
Assessing risk factors for the incubation period of COVID-19

Abstract
In December 2019, there was a cluster of pneumonia cases of unknown etiology detected in Wuhan,

Hubei Province, China. It was later designated as coronavirus disease 2019 (COVID-19) and soon becomes
a global pandemic, which has extremely complex behaviors regarding to its transmission, symptoms
and incubation period. A better understanding of these key characteristics is needed for scientists and
policy makers to monitor and control the pandemic as well as to set up proper quarantine procedures. In
our study, we analyze data from 463 Wuhan-exported cases who left Wuhan before the travel ban on
January 23, 2020. The data set includes the dates of beginning stay in Wuhan, ending stay in Wuhan,
and symptom onset, as well as variables age and gender. We perform regression analysis under the Cox
proportional hazards model to evaluate the association of age and gender with the incubation period of
COVID-19, defined as the duration between infection and symptom onset. Since the infection time is not
observed, we develop three di�erent methods to handle the incubation period. The multiple imputation
method that imputes the unobserved infection time by assuming an exponential epidemic growth properly
accounts for the data structure and fits the data better than the other two methods. It indicates that
younger people have a longer incubation period than the older, while there is no significant di�erence in
incubation time between male and female.

I. Introduction
In December 2019, a cluster of viral pneumonia cases of unknown etiology was detected in Wuhan, Hubei
Province, China, and it was initially traced to one seafood market in Wuhan [7]. However, many cases
were reported later to have no association with this market, meaning that there exists a human-to-human
transmission of the virus. The virus that causes this disease, now referred to as SARS-CoV-2, is a novel
coronavirus and it bears significant resemblance to SARS, MERS and other previous respiratory pathogens
[12]. The coronavirus disease caused by SARS-CoV-2 is now referred to as COVID-19. Originally from
Wuhan, COVID-19 quickly spread out to mainland China and many other Asian countries and turned into
a global pandemic later. As of 20th January 2020, there were 282 confirmed cases reported from China,
Thailand, Japan and Republic of Korea [12]. As of 7th April 2021, more than 133 million people were infected,
leading to more than 2.9 million deaths all over the world [2]. These high numbers of infections are compatible
with the epidemic doubling time about 2 to 3 days found by [8], [10], and [14] at the end of January 2020.

A better understanding of the characteristics of COVID-19, including its transmission, symptoms and
incubation period, is urgently needed for scientists and policy makers to monitor and control the pandemic
as well as to set up proper quarantine procedures. The incubation period of COVID-19 is defined as the
duration between infection of SARS-CoV-2 and symptom onset. Since the outbreak of COVID-19, there are
numerous studies of its incubation period. The mean incubation period estimated by Linton et al. [6] was 5.2
days (95% CI: 4.1, 7.0). As an initial investigation of infections in the earliest phrase, this study had several
limitations including that data collected from various sources are not uniformly distributed and that the
variance is likely to be biased due to the limited sample size. In addition, as noted by Zhao et al. [15], the
incubation period estimated by Backer et al. [1] using a log-normal distribution and by Lauer et al. [3] using
three commonly used incubation period distributions (Gamma, Weibull and Erlang) were biased as well since
these anaylses did not start from a generative model and could not correctly adjust for sample selection bias
in their statistical inferences. Compared to earlier studies, Zhao et al. [15] collected a more reliable study
sample and accounted for sample selection in their likelihood. By using a nonparametric Bayesian analysis,
they concluded that about 5% of COVID-19 patients develop the symptoms after 14 days after contracting
the virus. Although the incubation period of COVID-19 has been studied by many authors, to the best of our
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knowledge, there is no existing work assessing its risk factors. In our study, we consider regression analysis of
the incubation period of COVID-19 under the Cox proportional hazards model. Our findings could provide
additional insights on shortening or lengthening the standard quarantine duration of 14 days for certain
subgroups to help better control the pandemic.

We consider the dataset collected by Zhao et al. [15] that consists of 463 Wuhan-exported cases (from 14
locations in and outside China) who left Wuhan before the travel ban on January 23, 2020. The dataset
includes three key dates: beginning stay in Wuhan (B), ending stay in Wuhan (E), and date of symptom
onset (S). It also includes age (median: 46 and IQR: [33.25, 56]; see Figure 1 for histogram) and gender (213
female and 250 male). As noted by Zhao et al. [15], the biases from under-ascertainment and non-random
sample selection are minimized in this dataset. In this study, we are interested in assessing the association of
age and gender with the incubation period of COVID-19 based on this dataset. Note that the infection time
is not available and only observed to fall between the beginning and ending stay in Wuhan, and the symptom
onset time is subject to right-censoring (6 cases had not shown symptoms at diagnosis and thus were censored
at the time of diagnosis). The existing statistical methods cannot handle these issues. Therefore, we develop
three methods, which will be described below, to analyze the data.
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Figure 1: Histogram of Age

The remainder of the paper is organized as follows. In Section II, we develop three methods for regression
analysis of the incubation period of COVID-19 under the Cox proportional hazards model in order to account
for the unobserved and truncated infection time and the censored symptom onset time. In Section III, we
analyze the dataset described above using three proposed methods to evaluate the association of age and
gender with the incubation period of COVID-19. Section IV includes some discussion.

II. Methods
Our dataset consists of n = 463 Wuhan-exported cases who left Wuhan before the travel ban on 23th January
2020. It includes the date of beginning stay in Wuhan, the date of ending stay in Wuhan, and the date of
symptom onset, as well as age and gender. The infection time is only observed to fall between the beginning
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and ending stay in Wuhan, while the symptom onset time is subject to right-censoring since six subjects had
not shown symptoms at diagnosis and were considered as right-censored at the time of diagnosis. Thus, our
observed data are given by

)
Bi, Ei, Si = min{S̃i, Ci}, �i = I(S̃i Æ Ci), Xi

*
, for i = 1, 2, ..., n,

where Bi is the time of beginning stay in Wuhan, Ei is the time of ending stay in Wuhan, S̃i is the true
symptom onset time, Ci is the censoring time, and Xi is the covariate (age or gender) for subject i. Here the
time origin is chosen as December 1, 2019 as in other studies of COVID-19.

Method 1: Midpoint imputation for infection time
First, we consider a naive method by imputing the infection time using the midpoint of the duration staying
in Wuhan. Specifically, we first calculate the midpoint time (denoted by Mi) between the begin time staying
in Wuhan Bi and the end time staying in Wuhan Ei as follows:

Mi = Bi + Ei

2 , for i = 1, 2, ..., n.

We then estimate the incubation period (denoted by Ti) as the di�erence between the symptom onset time
Si and the midpoint time Mi:

Ti = Si ≠ Mi, for i = 1, 2, ..., n.

Note that 4 subjects are removed due to negative estimates of the incubation period.

We employ the Cox proportional hazards model which is commonly used for the analysis of failure time data.
Under this model, the conditional hazard function of the incubation time Ti given the covariate Xi has the
form

⁄(t|Xi) = ⁄0(t)e—Xi , (1)

where ⁄0(t) is the unspecified baseline hazard function and — is the unknown regression coe�cient.

The Cox model has the following desirable features: (i) it is flexible by leaving the baseline hazard function ⁄0(t)
completely unspecified; (ii) it has good interpretability since the regression coe�cient — can be interpreted as
the log hazard ratio, i.e.,

— = log
;

⁄(t|Xi = x + 1)
⁄(t|Xi = x)

<
; (2)

if — > 0, then higher values of the covariate are associated with higher risk of failure; if — < 0, then higher
values of the covariate are associated with lower risk of failure; (iii) it is mathematically tractable and its
statistical properties can be established using the elegant Martingale theory; (iv) it is widely applicable in
practice, particularly in biomedical studies; (v) it can be implemented easily using the statistical software.

Besides, the nonparametric Kaplan-Meier method is used to estimate the survival function S(t) of the
incubation time Ti, i.e., the probability of not having symptoms at time t since infection. In particular, the
Kaplan-Meier estimate is given by

‚S(t) =
Ÿ

i: ti<t

3
1 ≠ di

ni

4
, (3)

where ti’s are the observed incubation times, di is the number of subjects who have symptom onset at time
ti, and ni is the number of subjects at risk at time ti, for i = 1, . . . , n.

Method 2: Treat incubation time as interval-censored
Another simple method is to treat the incubation time Ti as interval-censored, since Ti is not exactly observed
but known only to fall within an interval (Li, Ui], where

Li = Si ≠ Ei and Ui = Si ≠ Bi,
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for i = 1, . . . , n. If Ti is right-censored, then we let Ui = Œ. We then perform regression analysis under the
Cox model with interval-censored data given above to evaluate the risk factors associated with the incubation
time. In particular, we employ the nonparametric maximum likelihood method proposed by [13] for the
analysis.

Method 3: Multiple imputations for infection time
We now consider a more sophisticated method for handling the unobserved infection time. We propose a
multiple imputation procedure [9] as follows:

1. Estimate the distribution of the infection time based on the observed data
)

[Bi, Ei] : i = 1, . . . , n
*

;

2. Generate or impute M (M = 100) infection times according to the above estimated distribution
restricted to [Bi, Ei] for subject i, for i = 1, . . . , n;

3. Calculate the incubation time Tim for subject i as Si ≠ Wim, where Si is the observed symptom onset
time and Wim is the imputed infection time, for m = 1, . . . , M and i = 1, . . . , n;

4. For the mth imputed data set, perform regression analysis of the incubation time under the Cox model
and obtain the estimate of the regression coe�cient ‚—m and its estimated variance ‚‡2

m as well as the
Breslow estimate ‚�0m(t) of the cumulative baseline hazard function [5],

‚�0m(t) =
nÿ

i=1

I(Ti Æ t)�i
q

jœRi
e
‚—mXj

, for m = 1, . . . , M ;

5. Calculate the final regression coe�cient estimate ‚— and its estimated variance ‚‡2 as [4]

‚— = 1
M

Mÿ

m=1

‚—m (4)

and

‚‡2 =
3

1 + 1
M

4 qM
m=1(‚—m ≠ ‚—)2

M ≠ 1 + 1
M

Mÿ

m=1
‚‡2

m; (5)

6. Estimate the survival function of the incubation time for subject i as

‚S(t|Xi) = exp
)

≠ ‚�0(t)e‚—Xi
*

, (6)

where
‚�0(t) = 1

M

Mÿ

m=1

‚�0m(t).

In the following, we consider three methods for estimating the distribution of the infection time in Step #1
of the above multiple imputation procedure.

Method 3.1: Multiple imputations for infection time based on NPMLE
We first calculate the nonparametric maximum likelihood estimate (NPMLE) of the distribution of infection
time based on interval-censored data

)
[Bi, Ei] : i = 1, . . . , n

*
using the self-consistency algorithm [11].

The NPMLE has positive mass on the maximal intersections
)

[sj , tj ] : j = 1, . . . , d
*

, where sj ’s are from
{Bi : i = 1, . . . , n} and tj ’s are from {Ei : i = 1, . . . , n} such that [sj , tj ] fl [Bi, Ei] is either [sj , tj ] or an
empty set for every j = 1, . . . , d and i = 1, . . . , n. We then generate the infection time for subject i as
follows: (i) look for the maximal intersections included in [Bi, Ei]; (ii) reweight the masses on those maximal
intersections so that they sum up to 1; (iii) randomly select one of the maximal intersections according
to their probability masses; (iv) generate the infection time from the uniform distribution on the selected
maximal intersection.
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Method 3.2: Multiple imputations for infection time based on uniform distribution
We assume that the infection time for subject i is uniformly distributed on [Bi, Ei], for i = 1, . . . , n.

Method 3.3: Multiple imputations for infection time based on exponential epidemic growth
Following [15], we assume that the probability of contracting the virus in Wuhan was increasing exponentially
before the quarantine, that is, the probability density function (pdf) of the infection time on [B, E] has the
form of

f(t) = re
rt

erE ≠ erB
(7)

and the cumulative distribution function (cdf) is given by

F (t) =
⁄ t

B

re
rs

erE ≠ erB
ds

for t œ [B, E], where r is the growth exponent. We estimate r using log(2)/2.1 in the data analysis below,
where 2.1 is the doubling time estimated by [15].

We employ the probability integral transform to generate the infection time from F (t) as follows: (i) generate
a random number u from the uniform distribution on [0, 1]; (ii) generate the infection time W as

W = F
≠1(u) =

log
#
(erE ≠ e

rB)u + e
rB

$

r
.

III. Results
We analyze our dataset of 463 Wuhan-exported cases described above using three proposed methods and
evaluate the association of age and gender with the incubation period of COVID-19. For gender, we define an
indicator variable with value 1 for male and 0 for female. We also consider an indicator of age group defined
as 1 if age > 46 (old) and 0 if age Æ 46 (young), where 46 is the median age. For each variable, we report the
hazard ratio and its 95% confidence interval under the Cox model (1). The hazard ratio is estimated by e

—̂

according to (2) and its standard error is calculated as e
—̂
‡̂ by the Delta method, where ‡̂ is the standard

error of —̂. The confidence interval is obtained based on the normal approximation to the distribution of —̂.
We also report the p-value for testing H0 : — = 0 vs Ha : — ”= 0. Furthermore, we plot the estimates of the
survival function S(t), i.e., the probability of not having symptoms at time t since infection, based on gender
and age group, respectively.

Method 1 - Results
The estimation results for hazard ratio using Method 1 are given in Table 1. These results are obtained by
using the function “coxph” in the package “survival” in R that implements the partial likelihood method for
fitting the Cox model (1) to right-censored data. The Kaplan-Meier estimates of the survival function given
by (3) are calculated using the function “survfit” in the package “survival” and are plotted in Figures 2 and 3
for gender and age group, respectively. According to the results in Table 1, older people tend to have higher
risk of symptom onset and shorter incubation period, while gender is not significantly associated with the
incubation time.

Table 1: Estimation results for hazard ratio based on Method 1

Variables p-value Hazard Ratio (HR) 95% CI of HR
Gender (Male) 0.850 1.019 (0.837, 1.241)

Age group (Old) 0.008 1.311 (1.075, 1.598)
Age 0.004 1.009 (1.003, 1.016)
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Figure 2: Estimated survival function for incubation period based on gender using Method 1
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Figure 3: Estimated survival function for incubation period based on age group using Method 1
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Method 2 - Results
The estimation results for hazard ratio using Method 2 are presented in Table 2. These results are obtained by
using the function “unireg” in the package “IntCens” in R that implements nonparametric maximum likelihood
estimation for a class of semiparametric regression models, including the Cox model (1), with interval-censored
data [13]. The estimate of the survival function is obtained from the nonparametric maximum likelihood
estimate of the cumulative baseline hazard function given by [13]. Figures 4 and 5 plot the estimates of the
survival function based on gender and age group, respectively. The results in Table 2 suggest that neither
gender nor age is significantly associated with the incubation time.

Table 2: Estimation results for hazard ratio based on Method 2

Variables p-value Hazard Ratio (HR) 95% CI of HR
Gender (Male) 0.899 0.975 (0.585, 1.365)

Age group (Old) 0.278 1.240 (0.758, 1.722)
Age 0.191 1.009 (0.996, 1.021)
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Figure 4: Estimated survival function for incubation period based on gender using Method 2
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Figure 5: Estimated survival function for incubation period based on age group using Method 2

Method 3 - Results
We now present the estimation results for hazard ratio and survival function obtained by using three multiple
imputation methods. The hazard ratio is estimated by e

—̂ based on (2) and (4). The standard error is
calculated as e

—̂
‡̂ by the Delta method, where ‡̂ is given by (5). The confidence interval is obtained based on

the normal approximation to the distribution of —̂. The survival function is estimated by (6). These methods
are programmed by the authors using R.

Method 3.1
The estimation results for hazard ratio using Method 3.1 are given in Table 3 and the estimates of the survival
function based on gender and age group are plotted in Figures 6 and 7, respectively. The results in Table 3
imply that neither gender nor age is significantly associated with the incubation time.

Table 3: Estimation results for hazard ratio based on Method 3.1

Variables p-value Hazard Ratio (HR) 95% CI of HR
Gender (Male) 0.979 0.997 (0.762, 1.232)

Age group (Old) 0.149 1.184 (0.912, 1.456)
Age 0.128 1.006 (0.999, 1.013)
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Figure 6: Estimated survival function for incubation period based on gender using Method 3.1
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Figure 7: Estimated survival function for incubation period based on age group using Method 3.1

Method 3.2
The estimation results for hazard ratio using Method 3.2 are given in Table 4 and the estimates of the survival
function based on gender and age group are plotted in Figures 8 and 9, respectively. The results in Table 4
suggest that neither gender nor age is significantly associated with the incubation time.

Table 4: Estimation results for hazard ratio based on Method 3.2
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Variables p-value Hazard Ratio (HR) 95% CI of HR
Gender (Male) 0.829 1.024 (0.799, 1.249)

Age group (Old) 0.302 1.126 (0.872, 1.381)
Age 0.312 1.004 (0.996, 1.011)
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Figure 8: Estimated survival function for incubation period based on gender using Method 3.2
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Figure 9: Estimated survival function for incubation period based on age group using Method 3.2
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Method 3.3
The estimation results for hazard ratio using Method 3.3 are given in Table 5 and the estimates of the survival
function based on gender and age group are plotted in Figures 10 and 11, respectively. According to the
results in Table 5, older people tend to have higher risk of symptom onset and shorter incubation period,
while gender is not significantly associated with the incubation time.

Table 5: Estimation results for hazard ratio based on Method 3.3

Variables p-value Hazard Ratio (HR) 95% CI of HR
Gender (Male) 0.433 0.92 (0.723, 1.111)

Age group (Old) 0.027 1.267 (1.002, 1.532)
Age 0.036 1.007 (1.001, 1.014)
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Figure 10: Estimated survival function for incubation period based on gender using Method 3.3
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Figure 11: Estimated survival function for incubation period based on age group using Method 3.3

IV. Discussion
In this study, we are interested in assessing the association of age and gender with the incubation period
of COVID-19 based on a dataset of 463 Wuhan-exported cases. In this dataset, the infection time is not
available and known only to fall within an interval, while the symptom onset time is subject to right-censoring.
To evaluate the association of age and gender with the incubation period, we consider regression analysis of
the incubation period under the Cox model with age and gender as covariates. We develop three methods for
the analysis to account for our data structure. We include some discussion about these methods below.

For the method of midpoint imputation, we approximate the unobserved infection time using the midpoint
between the beginning and ending time of stay in Wuhan. The results of this method presented in Table 1
show that the incubation period has no significant di�erence between male and female, while younger people
seem to have lower risk of symptom onset and longer incubation period. From Figures 2 and 3, one can see
that the survival probabilities of the incubation time, i.e., the probability of not having symptom onset at a
certain time since infection, are highly overestimated. Particularly, the estimated survival probability at 14
days is about 0.73 and the incubation period is likely to reach up to 40 days. This is quite di�erent from the
results of existing studies in the literature [3], [6], [15]. The estimation bias of this method is expected due to
naive approximation of the infection time.

In an e�ort to correct for the estimation bias, we consider a simple method based on interval-censored data
of the incubation period. This method indicates that neither gender nor age is significantly associated with
the incubation period (Table 2). One can see from Figures 4 and 5 that the survival probabilities of the
incubation time are still overestimated but much more reasonable than those given by the the midpoint
imputation method. In particular, the estimated survival probability at 14 days is about 0.25. Although this
method is better than the midpoint imputation method in terms of accounting for our data structure, there
are some other features of the dataset that cannot be accounted for by this method. For example, there is
some truncation issue with the infection time, because the dataset only includes Wuhan-exported cases who
left Wuhan before the travel ban on January 23, 2020. However, this interval-censoring method assumes that
the dataset consists of a simple random sample and that all subjects were followed since time zero (December
1, 2019). Thus, it does not address the truncation problem. In addition, this method is not e�cient because
it does not fully utilize the information about the infection time.
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To better account for the data structure and make use of the available information, we develop a method of
multiple imputations by imputing the unobserved infection time multiple times according to an estimated
distribution of the infection time. This method is intended to reduce the estimation bias and address the
truncation problem. It also has the flexibility of using di�erent methods to estimate the distribution of
infection time for imputation. Specifically, we consider three methods for estimating the infection time
distribution. First, we employ the nonparametric maximum likelihood estimation (NPMLE) based on interval-
censored data of the infection time. Second, we assume that the infection time is uniformly distributed, i.e.,
the risk of being infected is constant during the stay in Wuhan. Lastly, we assume that the epidemic in
Wuhan grows exponentially before the travel ban and model the infection time as in (7). The first method
suggests that neither age nor gender is significantly associated with the incubation period (Table 3), and
the estimated survival probability at 14 days is about 0.25 (Figures 6 and 7). The results are similar to
those of the interval-censoring method, because they both treat the data as interval-censored and ignore the
truncation problem. The second method implies that neither age nor gender is significant (Table 4), and the
estimated survival probability at 14 days is about 0.75 (Figures 8 and 9), which is highly overestimated as
with the midpoint imputation method. This overestimation is expected because the uniform distribution
does not properly model the epidemic growth and it tends to underestimate the infection time and thereby
overestimate the incubation time. The last method not only accounts for the truncation problem of the
infection time, but also properly model the exponential growth of the early-stage epidemic in Wuhan before
the travel ban. This method suggests that gender is not significantly associated with the incubation period,
while younger people tend to have lower risk of symptom onset and longer incubation period (Table 5). From
Figures 10 and 11, the estimated survival probability at 14 days is about 0.1 for both male and female, while
it is about 0.15 for young people (Æ 46 years old) and 0.1 for old people (> 46 years old). This is consistent
with the findings of existing work in the literature [15].
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