
The Lineup Protocol: Using Simulation to Improve Model
Diagnostics in Binary Logistic Regression

Visual and numeric diagnostics for logistic regression frequently work with group-level data instead of
individual observations. This leads to diagnostics that are well defined for binomial logistic regression
where data are grouped but that can break down in binary logistic regression where there are no
groups. This article explores how simulation-based diagnostics can be applied to binary logistic
regression to remedy this problem. In particular, we conduct a study to estimate the power of the
lineup protocol, a particular simulation-based diagnostic. We discover that the lineup protocol is
more powerful than a goodness-of-fit test when data violate the independence assumption of logistic
regression but less powerful when data violate the log-odds linearity assumption.
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1 Introduction

Model checking is a vital step in any statistical analysis. When fitting a model, the analyst must
ensure that 1) the data follow all assumptions of a given model and that 2) the model strongly
captures characteristics of the data. In most cases, this is done using a variety of graphical and
numerical diagnostic tests that can be classified into two categories: exploratory data analysis and
model diagnostics. Exploratory data analysis occurs before a model has been fit to the data and
typically checks to ensure that assumptions of a proposed model are fulfilled by the available data,
the first goal of the analyst. Model diagnostics address the second goal and ensure that the proposed
model properly describes the characteristics of the data [1].

Both exploratory data analysis and model diagnostics have pitfalls that can be harmful to a
statistical analysis. Exploratory data analysis is often performed using graphical representations of
the available data. However, we as humans are exceptional at picking patterns out of randomness
which frequently leads to the over-interpretation of visual plots. Model diagnostics often have the
opposite problem. If we only consider numeric test statistics and p-values, it is easy to overlook
visually obvious model violations. This can lead to incorrect inferences made from a model that is
poorly fit to the data [1].

This article focuses on both exploratory data analysis and model diagnostics for logistic regression
with a binary response variable. The binary logistic regression model is not considered a particularly
complicated model and only assumes independence of observations and that the log-odds are a linear
function. Additionally, visualizing binary data can often be frustrating for an analyst as all values
take either a 0 or 1, causing many points to appear stacked on top of one another. This creates a
temptation to cut corners when working with logistic models and can lead to incorrectly specified
models. For this purpose of this article, this frustration motivates the research for new diagnostic
techniques for logistic regression that are easy to use and powerful diagnostic tools.

As we continue our discussion of simulation-based diagnostics in binary logistic regression, we
review the model formulation and classical diagnostic techniques used in model checking in Sections
1 and 2. Then in Section 3, we introduce simulation-based model checking techniques proposed by
Gelman (2004) [4]. This article focuses on one such diagnostic, the lineup protocol, first described
by Buja et al. (2009) [1]. We run a simulation study, outlined in Section 4, to compare the power of
the lineup protocol at detecting logistic model violations to that of a goodness-of-fit test, a classical
diagnostic test. The results of the study are presented in Sections 5 and 6, and Section 7 discusses
possible direction for future research and gives recommendations for model checking in binary logistic
regression.

1.1 The Lineup Protocol

The lineup protocol combines the visual nature of exploratory data analysis with the more formal
hypothesis testing seen when diagnosing the fit of a model. In a visual exploration of data, the analyst
looks at a plot containing the data set y and considers if there are any unusual attributes. While
rarely formalized, we can think of the analyst comparing y to many many unspoken hypotheses
about what "good" or "normal" data should look like. In the case of linear regression, if the analyst
discovers that the data are skewed, they are rejecting the null hypothesis of symmetry or normality.
If they note that there is a linear relation between an explanatory variable and the response, they
are rejecting the null hypothesis of independence.
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We can frame these same statements about normality and independence in terms of quantitative
testing. Let T (i)(y) be a test statistic about the data y, where i is a feature of the data such as
normality, outliers, sparseness, etc.. We can then simulate replicate data sets y⇤ that follow the
null hypothesis for a given test statistic and compare our observed test statistic, T (i)(y), to the
distribution of simulated test statistics T (i)(y⇤). This method of comparing the observed data to
data simulated from the fitted model using test statistics is a common form of quantitative testing
and is discussed in both by Buja et al. (2009) [1] and Gelman (2004) [2]. When an analyst makes
discoveries looking at a visual representation of the data y, they are noting for which test statistics
T (i)(y) the null hypothesis is rejected in favor of some alternative. If I is the set of all features of
the data such that any i 2 I, then the analyst is considering all possible test statistics T (i)(y) with
i 2 I at once when they make discoveries about a plot [1].

Because it considers multiple test statistics at once, visual inference is more vague in its specifica-
tion of null and alternative hypotheses than quantitative testing. This generality can be useful, as it
often detects obvious model violations that might have been overlooked when considering individual
test statistics in quantitative testing. However, as mentioned in the introduction, it can lead to
over-interpretation of data and suggest violations that do not actual exist [1]. Over-interpretation
occurs most frequently when we compare a visual diagnostic to an implicit rather than explicit
reference distribution. For example, consider classical linear regression where we look at a residual
plot. We assume that residuals are independently distributed around zero in our minds, but don’t
actually have a plot of independent residuals distributed around zero in front of us to compare the
observed residuals to. The lineup protocol provides the analyst with these reference distributions
explicitly [1].

Assume that for data y, we have fit a model and have created a graphical visualization of the
data. We will refer to this visual as the true plot. The lineup protocol simulates n null data sets
according to the fitted model and, in the same manner as the true plot was made, creates n null
plots. The specifics for simulating null data sets according to the model are discussed in Section 3.
We use the terms null data and null plot because simulated data follow all assumptions of the fitted
model. Thus the null hypothesis is true for the simulated data with any conceivable test statistic.
The true plot and the n null plots are displayed next to one another, and a viewer is tasked with
trying to pick the true plot out from the nulls. If the true plot stands out from the null plots, then
it means that the true data is not consistent with the null hypothesis. Typically, we choose n = 19
so that there are 20 plots in all. We can think of the probability that the viewer picks the true
plot purely at random as ⇡ = 1/20 = 0.05. Thus, if the viewer picks the true plot, we can assign
a p-value of 0.05 to the discovery. Giving the lineup to K independent viewers can result in even
smaller p-values. If we have k out of K independent observers choose the true plot, then the p-value
is given by the probability P (X � k) with X ⇠ Binom(K,⇡ = 1/20) [1].

An example of the lineup protocol is shown in Figure 1, where the true plot is located in position
(23 + 3). Note that throughout this report, we write the true plot number as an expression so that
the reader is able to view and evaluate lineups on their own before knowing the true plot. Each
panel contains a QQ-plot that graphs the observed sample quantiles against the theoretical quantiles
from a standard normal distribution. If the sample comes from the standard normal distribution, it
should have a slope of approximately 1 when plotted against the theoretical normal quantiles. For
this lineup, the null hypothesis is that the data are normally distributed, and thus all of the null
data sets are simulated from the standard normal distribution. If the viewer correctly chooses plot
(23 + 3) from the lineup, then we can reject the null hypothesis and say with 95% confidence that
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the sample is not from a standard normal distribution. This statement is true, as the sample comes
from a t-distribution with df = 3. The lineup protocol paired with QQ-plots has been shown to be
more powerful then leading quantitative tests at diagnosing non-normality with t-distributions [6]
which raises the question of where else it might be applicable.

Figure 1: An example lineup of QQ-plots. The true plot
is located in panel (23 + 3).

Because the lineup protocol is a form
of visual inference, its hypotheses are of-
ten more vague than quantitative tests.
Hence, it can be useful for the viewer
to describe their reasons for choosing a
panel. In terms of hypothesis testing,
these reasons are equivalent to asking
which test statistics resulted in the rejec-
tion of the model. In Figure 1, the viewer
might picked plot (23 + 3) because the
left and right sides of the plot were dif-
ferent from the others. This corresponds
to normality being violated in both tails
of the distribution and would point to
the t-distribution rather than other non-
standard-normal distributions [1]. This
article focuses on the lineup protocol ap-
plied to binary logistic regression. There-
fore, it is essential to have a firm un-
derstanding of the logistic model as well
as common visualizations and diagnostics
for binary data.

1.2 Logistic Model Formulation

Binary logistic regression is the most common way to model binary data where observations
are independent Bernoulli trials. Because the response only takes values of 0 and 1, we use a
generalized linear model with link function logit�1(x) = ex

1+ex . The inverse-logit function transforms
the continuous combination of linear predictors to the interval (0,1). Therefore, binary logistic
regression models the probability that a trial is a success given its linear combination of explanatory
variables.

P (yi = 1) = logit�1(�1X1i + ...+ �pXpi) (1)

Equivalently, the model can be expressed in two parts with logit(x) = log(x/(1� x)).

P (yi = 1) = ⇡i (2)
logit(⇡i) = �1X1i + ...+ �pXpi (3)

Because the inverse-logit function is curved, the response P (yi = 1) is not linearly related to its
predictors. A change of n units in an explanatory variable xi could be associated with varying
amounts of change in P (yi = 1) depending on the initial value of xi [4].
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Because the probability of success is not linearly related to the predictors, it is often easier to talk
about the log-odds of success in logistic regression. Note that the odds of success for an observation
⇡i/(1� ⇡i) are in the same form as logit(⇡i) as defined above. Thus, logistic regression coefficients
can be interpreted as the log-odds ratio of success for an observation.

log
⇣P (yi = 1|xi)
P (yi = 0|xi)

⌘
= �1X1i + ...+ �pXpi (4)

This linear relationship between predictors and log-odds allows for easier interpretations of logistic
regression coefficients and is a fundamental assumption of the logistic model [4].

1.3 Model Assumptions

The two assumptions of binary logistic regression are log-odds linearity for explanatory variables
and independence of observations. As shown above, the use of the inverse-logit link function implies
that all predictors are linearly related to the log-odds of the response. This assumption can be
violated if explanatory variables are missing necessary transformations such as when significant
quadratic terms are omitted from a model.

The second assumption of binary logistic regression is independence of observations which can
often be more difficult to detect than non-linearity. Independence of observations is violated any
time that knowing the outcome of one observation gives information about the outcome of another
after conditioning on covariates. Independence is most commonly violated when observations are
nested in groups. For example, if we were modeling the probability that an individual voted for
a certain political candidate, it might be the case people who live in the same house have similar
voting preferences. Thus, knowing how one family member voted would give information as to the
vote of another family member, violating independence.

Often times when data are nested in groups, the best option is to use binomial logistic regression,
in which we take a group to be an observation and use only group level predictors to model the
proportion of success for a given group. Because data are only correlated within groups, the groups
themselves are independent and satisfy the assumption. Binomial logistic regression has the added
benefit that the response variable is now a proportion instead of the binary 0 or 1. This makes
diagnostic plots more similar to classical regression and easier to interpret. However, binomial
logistic regression uses group-level averages for explanatory variables, and thus does not utilize all
information contained in the data if values vary within a group.

An alternative to binomial logistic regression is to fit a hierarchical logistic regression model to
the binary data that includes random-effects for groups. This approach allows us to incorporate
both observation-level and group-level predictors and allows explanatory variables to be correlated
differently with different groups. Let each observation i belong to some group j. A hierarchical
model that includes a random-intercept for each group is given by

P (yij = 1) = logit�1(↵ij + �1X1ij + ...+ �pXpij) (5)
↵ij = ↵0 + uj (6)

with ui ⇠ N(0,�2). Here, ↵0 is the fixed-effect intercept term, which is combined with a group
random-intercept, uj , that comes from a normal distribution with variance �2. This model can
account for correlation within groups, allowing inferences to be made about the relationship between
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explanatory variables and the response [4]. In the following sections, we examine the problems that
exist with classical diagnostics in binary logistic regression and how we can begin to solve these
problems using simulation-based diagnostics.

2 Classical Diagnostics in Logistic Regression

Many diagnostics for binary logistic regression work by binning data into groups in order to
approximate the group structure of binomial logistic regression. Within groups, the proportion of
success and average value for exploratory variables are calculated and used in diagnostics designed
for binomial logistic regression. Binning data is generally an effective diagnostic technique, but can
sometimes create issues that need to be carefully considered.

2.1 Calculating Residuals

In logistic regression, the two most commonly used types of residuals are Pearson residuals and
deviance residuals. Pearson residuals are calculated by subtracting the predicted probability of
success from the observed outcome and standardizing by the standard deviation of each observation.
The variance for an observation with a binary response is given by ⇡̂i(1�⇡̂i) where ⇡̂i is the estimated
probability of success [4] [10]. Hence, the Pearson residuals are given by

Pearson residuali =
yi � ⇡̂ip
⇡̂i(1� ⇡̂i)

. (7)

The second type of residual is the deviance residual, which measures the individual contribution
of an observation to the overall model deviance. The deviance of a model is given by negative two
times the log-likelihood function up to an additive constant. Written explicitly,

Deviance residuali = sign(yi � ⇡̂i) ⇤
r

2
n
yi log

⇣ yi
⇡̂i

⌘
+ (1� yi) log

⇣1� yi
1� ⇡̂i

⌘o
. (8)

Deviance is used in logistic regression rather than the sum of squared residuals because the logistic
model parameters are estimated using maximum likelihood instead of least squares. Therefore, least
squares error is no longer the optimal measure of model error. This article uses Pearson residuals
because they are easier to interpret than deviance residuals. Additionally, in Section 2.4 we discuss
some difficulties in using deviance residuals for simulation when data are binary. The later half of the
paper deals exclusively with simulation-based diagnostics, and so Pearson residuals are preferred [10].

2.2 Residual Plots

Because responses are binary, residuals in binary logistic regression can only take two values
given their explanatory variables. Say that the predicted probability of success for an observation is
0.6 based on the model. The observation’s outcome can only be 1 or 0, and so the Pearson residual
will be either (1 � 0.6)/

p
0.6 ⇤ 0.4 = 0.816 or (0 � 0.6)/

p
0.6 ⇤ 0.4 = �1.225. An example residual

plot showing Pearson residuals against predicted probability for a correctly specified logistic model
is shown on the left of Figure 2. The structure induced by the binary data makes the residual plot
difficult to interpret [4].
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Figure 2: A comparison of a residual plot and binned residual plot for the same set of data.

To work around this problem, we use a binned residual plot. A binned residual plot approximates
the group structure seen in binomial logistic regression by dividing observations into groups (bins)
based on the value of an explanatory variable. The average residual for observations in a bin is
plotted against the average value of the predictor used to make the bin. This is illustrated on the
right side of Figure 2 which shows a binned residual plot with bins created from the explanatory
variable x1. Additionally, the light grey lines indicate a 95% theoretical error bound for average
binned-residuals. This error bound is approximated as two times the standard error of each bin,
2
p

[⇡j(1� ⇡j)]/[mj(⇡̂j(1� ⇡̂j))] where mj is the number of observations in the jth bin, ⇡j is the
observed proportion of successes in bin j, and ⇡̂j is the mean predicted probability of success for
observations in bin j [4].

For a binned residual plot, it is important to have both a sufficient number of observations per
bin so that the averaged residuals are not too noisy as well as sufficient number of bins so that the
viewer can easily assess the structure of the residuals (i.e. curvature, outliers). In the remainder
of this article, the number of bins is determined by taking the square root of the total number
of observations unless otherwise specified. This is generally a good compromise between the two
objectives and performs well for most sample sizes.

2.3 Empirical Logit Plots

Empirical logit plots are used to diagnose log-odds linearity for logistic regression. As with
binned residual plots, observations are binned according to values of an explanatory variable. For
each bin, the empirical logit is calculated by taking logit(Yj/mj) where Yj is the total number of
successes in bin j and mj is the number of observations in bin j. Note that from Section 1.2, we
showed that this empirical logit is equivalent to the log-odds for group j. The group log-odds are
plotted against the average value of the binning variable. Figure 3 shows an example empirical logit
plot for a correctly specified model binned using explanatory variable x1. In logistic regression,
predictors are linearly related to log-odds (the empirical logit); therefore a non-linear relationship
in the empirical logit plot often indicates a violation in the linearity assumption [10].
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2.4 Goodness-of-fit Test

Figure 3: An empirical logit plot.

In binomial logistic regression, when
there are replicate values for each explana-
tory variable in the model due to groups,
a common diagnostic technique is to use a
deviance goodness-of-fit test on the model.
For a set of data, let the saturated model
be a model in which there are as many es-
timated parameters as observations so that
the model fits perfectly to the data. The
deviance goodness-of-fit test compares the
model of interest to the saturated model us-
ing the predicted proportion of success (from
the model of interest) and proportion of suc-
cess (from the saturated model). The test
uses the (n � p) additional parameters in
the saturated model to calculate the deviance
statistic (the sum of the squared deviance residuals from the model of interest) and gives a p-value in-
dicating if the fitted model adequately characterizes the sample. Equivalently, the deviance statistic
is defined as the log-likelihood of the fitted model minus the log-likelihood of the saturated model
multiplied by negative two. For binomial models with sufficiently large group sizes and a large
number of observations, the distribution of this deviance statistic is approximated by a chi-squared
distribution with (n� p) degrees of freedom [10].

The deviance goodness-of-fit test fails when the observations are binary instead of binomial.
Firstly, the chi-squared approximation of the deviance statistic assumes large group sizes, but binary
logistic regression has all group sizes equal to one (there are no groups). This implies that the
distribution of the deviance statistic cannot be approximated with the chi-squared distribution and
needs to be simulated. However, simulation also proves ineffective because the deviance statistic is
not pivotal in binary logistic regression. Because there are no replicate observations, the saturated
model has log-likelihood equal to zero. This causes the deviance to be centered at the log-likelihood
of the fitted model, which is in turn approximately equal to the likelihood of the true model.

Because deviance is not pivotal, it is not a valid option to use a deviance goodness-of-fit-test.
Instead we need to use the less common Pearson goodness-of-fit test. This test operates the same as
the deviance version but calculates a Pearson statistic equal to the sum of squared Pearson residuals
instead of the deviance statistic. The Pearson statistic is pivotal and thus can be simulated using
the techniques discussed in Section 3. Moving forward, any time a goodness-of-fit test is referenced
in this article, we refer to a Pearson goodness-of-fit test where the distribution of Pearson statistics
is simulated. Note that although a goodness-of-fit test exists for binary data, we must compute it
using simulation rather than the more familiar chi-squared approximation. Additionally, because
deviance is not pivotal, simulating a deviance goodness-of-fit test gives inflated p-values and wrongly
indicates that the fitted model is adequate. When using the goodness-of-fit test, the necessity for
simulation and potential for incorrect inference (if deviance residuals are used instead of Pearson)
are motivations for us to pursue alternative tests for general model misfits.

8



3 Simulation-Based Diagnostics for Logistic Regression

All of the visual diagnostic plots mentioned in Section 2 have implicit rather than explicit refer-
ence distributions. For a binned residual plot, we expect residuals to be independent and distributed
around zero. For an empirical logit plot, we expect a linear association between the log-odds and
explanatory variable. However, what does it look like for residuals to be distributed around zero?
And how much curvature in a logit plot can be attributed to randomness before we become suspi-
cious that an explanatory variable is non-linear? The diagnostics discussed in this section attempt to
answer these questions by simulating null data sets from the fitted model. Because the null sets come
from the fitted model, they follow all assumptions of the model. Thus, we can use them to create
explicit reference distributions for all of the visual diagnostics discussed above. Additionally, for any
test statistic, we can use the null data sets to create a distribution of null test statistics. Comparing
the observed test statistic to what would be expected under the model gives a simulated p-value for
any test statistic. Simulation thus has potential to improve both visual diagnostics and quantitative
tests for model checking. Note that the lineup protocol is an example of a simulation-based visual
diagnostic.

3.1 Simulating Null Distributions

There are many possible ways to simulate a null distribution, with the three main methods being
(i) conditional sampling, (ii) parametric bootstrap sampling, and (iii) Bayesian posterior predictive
sampling [1]. We use conditional sampling when the test statistic can be sampled directly given the
null hypothesis. The null data sets from the lineup in Figure 1 use this method. Because the null
hypothesis is that data come from a standard normal distribution, we simply simulate data from a
standard normal distribution. If the null hypothesis was more general, such as that the data were
normally distributed with variance �2, conditional sampling would not be appropriate because the
parameter �2 would need to be estimated. Another common example of conditional sampling is a
permutation distribution. When we have two samples, we can calculate a test statistic for every
possible permutation of observations within the two groups. In this case, we are simulating every
possible combination of observations without having to estimate any parameters [1].

Parametric bootstrap sampling and posterior predictive sampling are the Frequentist and Bayesian
approaches to simulating data from a fitted model, and mirror one another in methodology. Consider
the data set y which is used to estimate the parameters ✓ of a given model. We are interested in
sampling from a null distribution of data y⇤ that come from the specified model. In the Frequentist
setting, if the model parameters are estimated using maximum likelihood, then it makes sense to
sample a null distribution y⇤ from the distribution p(y | ✓̂). This process is known as parametric
bootstrap sampling and gives an approximate posterior predictive distribution [1]. The maximum
likelihood estimates for the parameters ✓̂ contain uncertainty that parametric bootstrap sampling
does not account for. In the Bayesian setting, we can skip the step of estimating ✓ and sample
directly from the posterior predictive distribution y⇤ | y using Monte Carlo approximation. If we
draw a single posterior sample of the estimated parameters ✓⇤ ⇠ p(✓ | y) and use this draw to take
a prediction from the likelihood, y⇤ | ✓⇤ ⇠ f(y | ✓⇤), then y⇤ follows the posterior predictive dis-
tribution [11]. Monte Carlo simulation repeats this process many times so that data are simulated
using different values for the model parameters. Because Bayesian posterior predictive sampling
propagates uncertainty about the model parameters, the variance of the posterior predictive distri-
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Figure 4: Visual diagnostics comparing observed binary data to null data simulated from the fitted
model using Bayesian posterior predictive sampling. On the left, data are binned by x1 values
and compared to null distributions. On the right, the true and null data sets are visualized with
smoothers on the same plot. The true data has a black curve, and null data sets have colored curves.

bution will always be greater than or equal to the variance of the posterior predictive distribution
approximated with parametric bootstrap sampling [11].

3.2 Logistic Regression - Visual Diagnostics

Gelman (2004) [2] argues that the most basic visual diagnostic for a model is a display of the
entire data set, compared against reference distributions of data simulated from the fitted model.
This is difficult in the case of binary logistic regression, as data take response values of 0 or 1 and are
clustered on top of one another and difficult to interpret. There are a couple ways to address this
issue. We could bin observations according to an explanatory variable x1 in the same manner that
we used for binned residual plots and empirical logit plots in Section 2. Then, instead of plotting
y against x1, we would be plotting a binned average of y (equivalently the binned probability of
success) against the average value for x1. Alternatively, we could plot the raw observations and use
a smoother to approximate the probability of success at a given value of x1. For either of these
approaches, we would then simulate null data from the model using either parametric bootstrap
sampling or Bayesian posterior predictive sampling in order to create reference distributions. These
reference distributions are what the data should like under the given model.

Figure 4 shows both of these approaches for a logistic model that is missing a significant squared
term for the explanatory variable x1. Note that in the binned data visualization shown on the left, it
makes sense to display the true plot and reference plots side by side, in a manner reminiscent of the
lineup protocol. Unlike the lineup protocol, the plot made using the true data is clearly identified.
Instead of trying to pick the true plot out from the nulls, the null plots are used as references for the
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true plot. In the display, it appears that the true plot has a larger average probability of success as
the median value of x1 increases compared to the null plots. This is indicative of the missing squared
term from the original model. The smoother approach is shown on the right of Figure 4. Because
lines are easier to distinguish from one another than points, we are able to utilize color and plot the
true and null data sets in the same display. The true plot has a bold black smoother while null plots
have thin smoothers of various colors. Note that for upper values of x1, the observed probability
of success is larger than in the null data sets, again hinting at the missing squared term for x1. It
should be noted that although the smoother approach is visually more difficult to interpret, it is
able to compare the true data set to 30 null sets at once while the binned approach only compares
the true data set to 3 null sets.

3.3 Logistic Regression - Quantitative Tests

The above visualizations are essentially looking at how the proportion of successes for y changes
in relation to an explanatory variable x1. While visualizations can be helpful in understanding how
the true data is different from what is expected given the model, they do not provide an indication of
if this difference is statistically significant. One general method for assessing statistical significance
is the lineup protocol. However, if an analyst has already started exploratory data analysis, they
are likely familiar with the data and are no longer an unbiased observer. When the lineup protocol
is not an option, posterior predictive checks are an alternative way to assess significance [2] [11].
A posterior predictive check calculates some collection of test statistics for the observed data set.
Then, those same test statistics are computed for null data simulated from the fitted model (typically
using posterior predictive sampling). These simulated test statistics create theoretical distributions
to which the observed test statistics can be compared. We then calculate a simulation-based p-value
by comparing the observed test statistics to the null distributions of test statistics.

It is important to choose a collection of test statistics according to a null and alternative hy-
pothesis. For example, suppose that we believe that data are not independent; rather, we believe
that data are correlated within some grouping variable. Here, the null hypothesis is that data are
independent, and the alternative is that data are correlated by groups. For these hypotheses, a
reasonable collection of test statistics would be to bin the data by the supposed grouping variable
and calculate the proportion of successes within each bin. If data are independent within groups,
the groups should not have any effect on the proportion of success. This example is illustrated in
Figure 5. Each panel represents one section of the grouping variable. We use the simulated null data
sets to calculate the collection of test statistics (the proportion of successes for each group). These
distributions of test statistics are expressed as histograms, and the true proportions of success for
each group are plotted as vertical lines [2]. The table below Figure 5 shows the p-value by group.
Because we are interested in both exceptionally high and exceptionally low values, any p-values less
than 0.025 or greater than 0.975 are deemed significant and highlighted in blue. This is equivalent
to a two-sided confidence interval. Note that 5 of the 12 groups had significant p-values. If the
model had no violations, we would expect these p-values to be uniformly distributed. Assuming
that these group p-values are independent, we calculate an overall p-value for our independence
assumption using a binomial distribution. Assuming that data are independent, p-values are uni-
formly distributed on (0,1) and hence each has probability of 0.05 for being significant. So we have
P (X � 5) with X ⇠ Binom(12, 0.05) is equal to 0.000183. Thus, we reject the null hypothesis that
data are independent in favor of the alternative that data are correlated among groups.
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Group 1 2 3 4 5 6 7 8 9 10 11 12
P-value 0.91 0.00 0.06 0.04 0.96 0.01 0.08 1.00 0.83 0.01 0.82 0.02

Figure 5: A visualization of the collection of test statistics used to determine if data are independent
or correlated among groups. Histograms are the distributions of null test statistics for a given group
with vertical lines indicating the observed test statistics. The table gives the p-values for each group,
with significant groups being highlighted in blue.

If we believe that the data violate a specific model assumption, this type of Bayesian posterior
predictive check gives useful insight into the data, even if the model is fit in the Frequentist setting.
However, this insight is completely dependent on the types of test statistics that we calculate. If we
had binned the data by the value of x1 instead of using the underlying group structure, we would
not have found any significant model violation. This points back to the issues with quantitative
testing discussed in Section 1. Quantitative testing is only as powerful as the test statistics that we
choose to calculate. The lineup protocol can be seen as compromise between visual and quantitative
diagnostics. On the one hand, the lineup protocol provides a quantitative p-value that we can
interpret as significance, but at the same time, the reason for choosing a plot provides insight as to
the how an assumption is violated.

The remainder of the article focuses on the effectiveness of the lineup protocol in binary logistic
regression. In Section 5, we compare the power of the lineup protocol to the power of a Pearson
goodness-of-fit test, using a power study introduced in Section 4. Then, in Section 6, we compare
the power of lineup designs that display data using different types of diagnostic plots.

4 Lineup Protocol Power Study for Binary Logistic Regression

The power study considers the effectiveness of the lineup protocol for different sample sizes,
different types of model violations, and using different types of diagnostic plots. As mentioned in
Section 2, many classical diagnostics exist for logistic regression. However, there are a handful of
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situations where these diagnostic plots can be difficult to interpret and where quantitative tests
begin to lose reliability. One such situation is when there is a small sample size relative to the
number of parameters being estimated in the logistic model. Especially in binary logistic regression,
small sample sizes can lead to difficulties when binning observations. Smaller sample sizes can cause
either an insufficient number of observations per group so that the binned averages are noisy, or too
few groups overall so that it is difficult to detect trends between bins. We are interested in instances
where the lineup protocol might outperform classical quantitative tests, and thus the study focuses
on data with small sample sizes. Specifically, we consider data that have sample sizes n 2 {150, 250}.

Recall from Section 1 that the two assumptions of binary logistic regression are log-odds linearity
and independence of observations. Thus, we will create lineups for data that violate these assump-
tions to varying degrees. The study investigates six unique types of model violation detailed below.
All models are fit under the assumption that a single explanatory variable x1 is linearly related to
the log-odds of success for the response variable y and that all observations are independent. Thus
the fitted model is given by

P (yi = 1) = logit�1(↵+ �1x1i). (9)

Two of the model violations used in the study address non-linearity of log-odds due to a missing
squared term for the variable x1, three address correlation of observations due to a group random-
intercept term not captured by the model, and one serves as a control where data follow all assump-
tions of binary logistic regression and there are no model violations.

Violation 0 No violation: Observations are independent and x1 is linearly related to the
log-odds of y. The model is correctly specified.

Violation 1 Severe Non-linearity: Observations are independent, but the log-odds of y are
correlated with (x1)2 rather than x1. The true � coefficient for the (x1)2 term in the
model is large.

Violation 2 Mild Non-linearity: The situation is identical to Violation 1, but the true �
coefficient for the (x1)2 term in the model is half that of in Violation 1.

Violation 3 Severe Group Effects: The variable x1 is linearly related to the log-odds of y,
but observations are not independent. Observations are randomly assigned to b

p
nc

groups with replacement. Each group has a random intercept that is normally
distributed around zero with variance �2.

Violation 4 Mild Group Effects: The situation is identical to Violation 3, but the random
intercepts are normally distributed around zero with variance �2/2.

Violation 5 Severe Group Effects, Few Observations per Group: The situation is
identical to Violation 3, but there are b

p
nc ⇤ 2 total groups.

Finally, the simulation study creates lineups using three types of visual diagnostics. The plots
are shown left to right in Figure 6. The first visual diagnostic is a simple binned residual plot
(BR), the second is a binned residual plot that includes 95% error bounds (BR95), and the third
is an empirical logit plot (EL). Lineups are created using different visual diagnostics to assess if
lineups made with certain plot types perform better with certain model violations. For example,
in exploratory data analysis, the empirical logit plot’s primary purpose is to diagnose linearity
violations for an explanatory variable. Thus, we might expect lineups that use empirical logit plots
to be more effective at detecting linearity violations than independence violations. We include
binned residual plots with and without a 95% error bar because the approximation method used
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Figure 6: The three types of diagnostic plots used in the simulation study.

to calculated the error bars is less reliable at smaller sample sizes. If error bars are sporadic at
small sample sizes, they might distract the viewer from the focus of the plot - the binned residual.
Note that when we assess violations of independence due to group correlation, we bin observations
by the suspected group variable instead of binning by the explanatory variable value. Because the
alternative hypothesis is that data are correlated in groups, we need to provide a visual that clearly
differentiates between groups. In this case, we can think of bins for data being given explicitly, just
as they are in binomial logistic regression. All lineups for the study are created using the R package
nulllabor as recommended by Buja et. al. (2009) [1].

The simulation study considers all possible combinations of sample size and violation type. We
draw 2 samples from each combination of the 2 sample sizes and 6 violations for a total of 24 samples.
These samples act as the true data in the lineups. For each true data sample, 19 null data sets are
simulated using parametric bootstrap sampling according to the fitted model described above. We
simulate 2 sets of null data for each sample for a total of 48 lineup data sets. Using the 48 lineup
data sets, we create a lineup using each of the 3 visual diagnostics. This comes out to a total of
48 ⇤ 3 = 144 total lineups.

Using the online survey recruitment platform, Prolific [9], 361 independent viewers were recruited
and asked to view 12 lineups each. Participants randomly evaluated lineups such that each partic-
ipant saw i) a true sample no more than once, ii) 2 lineups from each violation type, iii) 6 lineups
from each sample size, and iv) 4 lineups using each type of visual diagnostic. For each lineup, par-
ticipants were asked 1) if they believe that a plot is different from the others, 2) which plot is the
most different from the others, and 3) the reason for their choice (from a list of options).

We expect participants to perform better on lineups in which data severely violate an assumption
of the model, rather than data which mildly violate a model assumption. Formalizing this, we
expect participants to pick the true plot more frequently in violation 1 than violation 2, and more
frequently in violation 3 than violation 4. Violation 5 is unique because it examines the trade-off
between observations per bin and total number of bins. We expect that in violation 5, the reduced
number of observations per bins will cause the average binned residuals to be more sporadic in both
the true and null plots and cause participants to have a harder time choosing the true plot compared
to violation 3. Finally, we expect that participants will not be able to pick out the true data in
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violation 0 because the model is correctly specified. Additionally, we expect that increasing the
sample size will always increase performance on a lineup because there are more total bins as well
as more observations per bin, reducing the overall variability.

The practice of recruiting participants to view lineups remotely is well documented, typically
through the online recruitment platform Amazon MTurk [5] [6] [7]. The current study presents
Prolific as a more diverse and ethical alternative to MTurk. In Peer et al. (2017) [8], data collected
using Prolific was shown to be of equal quality to data collected with MTurk. Additionally, Prolific
requires an higher wage for its workers than MTurk, takes a smaller commission this wage, and has
a larger active participant pool than MTurk [9]. To ensure that participants were completing the
survey to the best of their ability, screening questions were inserted randomly through the survey
and any responses submitted in under 3 minutes were removed from the study. Additionally, all
participants had at least a high school diploma, had participated in at least 10 other studies on
Prolific, and had an approval rate over 75% for these previous studies.

4.1 Preliminary Results

Figure 7 shows the proportion of viewers that correctly chose the true plot for each lineup. Each
point represents one of the 144 total lineups, and each line connects lineups generated with the
same true data set and same null data sets. Panels correspond to the situation in which data were
simulated, a combination of sample size and violation type. Within each panel, lines of the same
color and points of the same shape contain the same true data set. For each true set of data, the
study considered two null data sets, and thus there are two lines of each color within a panel. Finally,
a filled point indicates that the null hypothesis (that the data are independent or that the data are
log-odds linear) was rejected with a p-value less than ↵ = 0.05.

4.2 Effect of Simulation Parameters

In our discussion, we call a lineup significant if it has a significant p-value less than 0.05 and
resulted in the rejection of the null hypothesis. Note that generally, lineups that share the same
true data are closer together, especially when they use the same visual diagnostic. The proportion
of viewers to choose the correct plot for a lineup varies largely depending on the type of visual
diagnostic used; however, if a lineup is significant, other lineups with the same true and null data
that use different visual diagnostics are also frequently significant. In regards to sample size, for all
violations with n = 250, it was the case that either both true samples have at least one significant
lineup, or neither true sample has a significant lineup. With this larger sample size, participants
consistently performed worse when the violations were mild, as expected. Compare this to smaller
sample sizes. When n = 150, it is frequently the case that only one of the two samples had a
significant lineup. Additionally, at the smaller sample size, both of the mild violations had one
sample that contained significant lineups, while violation 3 had no significant lineups even though
it was a severe violation. This raises questions about the reliability of the lineup protocol at small
sample sizes.

4.3 Strong Linearity within Residual Plots

It was observed repeatedly in the study that participants were drawn to panels where a small
number of points in plot appeared on a strongly defined line. We provide two examples of such
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Figure 7: A faceted plot showing proportion of viewers to choose the true plot. Points represent an
individual lineup, with lines connecting lineups that share both true and null data sets. Within a
panel, color and shape of points indicate which lineups share a true data set. A filled point indicates
the rejection of the null hypothesis. BR = binned residual, BR95 = binned residual with 95% error
bounds, EL = empirical logit.

behavior that caused large numbers of participants to choose panels that did not violate the null
hypothesis. Consider the lineup in Figure A1 of Appendix A, which uses binned residual plots
without error bounds, has a sample size of 150, and has no model violation. Contrary to the fact
that there was no model violation, the true plot was correctly identified by 21 of 30 viewers (shown
in panel (32 + 2)). Note that the true plot has a large number of points in the middle of the plot
that appear extremely linear. Of the 21 participants who chose the plot, 14 referred to a curve or
line when describing their reason for choosing the plot and 2 participants used the word "linear"
explicitly. This tendency of participants to choose plots with subsets of linear points could help
explain the large Type-I error that was observed for the lineup protocol in the sample used to make
Figure A1. A second lineup that demonstrates this tendency is shown in Figure A2 of Appendix A
with the true plot displayed in panel (2 ⇤ (4 + 2)) which was correctly identified by 0 of 29 viewers.
Here the data had n = 250 with mild non-linearity, and the lineup was made with binned residuals
without error bounds. The most commonly selected plot in this lineup is displayed in position 13
(selected by 6 of 29 viewers), and again has a strong linear appearance in the center of the plot.
One of the participants who chose plot 13 gave the reason, "points are close together on top left
quadrant," referencing the position and closeness of the points on the line. Because we did not
expect participants to choose plots that exhibited strong subsets of linear points, there was not an

16



option in the drop-down list that referenced linearity or lines. When providing a reason for their
choice, participants had to select "other" from the drop-down and manually enter their thoughts on
linearity. In future studies, it would be interesting to include a linearity option in the drop-down
to more accurately assess the thought process of participants. The tendency of viewers to select
strongly linear plots was not observed in any of the lineup studies we use as references and thus
could be a potential area of future research [5] [6] [7].

5 Power: Lineup Protocol vs. Goodness-of-fit

We say that a diagnostic test is more powerful than another test if given the same sample, one
diagnostic is able to reject the null hypothesis more frequently when there is a model violation. Table
1 gives a comparison of the number of lineups that were rejected using the lineup protocol and a
simulated Pearson goodness-of-fit test. Recall that within each type of violation, there were 4 unique
samples - each sample creating 6 lineups (2 nulls and 3 plot types). Because a goodness-of-fit test
depends only on the sample, it either rejects the null hypothesis for all or none of the 6 lineups from
the same sample. This is reflected in the table by the rejections for a goodness-of-fit test increasing
in increments of 6.

Table 1: Instances the null was rejected for individual violations by diagnostic test.

Viol. 0 Viol. 1 Viol. 2 Viol. 3 Viol. 4 Viol. 5
Lineup Protocol 5/24 10/24 4/24 8/24 7/24 13/24
Pearson GoF 0/24 24/24 12/24 6/24 0/24 0/24

Table 2 contains the same data as Table 1, but combines rejections in terms of the type of violation
(control, log-linearity, or independence). Note that the lineup protocol had 5 false rejections of the
null hypothesis whereas a Pearson goodness-of-fit test had no false rejections, providing evidence that
the lineup protocol might have a larger Type-I error rate than a goodness-of-fit test. In the study, a
Pearson goodness-of-fit test was more powerful at detecting log-linearity violations than the lineup
protocol, rejecting the null for 36 of 48 lineups (6 of 8 samples) at a rate more than twice that of
the lineup protocol (14 of 48 lineups). However, the lineup protocol was more powerful at detecting
independence violations, rejecting 28 of 72 independence lineups while a Pearson goodness-of-fit test
rejected only 6 of 72 lineups (1 of 12 samples).

Table 2: Instances the null was rejected for type of violation by diagnostic test.

No Violation Log-Linearity Independence
Lineup Protocol 5/24 14/48 28/72
Pearson GoF 0/24 36/48 6/72

Figure A3 in Appendix A shows a lineup created using a sample in which a Pearson goodness-
of-fit test was able to detect a violation of log-linearity when the lineup protocol could not. The
true plot is shown in position (20 + 2) and was selected by only 1 of 30 viewers. This results in
a p-value of 0.785 using the lineup protocol while a goodness-of-fit test has a p-value of 0.00491.
The lineup illustrating the reverse situation is shown in Figure A4 in Appendix A. The lineup has
n = 150 and severe group effects with many groups, the violation type in which the lineup protocol
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most outperformed the Pearson goodness-of-fit test. The true plot is in position (2 ⇤
p
25) and was

picked by 18 of 30 viewers. For this sample, all lineups, regardless of null or plot type, resulted in
the rejection of the null hypothesis while the Pearson goodness-of-fit test has a p-value of 0.374. In
creating the violation types, we had assumed that adding more groups would increase the difficulty
of the lineup overall, but this was not the case. We observed that increasing the number of groups
also increased the power of the lineup protocol for severe group effects. If these results can be
generalized to other types of model violations, in the context of the lineup protocol, it could be more
effective to use diagnostic plots with more bins than is generally recommended in classical inference.

6 Power: Type of Diagnostic Plot

In addition to comparing the power of different diagnostic tests, the study compares the power
of different lineup protocol designs. A lineup design is more powerful than another if given the same
true and null data sets, one design results in the rejection of the null hypothesis more frequently
when there is a model violation. A design having high power implies that it presents data to the
viewer more effectively and clearly than a design with low power. Take for example the two types of
binned residual plots used in the simulation study. Adding theoretical error bars to a graph increases
the total information that is displayed in the plot. But is the additional information displayed in
error bounds useful for making inferences? Or is it the case that error bounds clutter the plot
and make it more difficult for a viewer to interpret the underlying data? Table 3 compares how
frequently lineups resulted in the rejection of the null hypothesis based on the type of diagnostic
plot that they used. Note there does not appear to be a large difference in the rejection rates for
individual violations between lineups that use different diagnostic plots.

Table 3: Instances the null was rejected for individual violations by type of plot.

Viol. 0 Viol. 1 Viol. 2 Viol. 3 Viol. 4 Viol. 5
Binned Residual 1/8 4/8 2/8 4/8 2/8 4/8
Binned Residual 95% Bounds 2/8 5/8 2/8 2/8 2/8 5/8
Empirical Logit 2/8 1/8 0/8 2/8 3/8 4/8

Again, grouping by the assumption that is violated allows us to make stronger claims about the
power of the plot types. Table 4 shows combined rejection rates for each type of diagnostic plot.
Note that all types of plot wrongly reject the null hypothesis 1 or 2 times. In terms of log-linearity
model violations, there is evidence that binned residual plots outperform the empirical logit plot.
For independence violations, all types of diagnostic plots have similar rejection rates.

Table 4: Instances the null was rejected for type of violation by type of plot.

No Violation Log-Linearity Independence
Binned Residual 1/8 6/16 10/24
Binned Residual 95% Bounds 2/8 7/16 9/24
Empirical Logit 2/8 1/16 9/24

To illustrate the concept of one lineup design using data more effectively than another, we
include two lineups that use the same true and null data sets in Figures A5 and A6 in Appendix
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A. Both lineups have severe non-linearity violations with a sample size of 250, but Figure A5 uses
binned residual plots with error bounds while Figure A6 uses empirical logit plots. Here, the null
hypothesis is rejected by the binned residual lineup (p-value = 1.06 ⇤ 10�5) but not by the empirical
logit lineup (p-value = 0.446). The study provides evidence that this example can be generalized,
and that binned residual lineups are more powerful than empirical logit lineups for violations of
log-odds linearity. This result is surprising, as in classical diagnostics, the empirical logit plot is
designed specifically to assess log-odds linearity. We conjecture that a residual plot is easier for
an untrained viewer to interpret than an empirical logit plot, leading to a higher power in visual
inference. This problem could be lessened with the addition of a smoother on the empirical logit
plot. A smoother might highlight the overall trend between the binned explanatory variable and the
log-odds (the intended purpose of the plot). In a lineup, graphics must be interpretable to a viewer
without knowledge of the model. This standard is not often present for classical visual diagnostics
and could begin to explain discrepancies between the effectiveness of diagnostics in the two settings.

7 Discussion and Conclusion

The study provides evidence that the lineup protocol and Pearson goodness-of-fit test have
unique strengths in binary logistic regression. A goodness-of-fit test is more powerful at detecting
violations of log-odds linearity while the lineup protocol is more powerful at detecting violations of
independence due to group correlation. There is also evidence that the Pearson goodness-of-fit test
has a lower Type-I error than the lineup protocol. The study indicates that binned residual plots are
more effective at detecting violations of log-odds linearity than empirical logit plots. One drawback
of the lineup protocol is the large amount of money required to pay viewers to evaluate the lineups
online. If cost was not an issue, there are many follow up questions that we would have attempted
to answer in the current article.

• For violations of independence, it would be worthwhile to investigate a more gradual transition
between "severe" and "mild" random-effects. Additionally, the study provided evidence that
the lineup protocol was better at detecting group effects when there were more groups. What
range for the number of groups gives the highest power using the lineup protocol?

• Using approximation to compute the theoretical error bounds for binned residual plots was
an ineffective method for displaying the error bounds. Frequently, the error bounds cluttered
the graph and made binned residuals difficult to interpret. Gelman (2000) [3] notes that error
bounds might need to be simulated for low sample sizes, which we did not consider in the
current study. We recommend that future studies simulate theoretical error bounds for binned
residual plots instead of using approximation.

• The current study only compares the Pearson goodness-of-fit test and the lineup protocol.
Posterior predictive checks as introduced in Section 3.3 are an alternative simulation-based
diagnostic. Future research might compare the power of various posterior predictive checks,
the lineup protocol, and a goodness-of-fit test.

• In addition to asking participants to choose the plot they believed to be most different, the
study recorded i) if a participant believed one plot was different from the others and ii) their
reason for selecting the "most different" plot. We did not have time to examine the study data
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relating to either of these questions. These responses should be examined in extensions of this
work.

While conducting the study, we were surprised at the rapid pace that quality data could be
collected from participants online. A survey containing 12 lineups was frequently completed by 30
participant in under 3 hours using the online survey recruitment platform Prolific, providing evidence
that the lineup protocol could be used in more casual model checking settings. When checking a
binary logistic model, we recommend that the analyst begins with classical visual diagnostics such
as the empirical logit plot to confirm log-odds linearity for explanatory variables. After fitting the
model and refining explanatory variables, the analyst should first view the binned residual plot in
the context of a lineup. This way, the analyst has a numeric indicator of whether or not predicted
data from the model is similar to the observed data. From here, the analyst should refine the model
as needed through classical and simulation-based diagnostics such as the Pearson goodness-of-fit
and posterior predictive checks. If there are questions about independence of observations, it could
be useful to evaluate lineups using participants from Prolific to help make decisions about using
alternatives models, such as binomial logistic regression or a hierarchical logistic model. One of
the exciting parts of statistical analysis is the creativity needed to investigate data. There is no
one correct way to fit and refine a model. However, the lineup protocol and other simulation-based
diagnostics are powerful tools that should be incorporated in thorough analyses.

8 Appendix A: Lineups from Simulation Study

Figure A1: A binned residual lineup created from
data with no model violation and n = 150. The
true plot is in position (32+2), chosen by 21 of 30
participants. Note that points in the true panel
appear to lie on a line.

Figure A2: A binned residual lineup made from
data with mild non-linearity and n = 250. The
true plot is in position (2⇤ (4+2)) chosen by 2 of
29 participants. Null plot #13 was selected 6 of
29 times and appears to contain a line of points.
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Figure A3: An empirical logit lineup created from
data with mild non-linearity and n = 250. The
true plot is in position (20 + 2), selected by 1 of
30 viewers, giving a p-value of 0.785. A Pearson
goodness-of-fit test successfully detected the non-
linearity for the sample with a p-value of 0.00491.

Figure A4: An empirical logit lineup created from
data with severe group-effects with many groups
and n = 150. The true plot is in position (2 ⇤p
25), selected by 18 of 30 viewers, giving a p-

value of 2.22 ⇤ 10�16. A Pearson goodness-of-fit
test failed to reject the sample with a p-value of
0.374.

Figure A5: A binned residual error bounds lineup
created from data with severe non-linearity and
n = 250. The true plot is in position (11�

p
4),

picked by 9 of 30 participants and giving a p-
value of 1.06 ⇤ 10�5. The lineup uses the same
true and null data as Figure A6, but does so more
effectively and rejects the null whereas Figure A6
does not.

Figure A6: An empirical logit lineup created from
data with severe non-linearity and n = 250. The
true data is displayed in position (

p
49 + 12)

which was picked by only 2 of 30 participants,
giving a p-value of 0.446. The lineup uses the
same true and null data as Figure A5, but does
not reject the null hypothesis.
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