be extended to higher dimensions.

2.2.1 Example of Variable Selection

Recall our example of shrinkage in 2.1.1. We can use LASSO instead of Ridge to see how
LASSO performs variable selection.

Figure 4 shows how the number of coe�cients go from all 10 predictors to 9 then to
only three as � gets increasingly large.

2.2.2 Advantages of LASSO Regression

LASSO’s capability to make the coe�cients be 0 is a form of variable selection which makes
the model sparser and thus more interpretable. On top of variable selection, LASSO has
similar advantages that Ridge regression does over ordinary least squares such as shrinkage,
generalizability, addressing multicollinearity, and reducing variance.

2.2.3 Disadvantages of LASSO Regression

While LASSO regression solves the issue of model interpretability, it still su↵ers from some
limitations as noted by Zou & Hastie (2005). They consider three scenarios to point out
limitations with LASSO regression.
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1. When p > n, the LASSO selects at most n variables before the model saturates (the
model fits the data perfectly due to the number of predictors matching the number of
observations). So the model is bounded by the number of observations in our data.

2. Given group of variables with high pairwise correlations, the LASSO tends to select
only one variable from the group without caring which one is selected.

3. When n > p, if there are correlations between predictors, Ridge regression often
performs better than LASSO regression.

2.3 Naive Elastic Net

Elastic Net, the “love child” of Ridge and LASSO regression overcomes many of the issues
found in Ridge or LASSO regression and was first proposed by Zou & Hastie (2005). They
first introduced the Naive Elastic Net which is defined for any fixed non-negative �1, �2 as:

RSS + �1

pX

j=1

�2
j + �2

pX

j=1

|�j| =
nX

i=1

(yi � �0 �
pX

j=1

�ixij)
2 + �1

pX

j=1

|�2
j |+ �2

pX

j=1

|�j| (7)

Like the others, we can also view it as :

minimize
�

(
nX

i=1

⇣
yi��0�

pX

j=1

�jxij

⌘2
)

subject to (1�↵)
pX

j=1

|�j|+↵
pX

j=1

|�2
j |  t for some t.

(8)
where we let ↵ = �2

�1+�2
. Zou & Hastie (2005) calls the function (1 � ↵)

Pp
j=1 |�j| +

↵
Pp

j=1 |�2
j | the “elastic net penalty” which is a convex combination of the Ridge and

LASSO penalty.
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Figure 5: Ridge contour (dotted and dashed circle), LASSO contour (dashed diamond),
Elastic Net contour (solid line) (source Zou & Hastie 2005).

In Figure 5, we see the constraints of all three methods in 2-dimensions. Notice the naive
Elastic Net at ↵ = 0.5 is in between the constraints of Ridge and LASSO and depending
on ↵, can become the Ridge (↵ = 1) or the LASSO (↵ = 0) constraint.

2.3.1 Elastic Net

Zou & Hastie (2005) point out that the naive Elastic Net estimator does not perform well
unless it is very close to either the Ridge regression or the LASSO regression. Because of
this, they propose a rescaled version of the naive Elastic Net:

�̂(elastic net) = (1 + �2)�̂(naive elastic net) (9)

2.3.2 Advantages of Elastic Net Regression

In addition to the advantages mentioned above from the other regularization methods,
Elastic Net address the issues with LASSO mentioned above. Elastic Net regularization is
able to select groups of correlated variables to overcome LASSO’s issue of only selecting
one variable from a group of highly correlated variables while also shrinking coe�cient
estimates simultaneously.
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2.3.3 Disadvantages of Elastic Net Regression

Due to Elastic Net having two � rather than just one �, it becomes more computationally
burdensome than LASSO or Ridge. A grid of values for �2 are chosen, then for each �2,
cross-validation techniques are chosen to choose the optimal �1 value.

2.4 Selecting the Tuning Parameter

For all three methods, we need to select an appropriate tuning parameter �. Since it is not
done automatically, we can turn to cross-validation to solve this issue. Cross-validation
as a technique involves creating equal sized groups where one group is left out at every
iteration as the test dataset while the model is fitted on the other groups. This is done so
that each group has a chance to be the testing data. We can use this technique here and
choose a grid of � values and find the cross validation mean squared error of each � value.
After cross-validation, we then select the � that gave us the smallest mean squared error.

3 A Simulation Study

We now perform two simulation studies using the lassoenet package. This package utilizes
the glmnet package created by Friedman et al. (2010) to perform simulations comparing the
three methods on simulated data sets. These simulations were performed using R version
4.1.1 and RStudio version 1.4.1717. Here we will show how these models compare in
terms of predictive performance using the test mean squared error. To do this, we utilize
the simulation.collinear() function from the lassoenet package. This function has 10
parameters that we can alter listed in Table 3.

We will simulate 2 data sets by altering various arguments. We keep n.resample
= 100, n = 100, matrix.option = 1, collinear = 0.5, sig = 2, split.prop = 0.8,
step.alpha = 0.2, option = 1, and parallel = FALSE constant throughout.

• First Simulation: We simulated 100 datasets with 10 predictors with true coe�cients:
� = (1, 2, 0, 0, 2, 0, 0, 0, 2, 1)

– For this dataset, we wanted to see how the methods would perform when the
true coe�cient values are only on a select few and there are less predictors than
observations.

• Second Simulation: We simulated 100 datasets with 200 predictors where �i = 0.7
for all 200 predictors.

– For this dataset, we wanted to see how the methods would perform when the true
coe�cient values are constant for all predictors and there are more predictors
than observations.

Table 4 displays the mean squared errors for each of the methods in each simulation.
In simulation 1 where there a few relevant predictors, the LASSO and Elastic Net were
comparable and had lower mean squared errors than the Ridge regression. In simulation
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Table 3: Options for simulation.collinear()
Argument Description
n.resample The number of simulation datasets to

generate
n number of rows in each dataset
coe↵ A vector of true coe�cients
matrix.option 1: Use an Exchangeable correlation

matrix to simulate the predictors 2: Use
an Autoregressive correlation matrix to
simulate the predictors

collinear The correlation levels within the
matrix.option

sig Model variance
split.prop Specifying training proportion. Testing

proportion will be 1 - the training
proportion.

step.alpha The step size of the alpha grid for the
Elastic Net

option 1: split the dataset according to
c(split.prop, 1 - split.prop) 2: Use the
whole dataset. Note: When option = 2,
the split.prop will be ignored

parallel Parallelization

Table 4: Mean squared error of simulations

Simulation 1 Simulation 2
LASSO 5.38 11.30
Elastic Net 5.31 8.85
Ridge 5.45 5.73

2, we see LASSO had the highest mean squared error with Elastic Net not too far behind,
but Ridge performed quite well here when all the predictors were relevant.

4 Real World - Milk Production

We now demonstrate these methods on a real world data set from Seo et al. (2016). They
conducted RNA-sequence analysis for milk yield associated genes in cows, in particular
Holstein cows. Twenty-one RNA-sequence samples were obtained from the somatic cells of
Holsteins’ milk and over 13,000 genes were measured as well as milk yield which was mea-
sured as “normalized milk yield derived from the Korea Type-Production Index (KTPI)”
Seo et al. (2016). More information on the data can be found here. We also refer the inter-
ested reader to their paper where they apply di↵erent regression methods to their question

12

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60575


8 9 10 11 12

80
00

0
14

00
00

Log(λ)

M
ea

n−
Sq

ua
re

d 
Er

ro
r 12312 12312 12312 12312

2 3 4 5

4e
+0

4
1e

+0
5

Log(λ)

M
ea

n−
Sq

ua
re

d 
Er

ro
r 21 21 17 15 13 9 8 6 3

2 3 4 5 6

50
00

0

Log(λ)

M
ea

n−
Sq

ua
re

d 
Er

ro
r 44 44 44 23 18 16 9 4

Figure 6: Mean squared errors for Ridge (top left), LASSO (top right), Elastic Net (bottom
left).

of interest.
In our case, however, we apply Ridge, LASSO, and Elastic Net regression using all

sampled genes, milk parity and lactation period to predict milk yield. Moreover, we also
want to see which genes are selected by LASSO and Elastic Net (↵ = 0.5) as important
predictors in milk production. We perform 7-fold cross-validation for the 21 observations
to select tuning parameters and fit the model. We compare the performance of them based
on the cross-validated mean squared error.

Table 5: Mean squared errors from predicting milk production

Method Lambda MSE
Ridge 147665.52 85800.81
Lasso 3.74 48252.71
Elastic Net 111.19 56239.43

Looking at Table 5, we see that LASSO performs the best in terms of mean squared error
at 48252.71 when � = 3.74 and Elastic Net lags just slightly behind while Ridge performs
the worst at 85800.81 when � = 147665.52. Figure 6 shows how the mean squared error
changes as Log(�) changes as well as the number of nonzero coe�cient estimates.

Recall that Ridge regression performs better when all predictors influence the response
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variable, but because we had over 13,000 genes, LASSO and Elastic Net seems to be more
valuable in identifying those that had an impact thus creating a more interpretable and
parsimonious model.

Table 6: Selected Variables

LASSO Elastic Net
BPIFC BPIFC
CCL14 CACNG2
CYP2E1 FBXO36
DCST1 GALNTL1
FBXO36 GSTA3
GALNTL1 LRRC3
GSTA3 METRN
HS3ST2 MIR2397
IP6K3 PBX1
KLKB1 PCDHGB4
KPNA7 PFN2
METRN PLIN2
MIR2397 PRMT8
PBX1 PTPRU
PCDHGB4 SARDH
PFN3 SLC4A1
PLIN2 NA
PRMT8 NA
PTPRU NA
SARDH NA
STYXL1 NA

Since Ridge regression does not perform variable selection, we turn our attention to the
variables selected for LASSO and Elastic Net instead and see how they compare. LASSO
regression selected 21 genes while Elastic Net selected 16 genes. Those genes are listed in
Table 6.

5 Discussion

We caution the reader when making comparisons between our results and the paper from
which this dataset was obtained. We utilized this dataset because of its high dimensionality
in the real world which allowed us to show the advantages of these various penalized
regression methods as alternatives to the ordinary least squares method which many of
us are accustomed to. Moreover, we did not perform any sort of hypothesis testing here.
We prioritized predictive accuracy and model interpretability over inference. However,
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statisticians have proposed various significance tests specific for these methods such as
Lockhart et al. (2014) and Cule et al. (2011) and this as a topic deserves further exploration.

Using simulated data with various characteristics such as high dimensionality, we can
see that there is no clear winner when it comes to minimizing the mean squared error.
Depending on the data set, the predictive accuracy of each method can change quite dras-
tically.

In general, we can expect LASSO and Elastic Net to perform better when there are
a small group of relevant predictors such as in the first simulation while Ridge regression
might take the win when there are many relevant predictors and the number of predictors
is much larger than the number of observations such as in simulation two. For the milk
yield data, we had 21 samples with over 13,000 predictors and we saw that Elastic Net
and LASSO performed the best while Ridge had a much larger mean squared error. This
could be the case because only few genes were relevant as milk production related genes
while many of them were unrelated. Knowing when to use these three methods takes
careful consideration of the dimensionality, the relevancy of predictors, multicollinearity and
the bias-variance tradeo↵. However, knowing that these tools are available as alternative
methods to ordinary least squares will certainly prove useful for any statistician.
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