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ABSTRACT 

With the emergence of COVID-19, state-level governments in the U.S. implemented various non-
pharmaceutical interventions (NPIs). Despite this, there has been limited research on the linkage between 
COVID-19 transmission rates and NPIs. To that end, this research has the primary objective of employing 
observational, mathematical, and statistical methods to analyze if NPIs played any role in the transmission 
rates of COVID-19. To assess this problem, various estimators of the COVID-19 transmission rate (𝑅0) 
were developed under differing assumptions through the branching process model. The primary analyses 
included exploratory data analysis, ANOVA, and a change-point analysis (CPA). From the results, it was 
determined that NPIs did not play any observably significant roles in 𝑅0, prompting further research. 
Finally, this research and its implications are primarily catered to an educated audience with a statistical 
background with interests in the cross-sections of topics such as COVID-19, epidemiology, mathematical 
modeling, and public health policy. 

Keywords & Key Phrases: COVID-19, Non-Pharmaceutical Interventions, Epidemiological 
Transmission Rates, Branching Process, Change-Point Analysis 
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INTRODUCTION 
In late 2019, the world was unexpectedly introduced to an outbreak of the novel Coronavirus 

Disease (COVID-19), a respiratory disease stemming from SARS-CoV2. Originating in China, the 
disease has since spread across the globe and further continues to affect society at large, well over a year 
after the disease was labeled a pandemic by the World Health Organization. In the United States, over 20 
million cases and over 340,000 deaths were reported in 2020. Moreover, the effects of COVID-19 have 
overwhelmed more than just patients; COVID-19 has disrupted families, social norms, educational 
institutions, governments, and whole industries - a phenomenon unprecedented to many. 

The initial transmission rate of the disease, coupled with the disease’s long and short-term 
uncertainties, all acted as a catalyst encouraging governments around the world to implement novel 
policies. Though each government has reacted differently, most, if not all, have implemented some level 
of policy through non-pharmaceutical interventions (NPIs) or actions beyond the scope of traditional 
pharmaceutical measures (e.g., clinical research and vaccine development). Though such policies, or 
NPIs, vary across time, government, and region, they generally include mandating social distancing, 
mandating mask usage, establishing curfews and lockdowns, and much more. In the context of this 
research paper, NPIs are the specific type of policy investigated. Consequently, the terms ‘NPIs’, ‘policy’, 
and ‘policies’ are used interchangeably. 

Unsurprisingly, COVID-19, with all of its direct and indirect impacts taken into consideration, 
has spawned into a research hotspot across many domains. Despite the topic of COVID-19 scattering 
across various research fields, there has been limited research on the topic and its intersection with NPIs, 
specifically in the United States (Ebrahim et al., 2020). Due to the gap in the literature, this particular 
research applies a mixed-methodology approach in assessing the relationship between COVID-19 
transmission rates with NPIs in three distinct regions of the United States. The quantitative approach 
includes applying the branching process model to derive various estimators of COVID-19 transmission 
rates and further analysis. The qualitative approach entails analyzing the transmission rates alongside 
regarded policy changes, particularly by focusing on policy at various change-points in the COVID-19 
transmission rates (i.e., significant spikes/drops in transmission rates over time). Ultimately, this research 
adds to the field by providing an in-depth analysis of a transmission estimator alongside policy 
comparison in a select handful of distinct U.S. regions. 

The stated research problem and its complementary objectives are further outlined in the 
proceeding Problem Statement and Objectives section. Following that, the paper will cover a Literature 
Review to address similar literature, provide further insight on motivations, and cover gaps in the research 
space. From there, the Methodology and Techniques section will go into the mathematical details of the 
branching process model and further cover details on the dataset used and additional analyses. Finally, the 
Results section will provide insight on the analysis of the various transmission estimators and provide an 
analysis of the linkage of NPIs with a preferred transmission estimator. This research paper will finally 
conclude with final remarks on findings, limitations, and future recommendations in the Discussion & 
Conclusions. See Appendix A for frequently used acronyms. 

PROBLEM STATEMENT AND OBJECTIVES 
As stated, this project’s high-level goal is in analyzing the role of NPIs in COVID-19 

transmission rates. Specifically, the research question formulated is the following: Do the transmission 
rates of COVID-19 in 2020 across 3 distinct regions of the United States relate to NPIs, and if so, in what 
ways? Thus, it is intended that the scope of this project is limited to data in 2020 and on three particular 
regions in the United States. Nonetheless, due to restrictions on the format of existing datasets, 
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particularly when dealing with policy, this research employs a mixed-methodology. Particularly, once 
estimates of transmission rates are calculated, we opt to look at certain time periods of interest (i.e., 
change-points) to better understand the NPIs introduced around those time periods.  
 In order to successfully address the research question at hand, a set of defining objectives were 
introduced as a means to guide the research process. The first objective was to identify a model to serve 
as the foundation for deriving COVID-19 transmission rate estimators. In this particular project, the 
branching process model was used to derive four different estimators of the transmission rate of COVID-
19. The secondary objective was to simulate transmission rates independently of the COVID-19 data to 
support the use of the branching process model. A third objective was introduced to analyze and compare 
the four estimators against each other. The final objectives included comparing COVID-19 transmission 
rates over time, by region, and determining if there was a linkage with NPIs. 

In total, this particular analysis includes 3 regions composed of a total of eight states as well as 
one federal district. The first region includes Iowa, Kansas, and Wisconsin, which is a subsection of the 
Midwestern region of the U.S. The second region includes New York, New Jersey, and Connecticut (and 
is commonly referred to as the Tri-State region). The final region includes The District of Columbia 
(D.C.)., Maryland, and Virginia (and is commonly referred to as the D.M.V. region). For future purposes, 
unless discussing specific states, any broader analysis will refer to the regions by their common regional 
names, such as the Midwest, the D.M.V., or the Tri-State area. 

The primary reasoning for selecting these three specific regions is motivated by various factors. 
For instance, a subsection of the Midwest was included in this research due to their sudden spikes in 
COVID-19 cases toward the last quarter of 2020, possibly stemming from more relaxed NPIs in the 
region (Scott, 2020). On the other hand, the Tri-State area was included in this research primarily due to 
the fact that it includes the most populated metropolitan area in the whole country, New York City (“New 
York City, New York Population”, 2021). Furthermore, in the early stages of COVID-19, this area was 
known for its large influx of cases in a short period of time (Centers for Disease Control and Prevention 
[CDC], 2020a). Knowing what role policy played in this region, if any at all, may provide the insights 
necessary to make statistical comparisons between areas of contrasting levels of impact of COVID-19. 
Finally, the D.M.V. region was selected as this region includes the capitol district of the United States, is 
one of the most educated and affluent areas in the United States, is densely populated, and finally, holds a 
personal stake to the researchers who live in the region (McCann, 2020).  

Nonetheless, it is worthy to mention that the findings of these three selected regions may not 
necessarily draw generalizable conclusions on the entire country. Rather, the analysis of three distinct 
regions will provide insights on how policy affects COVID-19 transmission rates in said regions, if at all, 
and also how said effect varies by region.  

LITERATURE REVIEW 
General COVID-19 and NPIs Overview 

 Given the novelty and scalability of COVID-19, the respiratory disease has grabbed the attention 
of academics, scientists, and all other researchers worldwide since its offset. The motivations for the focus 
on COVID-19 across various domains are multi-fold. For instance, some cite the disease as “continuously 
evolving” leaving reason to believe that COVID-19 will continue to be a topic of interest to better 
understand (Fricker, 2021). However, despite the abundance of research, it is important to note a few 
drawbacks. For example, by creating an evidence map of the ongoing literature on COVID-19, 
researchers discovered that while the main topic of conversation centers around the disease itself, there is 
a gap in the focus on the disease and its interactions with policy (Liu et al., 2020). Specifically, of 550 
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mined journal articles, only an estimated 5.5% of the articles covered public health, which is a parent 
topic encompassing policy and hence NPIs. Findings as such, in which there is an emphasis on the lack of 
focus on policy in the space of COVID-19 literature, are further supported by other sources, and 
ultimately provide a foundational motivation for our broader research topic (Porter et al., 2020). 
 This is not to say, however, that the cross-section of policy and COVID-19 research is rare. For 
instance, in a U.K.-based research paper, researchers built an index measuring the policy measures taken 
by over 170 countries (over time) and regressed each country’s death counts against the index to measure 
the role of policy in COVID-19 (Hale et al., 2020a). Overall, the research identified a set of key NPIs that 
closely align with the NPIs of interest to our research problem, as outlined in the Methodology and 
Techniques section. Nonetheless, studies such as the aforementioned U.K. research have general 
limitations. For instance, this particular study focuses on COVID-19 and NPIs from a global perspective, 
particularly with a focus on death rates as opposed to transmission rates. Furthermore, despite the 
existence of country-specific research (such as the role of masks in COVID-19 transmission in Korea or 
the role of NPIs in over 11 specific EU countries), there is a general discourse that points out that there is 
an extreme lack of research on the role of NPIs on COVID-19 in the United States (Ebrahim et al., 2020; 
See also Kim et al., 2020 & Flaxman et al., 2020). 

United States Policy Overview 
 Given the motivation thus far, it is evident that there is a valid reason to focus on the role of NPIs 
in the United States when dealing with COVID-19. However, before delving into the Methodology and 
Techniques section, it is imperative to provide a high-level overview of the United States’ unique political 
structure. Afterwards, the Literature Review will also cover the epidemiological context and 
terminologies pertaining to disease transmission rates.  

In the U.S., there is generally high variation in the policy, given the nature of the dual federalism 
system in place. For instance, under Section 361 of the Public Health Service Act (42 U.S. Code § 264), 
the Secretary of Health and Human Services is authorized to take necessary measures to prevent the entry 
and spread of communicable diseases from foreign countries into the United States and between states 
(CDC, 2020b). Invocation of such a law is mandated at a federal level, meaning that all states must 
generally comply. However, there are also lower-level laws that vary by each state and county 
sovereignty, which is where the matter of NPIs and policy becomes convoluted in the United States. This 
incongruence in the U.S. results in a high variation of policy across the country (Ebrahim et al., 2020), 
which gives further reason to segment the available data on the U.S. into 3 distinct regions with 3 states 
(or federal districts) each.  

Furthermore, due to the variability of policies across the U.S., datasets on the county-level policy 
are time-intensive to develop and are therefore extremely limited (Ebrahim et al., 2020). Nonetheless, a 
novel state-level time-series NPI dataset has been formulated by researchers at Oxford that is employed in 
this research paper (further detailed in the Methodology and Techniques section). Though the dataset’s 
quantitative stringency indices have been used in global analyses, there is limited use of the index and the 
complementary textual policy for the purposes of change-point analyses on COVID-19 transmission rates 
in the U.S. (Hale et al., 2020b). Consequently, this further motivates the consideration of qualitative 
analysis like change-point analysis, rather than strictly relying on regression. 

Epidemiological Notations and Overview 
As for epidemiological terminology, the key focus of our research is on 𝑅0, the epidemiological 

measure of the basic reproduction rate (transmission) of a viral disease. Specifically, this measure refers 
to the average number of nodes an infected node impacts. The transmission rate of 𝑅0 has been 
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historically used to classify a disease into 3 different categories: supercritical (𝑅0 > 1), critical (𝑅0 = 1), 
and sub-critical (𝑅0 < 1). In particular, when 𝑅0 > 1, an individual infects more than one individual, and 
this leads to an exponential increase in the number of infected individuals with a disease. Conversely, if 
𝑅0< 1, the number of cases does not increase and there will be a decline in the cases of a disease. Finally, 
with the case of 𝑅0=1, the rate of growth of the disease is linear. Taking this into consideration, it is 
important to better understand the status of diseases such as COVID-19. For instance, understanding of 
the transmission rate (𝑅0) of COVID-19 yields two important implications, of many: (1) Early 
surveillance of transmission rates may have helped efficiently control the spread of the disease in the 
U.S., as done in China (Lipsitch et al., 2020), and (2) analysis of transmission rates, particularly at 
change-points, may yield a better understanding of whether NPIs played a role in such peaks/drops of 
𝑅0and how to better prepare for future viral diseases.  

To properly estimate the viral transmission rate of disease (𝑅0), COVID-19 in this case, existing 
research calls for the use of branching process models. The branching process model, as compared with 
other modeling techniques, provides a mechanistic approach to model the spread of the virus (Yanev et 
al., 2020). In this model, the reproduction rate 𝑅0 is the mean of the branching process. Furthermore, 
since the estimation of the mean of the branching process does not rely on the number of infections 
caused by a single individual (i.e., can rely merely on overall case counts and time), the model is popular 
in many domains including epidemiology (Slavtchova-Bojkova, 2020). However, despite this being the 
case, there is generally a small focus of branching process models in the space of COVID-19, which is 
another area our research strives to address (Slavtchova-Bojkova, 2020). Ultimately, while the full details 
of the branching process are described in the subsequent Methodology and Techniques section, it is 
imperative to cover the high-level motivation for its usage.  
 Taking all things into consideration from the existing literature, it is clear that there are many 
gaps in the space of COVID-19 research. The gaps include but are not limited to, reliable policy 
information, branching process modeling, understanding of NPIs/policy in the U.S., and more. By 
applying the branching process model to derive four estimators for 𝑅0, we strive to compare the 
estimators of 𝑅0while also analyzing the change-points in 𝑅0 across three distinct regions to pinpoint any 
potential implications of NPIs. This particular methodology appears, at the moment, unique compared to 
existing literature. To that end, this ultimately allows us to investigate our posed research question on 
better understanding the roles of NPIs in COVID-19 transmission in the United States.  

METHODOLOGY AND TECHNIQUES 
 Though the primary methodology centers on the branching process model, the methodology 
section will first introduce the datasets and pre-processing methods. From there, the branching process 
model will be introduced in-depth, coupled with mathematical formulations of the four derived estimators 
of 𝑅0 and simulations that support the use of the branching process model. Finally, the methods will 
conclude with a discussion on state-level analysis techniques used to further explore NPIs and 𝑅0. 

Datasets 
 The primary dataset employed in this research project is the us-counties CSV file provided by the 
New York Times, which is publicly available in the NYTimes COVID-19 GitHub repository and updated 
on a daily basis (NYTimes, n.d.). This dataset is compiled by pulling data provided by local government 
health departments to create a historical time-series of county-level COVID-19 data across the U.S., 
dating back to the very first recorded case in the nation. To that end, the variables include Date, County, 
State, FIPS, Cases, and Deaths (see Appendix B). In general, FIPS is the Federal Information Processing 
Standards code used to numerically identify a county, and Cases and Deaths are the reported cumulative 
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numeric counts at any given date. As for the covered regions, the dataset encompasses historical data for 
all 50 states, Washington D.C., and also four additional U.S. territories, which is more than sufficient for 
the objectives of this research paper. As a final note, since the dataset only includes holistic cumulative 
case data instead of individual case data, Institutional Review Board (IRB) approval of this research is not 
necessary.  
 Given that the branching process model can sufficiently be supported by the observed count data, 
this dataset was one of the few contenders for this research project. Nonetheless, there are a few caveats 
to discuss before delving into any further methods. First, for each state, there is an “unknown” county, 
which does include numeric data on cases and deaths. This occurrence is due to the fact that many health 
departments opt to report “unknown” for the county while patient residence information is still uncertain. 
Consequently, when the county is determined, a patient’s data is aggregated to the said county, which 
results in fluctuations in the “unknown” counties’ cumulative cases. Because of such fluctuations, the 
“unknown” county has been completely omitted from analyses in order to avoid any unusual fluctuations 
in estimator variances for each state. A second and third caveat deal directly with the observed regions for 
this research paper. In short, the dataset aggregates the data of D.C.'s 8 Wards and treats it as one massive 
county (“D.C.” in the dataset). Similarly for New York, the dataset aggregates the data from New York 
City’s 5 Boroughs (The Bronx, Brooklyn, Manhattan, Queens, and Staten Island) and again treats it as 
one county (“New York City” in the dataset). Since NY state has sufficient data on multiple other 
counties to explore the trends in transmission rates over time, the “New York City'' county in the dataset 
was not delineated into its 5 respective boroughs. On the other hand, the “D.C.'' county data was 
delineated into its 8 respective wards (based on population proportions) since there is no other county-
level data for D.C. A final caveat is that the FIPS value is listed as Not-A-Number (NAN) in python for 
various counties. Therefore, it is recommended to use both state and county names as keys to identifying 
specific counties of interest.  
 A secondary dataset used in this research is the USA State Level COVID-19 Policy Responses 
CSV file, as part of the Oxford COVID-19 Government Response Tracking (OxCGRT) project (Hale et 
al., 2020c). For each day in 2020, for each state, the dataset encapsulates various NPIs introduced and 
classifies them as either containment/closure policies (C), economic policies (E), health system policies 
(H), or miscellaneous policies (M). The particular measures of interest in our research are C1-C8 and H1 
(C1: School Closings; C2: Workplace Closings; C3: Public Event Cancelations; C4: Restrictions on 
public gatherings; C5: Public Transportation Closings; C6: Stay-at-Home Requirements; C7: Restrictions 
on Internal Movements; C8: International Travel Controls; H1: Public Information Campaigns) (see 
Appendix B). Such classifications are provided in both an encoded scale of stringency (e.g., from 0-3) as 
well as raw textual NPI data with cited government press releases and news articles. The encoded scales 
of these 9 particular variables are integrated in a mechanism that systematically quantifies the measure of 
the NPIs as a stringency index variable ranging from 0-100 (with 100 being the strongest response). Other 
classified variables such as E1-E4, H2-H8 and M1 are used to construct other indices that are beyond the 
scope of this research project (e.g., economic support index). Finally, other variables, such as geography 
and date, are provided for basic organization of the NPIs. Ultimately, this dataset is employed as a 
centralized point of information access for COVID-19 related NPIs in the states and federal district 
observed. More specifically, the stringency index is used in an analysis of association with the estimated 
𝑅0, whereas the raw textual NPIs are reviewed in-depth as part of the change-point analysis.   
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Software: Pre-Processing and Analysis Techniques 
 As for pre-processing and analysis of the us-counties dataset, the primary software used was 
Python. In particular, Python was employed for general branching process simulations, for pre-processing 
the us-counties dataset, and for deriving the four estimators via the branching process. Moreover, Python 
was used to compute the means and variances of each estimator over time and over each state. Finally, 
Python was used for the generation of confidence intervals and temporal hypothesis testing of the 
estimators (as based on the means/variances computed) to identify change-points.  

The general pre-processing phase began with converting the us-counties time-series data from its 
original daily format into a weekly format. Though estimators of 𝑅0 could be computed on a daily basis, 
this would yield increased variability in the estimated 𝑅0, so instead, weekly data was preferred. In order 
to achieve this, the date variable’s type was converted to Python’s DateTime type and then a new column 
was created to specify the day of the week. Since this research is only limited to 2020, the data was 
filtered down explicitly to “Thursday”, considering that 2020 ended on a Thursday. This was done with 
the goal to ensure as much 2020 data could be encapsulated in the final dataset (any earlier day of the 
week would have omitted cumulative data from the last few days of the week). The second general pre-
processing step taken was to divide the data into distinct datasets for each of the states of interest. A 
simple filtering approach was not feasible for calculations of estimators due to the aforementioned caveat 
with the FIPS variable.  
 Finer pre-processing was also performed to create new numerical columns that served as the key 
components for deriving the estimators (see Appendix B). In short, the dataset at hand provides 
cumulative data, however, three of our four estimators depend on new weekly or bi-weekly data. In order 
to address this, new columns were created to account for just the new cases in a given week (as opposed 
to the cumulative cases). This was done by grouping each state by county and then calculating the 
difference between each week’s cumulative cases (see Appendix C for code samples). The result of this 
calculation did result in a few nonsensical values (e.g., between the last date of one county and the first 
date of the next county), which were reverted back to their sensical values of 0 afterward. 

As for pre-processing and analysis of the Oxford dataset, Microsoft Excel and JMP were used. In 
particular, Excel was used to filter down the data into the regions of interest and also into a weekly basis 
to match that of the pre-processed COVID-19 case dataset (us-counties). JMP was then used to group the 
stringency index of the filtered data into three different levels. This was done due to the nature of the 
index of being constant for multiple weeks at a time. In particular, these three levels of stringency index 
were derived by dividing the range of 0 to 100 into three intervals (i.e., Group A included indices between 
0 and 50, Group B included indices between 50 and 70, and Group C included indices between 70 and 
100). Though the stringency index could have been further broken down into more levels, three was an 
appropriate number in order to ensure each level had a sufficient sample size. For instance, when 
grouping to thirteen levels by intervals of size eight, certain levels often only had a sample size of one or 
two, leading to non-interpretability of the results. Furthermore, a two week shift in the indices were 
applied since it was assumed that the NPIs would take up to two weeks to be effective after initial 
implementation. Finally, a preferred estimator of 𝑅0 (i.e., Estimator 1) was appended to the NPI data on 
JMP in order to perform an analysis of variance of 𝑅0 against the varying levels of the stringency index. 
This was done to assess the significance of any high-level relationships between NPIs and 𝑅0.  

Finally, once the pre-processing of the COVID-19 and NPI datasets were complete and estimator 
derivation concluded, Tableau was used for additional exploratory data analysis (EDA) purposes. The 
EDA consists of plotting state 𝑅0 data to identify trends between different states and 𝑅0 estimators. 
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Moreover, Tableau was also used for visualizing the NPI data trends over time as well as the stringency 
index. Such plots are outlined in the Results section with additional plots being found in the various 
appendices. To that end, the EDA is conducted between various stages of the methods employed.  

Branching Process Model Overview 
 At a high level, the branching process is used to model the growth of COVID-19 cases by county, 
particularly by estimating 𝑅0 at each generation. The branching process, or the Bienaymé-Galton-Watson 
process, is a stochastic process that is parameterized by a probability distribution and is based on the 
branching rule to describe a population’s evolution. Specifically, the branching rule indicates that each 
individual in a generation produces a random number of offspring in the next generation based on a 
specific probability distribution, independent of each other and of the previous generations.  

The process begins with generation zero (𝑍0), which is assumed to have one individual (i.e., 𝑍0 =
1). In the case of COVID-19, given that there is uncertainty in the notion of a “patient zero”, or the first-
generation, as well as underlying factors pertaining to testing, it may be the case that 𝑍0 > 1. That said, 
each offspring of 𝑍0 produces a random number of children which are considered a part of generation one 
(𝑍1), and the process continues for each 𝑛𝑡ℎ generation. When 𝑍𝑛 = 0, it is said that the population is 
extinct and all generations 𝑍𝑚 such that m >= n are also zero (i.e., 𝑍𝑚 = 0). Otherwise, 𝑍𝑛+1 happens to 
simply continue and is equal to the random number of new offspring in that generation.  

Estimators: Mathematical notation of COVID-19 Transmission Rate Estimators (𝑹𝟎) 
The branching process is then used as a foundational model for deriving various estimators of 𝑅0 

for each county, on a week-by-week basis, where each week is treated as a generation. For instance, with 
estimator 1, the mean of the branching process, M, is equal to 𝐸(𝑍𝑛|𝑍𝑛−1)/𝑍𝑛−1, where M serves as an 
estimator for 𝑅0 (i.e., M=𝑅0). In simpler terms, M or 𝑅0can be treated as the average number of new 
individuals an infected individual infects. Consequently, the mean of the branching process is also 
representative of the criticality level of transmission. In this context, the branching process is said to be 
supercritical if 𝑅0 > 1, subcritical if 𝑅0 < 1 and critical if 𝑅0 = 1. The true paths of infection are beyond 
the scope of this research, due to its difficulty and reliance on graph theory as well as its dependency on 
successful contact tracing techniques. That said, 𝑅0 is rather estimated based on temporal data pertaining 
to the number of new cases or cumulative cases. As stated, in this research, four estimators of 𝑅0 are 
derived using the branching process. Given that COVID-19’s mechanism of transmission is ever 
changing and thus uncertain, these four estimators are valid based on varying assumptions (He, Pascual, 
& Subramanian, 2021; See also “The Basics of SARS-CoV-2 Transmission”, 2021).  

The first estimator of 𝑅0, or E1, simply relies on the number of new positive COVID-19 cases 
(offspring) in a given week (generation). The formulation of E1 is as follows: 

𝐸1(𝑅0)  =  
𝑍𝑛

𝑍𝑛−1
  

With this estimator, the estimated 𝑅0 is treated as the number of newly discovered cases in a given week, 
n, divided by the number of cases from the previous week, n-1. At week 1 of COVID-19 data for a given 
county, the estimate is treated as 0, given that it is assumed to be the first generation. Finally, this 
estimator relies on the assumption that the infection of individuals in a given week depends only on the 
newly infected individuals of the previous week. This implies that people infected for longer than one 
week have also been discovered (aside from asymptomatic individuals who may never be discovered). In 
short, this estimator assumes that the complete knowledge of cases and infections is contained on a week-
by-week basis. 
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 The second estimator of 𝑅0, or E2, relies on the cumulative positive COVID-19 cases in a given 
week, as opposed to the actual generation sizes. The formulation of E2 is as follows: 

𝐸2(𝑅0) =
∑ 𝑍𝑖

𝑛
𝑖=0

∑ 𝑍𝑖
𝑛−1
𝑖=0

  

Specifically, this estimator is computed by dividing the cumulative cases of a week, n, by the cumulative 
cases of the previous week, n-1. This estimator relies on the assumption that the estimated 𝑅0 remains the 
same over time, which in a sense is that the total number of infected individuals in a given n week 
depends on the total number of infected individuals in week n-1.  
 The third estimator of 𝑅0 considered in this research, E3, expands on E1. Instead of confining the 
window of infections to one week, this estimator provides consideration to the number of new cases for 
the previous two weeks combined. This is done as it more accurately reflects the existing literature that 
COVID-19 may be transmitted in a 14-day window to another individual. The formulation of E3 is as 
follows: 

𝐸3(𝑅0) =
𝑍𝑛

𝑍𝑛−1  +  𝑍𝑛−2
 

This estimator is computed by dividing the number of new cases in a given week, n, by the number of 
new cases of the previous two weeks combined. In terms of assumptions, this estimator relies on the 
assumption that the disease of interest does have a two week incubation period and also may result in 
asymptomatic individuals. Because the timeframe of new cases is expanded to two weeks, it is expected 
that this estimator will be more stable than E1 but will also underestimate the true mean because the 
denominator is continuously increasing as long as the number of new cases increases.  
 Finally, as an attempt to combat the underestimation of the third estimator of 𝑅0, a fourth and 
final estimator was developed, E4. This estimator expands on the concept of a window of infections for 
both the current generation and the previous generation. The formulation of E4 is as follows: 

𝐸4(𝑅0)  =  
𝑍𝑛 + 𝑍𝑛−1

𝑍𝑛−2  +  𝑍𝑛−3
 

This estimator is computed by dividing the combined number of new cases of a given week, n, and the 
previous week, by the combined number of new cases from the two weeks prior to week n-1. In 
particular, the numerator is increased in value in an attempt to balance the increased denominator seen in 
E3. This estimator, like E3, is expected to be more stable than E1, while also mitigating the optimistically 
underestimation of 𝑅0 by E3.  

Estimators: Simulation of Branching Process Model 
 Prior to using the various estimators on COVID-19 data, various simulations were performed 
using synthetic offspring derived from various probability distributions. This was done in order to 
demonstrate the assumptions of each estimator and further motivate the usage of the branching process 
for this research. That said, our simulations relied on the Bernoulli and Poisson distributions, though the 
branching process may also consider other distributions like the Geometric, Normal, and Exponential 
distributions.  
 As for the Bernoulli distribution, the simulation was run n times (n = 1, 100, or 1000), such that at 
each generation, the number of new offspring produced by each individual was constructed using the 
following Bernoulli model: 

𝑋 = {1, 𝑝𝑟𝑜𝑏𝑎𝑖𝑙𝑖𝑡𝑦 𝑝
2, 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑞 = 1 − 𝑝  

Where E(X) = p+2q 
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In the simulations, p was treated as 0.5, making q also 0.5, giving each individual an equal chance of 
producing one or two children. Figure 1 below shows the change in the estimated means (i.e., E1, E2, E3, 
and E4) over 20 consecutive generations (via a single Bernoulli simulation): 
Figure 1 
Bernoulli Model Simulation: Generation # vs. Means (1 Run)  
 
 
 
 
 
As can be seen in Figure 1, E1 converges to a mean of 1.44 and is relatively unstable compared to E2 
(which converges to a mean of 1.52). Furthermore, it is evident that E3 appears more stable than E1, but it 
underestimates the true expected value of the distribution, 1.5. Contrary to its expected behavior, E4 
actually tends to overestimate the expected value of the distribution, which may be viewed as overly 
pessimistic (or supercritical) in the context of 𝑅0. Figure 2 below demonstrates the Bernoulli simulation 
using the average of the estimators for 1000 runs to simulate the true expected distributions: 
Figure 2  
Bernoulli Model Simulation: Generation # vs. Means (1000 Runs) 

 
 Simulations were also performed using the Poisson distribution, where various values of lambda 
were employed, ranging from 1.5 to 2.1 (with a 0.1 increment). This distribution simulates the mean 
based on the probability that a given person infects X individuals based on the value of lambda and the 
size of the current generation. Figure 3 below plots the means (E1, E2, E3, and E4) for a single run of the 
Poisson distribution over 20 generations (lambda = 1.5): 
Figure 3  
Poisson Model Simulation: Generation # vs. Means (1 Run; Lambda = 1.5) 

 
Once again, it is seen that E2 is the most stable, followed by E3 and then E1. Similar to the trend seen 
with the Bernoulli distribution, E3 tends to underestimate the true mean while E4 tends to overestimate 
the true mean. Finally, Figure 4 shows the 1000 simulations of the Poisson distribution to demonstrate the 
expected distribution over repeated runs: 
Figure 4  
Poisson Model Simulation: Generation # vs. Means (1000 Runs; Lambda = 1.5)  

 
See Appendix D for further simulations of the Poisson model with other levels of lambda ranging from 
1.6 to 2.1. 
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Estimators: State Level Means and Variances (COVID-19 Data) 
 Given that the simulations provide a general overview of how the branching process is used, the 
process is then used to similarly compute the four estimators in the context of the COVID-19 data. 
Initially, the four estimators are computed at a county-level in order to roughly estimate 𝑅0 of each county 
in the observed states and federal district. Then, the county-level estimates of 𝑅0 are used to compute the 
means and variances of the estimators at a state-level, on a weekly basis. For instance, since there are over 
43 weeks of data for NY state in 2020, then there are 43 means and 43 variances for the estimators (E1, 
E2, E3, and E4). These means and variances are dependent on the 𝑅0 of all of NY State’s county means in 
each given week. Below is an overview of the formulation of the means and variances of 𝑅0 for a given 
state: 

𝐸𝑗𝑖𝑐̅̅ ̅̅̅  = ∑ 𝐸𝑗/  𝑐
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑢𝑛𝑡𝑖𝑒𝑠 (𝑐)

𝑛=1

 

𝑉𝑎𝑟 (𝐸𝑗 𝑓𝑜𝑟 𝑤𝑒𝑒𝑘 𝑖) ̂ = ∑ (𝐸𝑗𝑖𝑛 −  𝐸𝑗𝑖𝑐̅̅ ̅̅̅)2 /𝑐 − 1
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑢𝑛𝑡𝑖𝑒𝑠 (𝑐)

𝑛=1

 

Where 𝐸𝑗  =Estimator 𝑗 ∃ 𝑗 ∈ [1,4] 
 Where 𝐸𝑗𝑖𝑐̅̅ ̅̅̅ = Estimated mean of 𝑅0 using the 𝑗𝑡ℎ estimator of the 𝑖𝑡ℎ week using the c counties  

Where 𝐸𝑗𝑖𝑛 = Estimator for the 𝑖𝑡ℎ week and 𝑛𝑡ℎ county using the 𝑗𝑡ℎ estimator  
As seen, the mean of the estimator is based on aggregation from a given state’s counties, consequently 
giving the estimated 𝑅0 for an entire state (as opposed to a county). The variance is similarly computed. 

NPI Analysis Approach 1: Analysis of Variance 
 To recap, the primary goals of this research are to assess the relationship between NPIs and 𝑅0. 
Using a preferred estimator of 𝑅0, an analysis of variance (ANOVA) is performed between the grouped 
levels of the NPI stringency index and the estimated 𝑅0 for each state and federal district. To reiterate, 
JMP is used to assess if different states’ and federal district’s 𝑅0 have a relationship with the various 
levels of the NPI stringency index. Below are the general hypotheses (respectively for a given state), 
tested at a level of significance of 0.05 (𝛼=0.05) 
 

H0: 𝐸𝑖is the same for all blocks of the NPI stringency index 
H1: There is a difference in 𝐸𝑖between at least one pair of blocks of the NPI stringency index 

Where 𝐸𝑖=True 𝑅0  for 𝑖𝑡ℎ NPI stringency index (Notation used in results) 
 

In these ANOVA tests, the sample size is typically the total number of weeks analyzed in a given state (or 
in the context of the branching process, the total number of generations). Given that these sizes are 
typically small (e.g., n≈40 weeks/generations), a Shapiro-Wilks Test is performed to determine whether 
the sample’s residuals follow a normal distribution. Below are the hypotheses for the Shapiro-Wilks Test, 
also tested at 𝛼=0.05): 

H0: The data is normally distributed 
H1: The data is not normally distributed 

To that end, this analysis approach is just a preliminary primer in understanding if any relationship exists 
between NPIs and 𝑅0 in the observed regions. The primary analysis is the change-point analysis, which is 
covered in-depth next. 

NPI Analysis Approach 2: Confidence Intervals and Change-Point Analysis 
The sample mean and variance of the 𝑅0 estimators in each state are further used in creating 95% 

confidence intervals on a weekly basis to hypothesize the true value of 𝑅0 on a given week. Below is the 
formulation of the confidence interval for a single week in a given state (with c counties) (Harris, 1964): 
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𝐶. 𝐼. (𝑤𝑒𝑒𝑘 𝑖)  =  𝐸𝑗𝑖𝑐  ± 𝑡(𝑑𝑓=𝑐−1,𝛼=0.025)√𝑉𝑎𝑟(𝐸𝑗𝑖𝑐)/𝑐̂   

 By plotting these confidence intervals for the three states (or D.C.) in a given region, comparisons 
can be drawn between states on 𝑅0 , between the state’s variability of 𝑅0 , and also more generally 
between the 3 estimators of 𝑅0 . Moreover, the confidence intervals shine a light on which particular 
points in time COVID-19’s transmission rate could be classified as sub-critical, critical, and super critical. 
Sample plots and tables can be found in the Results section and further plots can be found throughout the 
appendices. 
 Of greater interest is the implication of the confidence intervals of 𝑅0 on the determination of 
change-points for the purpose of NPI analysis. Given what may be considered as a peak or drop is 
subjective, we have determined that change-points are considered to be 𝑅0 values that are statistically 
different than the 𝑅0 of the previous week (at a significance level of 𝛼=0.05). Moreover, given the time-
series nature of this analysis, it is important to clarify that there may be multiple peaks and drops. That 
said, a peak is a time point (week) when 𝑅0 is greater than the upper-bound limit of the confidence 
interval of the previous week’s 𝑅0. Below are the hypotheses tests for identifying peaks using confidence 
intervals (used on a weekly basis for each estimator in each state): 

H0: 𝐸𝑗𝑖𝑐  =  𝐸𝑗(𝑖−1)𝑐 
H1: 𝐸𝑗𝑖𝑐  >  𝐸𝑗(𝑖−1)𝑐 

On the other hand, a drop is considered a time point where the 𝑅0 is less than the lower-bound limit of the 
confidence interval of the previous week’s 𝑅0. Below are the hypotheses tests for identifying drops: 

H0: 𝐸𝑗𝑖𝑐  =  𝐸𝑗(𝑖−1)𝑐 
H1: 𝐸𝑗𝑖𝑐  <  𝐸𝑗(𝑖−1)𝑐 

Using these particular change-points, an in-depth review of the raw NPIs is conducted at those given 
weeks (as well as up to two weeks prior). This is primarily done to assess whether any conclusions could 
be drawn on NPIs relationship with 𝑅0. Like the ANOVA analysis approach, the change-points analysis 
depends on a single preferred estimator due to the limitations of the other estimators (further explanations 
outlined in the Results section).  

RESULTS 
 To address the proposed research question, the Results section first identifies a preferred state-
level estimator of 𝑅0 (i.e., 𝐸1̅̅ ̅) through EDA for subsequent analysis alongside NPI data. The subsequent 
analysis entails the outlined methodologies of EDA, ANOVA testing, and change-point analysis for each 
of the 8 states and federal district (D.C.). To reiterate, the analysis of these 8 states and D.C. is performed 
based on three regions in the U.S. (Midwest, Tri-State, D.M.V.) and for the year of 2020. 

Exploratory Data Analysis: Comparison of Estimators of 𝑅0 
 In order to determine a preferred estimator of 𝑅0, an initial visual analysis comparing the trends 
of the four estimators of 𝑅0 by region is conducted. These comparisons can be seen in the time-series in 
Figures 5-8 below, running from week 17 of 2020 to the end of 2020 (The full plots can be found in the 
Appendix E).  

The regional 𝑅0 seen in Figures 5-8 were computed as weighted averages of means of all the 
states in a given region. For instance, the Midwest region had n=276 counties (𝑛𝐼𝐴 = 99, 𝑛𝐾𝑆 = 105, 
𝑛𝑊𝐼 = 75), the Tri-State region had n=87 counties (𝑛𝑁𝑌 = 58, 𝑛𝑁𝐽 = 21, 𝑛𝐶𝑇 = 8), and D.M.V. had 
n=118 (𝑛𝑉𝐴 = 95, 𝑛𝑀𝐷 = 23). D.C. was excluded from the D.M.V. region for this particular comparative 
analysis of the estimators by region, primarily due to the aforementioned fact that the COVID-19 dataset 
treated the data of all 8 wards in D.C. as a single county. Though data manipulation measures were taken 
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to redistribute the case counts based on population proportions of the wards, we did not want D.C. to be 
lumped with Maryland and Virginia due to the 8 wards not being completely representative of similar 
data of MD and VA. 
 
 
  

 
 
 
 
 
 
 

At a glance of Figures 5-8, there are noticeably different trends between the four estimators. For 
instance, in Figure 5, 𝐸1̅̅ ̅ is seen to demonstrate moderate fluctuations over time. Conversely, 𝐸2̅̅ ̅ is seen to 
be stabilize and converge toward 𝑅0= 1 in Figure 6. Nonetheless, 𝐸2̅̅ ̅ still remained slightly above 1 for 
most weeks, tending to constantly demonstrate a mildly supercritical behavior. On the other hand, 
𝐸3̅̅ ̅ tends to be very optimistic in the weekly estimates of 𝑅0, given all regions 𝑅0s never exceeds 1. 
Specifically, with 𝐸3̅̅ ̅, the estimated growth of transmission is always classified as subcritical. Finally, in 
contrast to 𝐸3̅̅ ̅̅ , 𝐸4̅̅ ̅, tends to slightly overestimate 𝑅0, with many estimates converging beyond 𝑅0 of 1.5 
(Figure 8). Nonetheless, such behaviors were expected. In particular, the underlying assumptions of the 
estimators support the behaviors as well as the simulations of the estimators with data synthetically 
produced via two different probability models.  

To that end, given these findings, 𝐸1̅̅ ̅ was decided as the best candidate estimator for subsequent 
analysis in the context of NPIs. The fluctuations in 𝑅0 may serve as candidate change-points, which may 
not be of great amplitude in 𝐸2̅̅ ̅. Meanwhile, though there were fluctuations over time with 𝐸3̅̅ ̅ and 𝐸4̅̅ ̅, 
they may be biased from the truth, as noted by the particularly high and low estimates of 𝑅0. This trend 
was similarly observed in the simulations using Bernoulli and Poisson models. Consequently, the 
remainder of the Results section will rely on 𝐸1̅̅ ̅ for analysis. 

Beyond the derivation of the preferred estimator of 𝑅0 (i.e., 𝐸1̅̅ ̅), Figures 5-8 also conveyed a few 
other mentionable results. For instance, it is seen that in the greater span of the year, the three regions 
generally tend to follow similar trends. Moreover, it was discovered that weeks with suddenly large 
spikes in 𝑅0 for a particular region tended to be due to high variability of estimates for a given state. For 
instance, in weeks 13-16 (seen in the full plots in Appendix E), it was discovered that the Tri-State region 
had particularly high estimates of 𝑅0 compared to the other regions across each estimator. Further 
investigation indicated that this was due to high variability between the counties of NJ during those 

Figure 5  
𝑬𝟏̅̅̅̅  across the Three Regions 

Figure 6  
𝑬𝟐̅̅̅̅  across the Three Regions 

Figure 7 
𝑬𝟑̅̅̅̅  across the Three Regions 

Figure 8  
𝑬𝟒̅̅̅̅  across the Three Regions 
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weeks, potentially stemming from the influx of initial COVID-19 reported cases. As another example, in 
week 28 of 𝐸1̅̅ ̅, all three regions demonstrate a visible peak in 𝑅0. Granted this analysis does not indicate 
if the peak is significant, the change-point analysis later on will show that it was. Similarly, in 𝐸2̅̅ ̅̅ ’s plot, 
to reiterate, it can be seen that the three regions generally continue to persist a mildly supercritical 
classification of 𝑅0 of COVID-19. Nonetheless, when focusing on more specific points in time, the 
estimate trends of 𝑅0 are evidently differing by region, which gives motivation to conduct further analysis 
alongside the NPIs, as seen in the remainder of the Results section.  

As a final comparison of the estimators, in terms of the variances of estimators, all estimators 
generally demonstrated low variances with the exception of a few off weeks (see plots in Appendix F). 
For instance, in Figure 1F, it can be seen that there are certain spikes in variability common to all 
observed states and D.C. with 𝐸1̅̅ ̅. With the few weeks with slightly higher variances, there is potential for 
this to be associated with NPIs. However, this may also be due to a host of other confounding variables 
beyond the scope of this research question, as further outlined in the Discussion & Conclusions section 
(Hanlon & Vidyashankar, 2011).  

Exploratory Data Analysis: NPIs Over Time 
 Having identified 𝐸1̅̅ ̅ as a preferred estimator for subsequent analysis of NPIs, a secondary 
exploratory data analysis was performed, this time in the context of NPIs. In particular, visualizations 
were generated to compare the NPI stringency index alongside 𝐸1̅̅ ̅ as well as the individual NPIs over 
time (e.g., School closings, public even cancellations, etc.).  

Consider the Figure 9 below, which compares 𝐸1̅̅ ̅ in new New Jersey against New Jersey’s NPI 
stringency index over time. As seen in the figure’s upper plot, there is a sharp rise in the stringency index 
from weeks 16 to 23 in 2020. Interestingly, despite the sharp rise in the NPI stringency index (black), 
𝐸1̅̅ ̅ in New Jersey persisted to rise. Though this may be due to other reasons, it may be a sign that the 
government acted too slow in combating the fast growing disease. Further analysis showed this trend 
occurred in every state and D.C. as well. Looking further in time in the upper plot, it can be noted that 
New Jersey’s stringency index dropped slightly during weeks 24 and 25 (early June). Cross-reference to 
the lower plot at the same time seems to indicate that this drop in the cumulative stringency index was 
due to the relaxed component stringency of stay-at-home mandates. Looking two weeks later at the 𝐸1̅̅ ̅ in 
the upper plot, it can be noted that 𝐸1̅̅ ̅ in New Jersey increased, from 1.0 to 1.8. It is important to 
emphasize that such changes in 𝐸1̅̅ ̅ cannot truly be said, for certain, to be due to the changes in NPIs. 
Likewise, simple exploratory data analysis as such may not even indicate if there is any statistical 
association between the two variables. Nevertheless, it remains an interesting observation to potentially 
consider. 

As a second example, Figure 1G (Appendix G), shows a similar visualization in the context of 
Iowa from the Midwest region. It can immediately be seen that Iowa compared to New Jersey has more 

Figure 9 
New Jersey: COVID-19 NPI Stringency Index vs 𝑬𝟏̅̅̅̅  (2020) 
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fluctuations in 𝐸1̅̅ ̅ over time. Moreover, the same trend of the concurrent rise in stringency index and 𝐸1̅̅ ̅ at 
the start of the pandemic, persists, as seen in New Jersey (and all other states and D.C. for that matter). 
Interestingly, around the same time of New Jersey’s initial drop in stringency index, Iowa similarly saw a 
drop in stringency index (June/Week 24). However, unlike New Jersey, whose drop was slight, Iowa’s 
was much more drastic, dropping from the low 60s to the mid 20s. Two weeks later, it can be seen that 
the 𝐸1̅̅ ̅ in Iowa goes from 1 to 1.4. Once again, though an interesting phenomenon, it is not clear with 
certainty that the lagged NPI is related to changes in 𝐸1̅̅ ̅. Finally, as the stringency index remains in the 
mid 20s until week 46, 𝐸1̅̅ ̅ continues to fluctuate in terms of peaks and drops. This also may be attributed 
to other factors beyond NPIs, such as those covered in the Discussion & Conclusions.  

Table 1 provides additional examples of high-level and interesting observations occurring in the 
remaining states not covered above (see Appendix G for full plots). It should be stressed that the 
examples in Table 1 merely cover a sample of observations of potential interest. Looking at such 
examples, it appears that sometimes there is a related trend between the lagged stringency and  𝐸1̅̅ ̅̅ . 
However, in truth, these are actually only a few times visual analysis such as the ones above provided 
insights with plausible interpretations. In fact, there are many other points in times where 𝐸1̅̅ ̅ fluctuates 
where there are no changes at all to the stringency index, with weeks 24 to 46 in Iowa being a prime 
example. Conversely, there are plenty of weeks where the stringency indices changed or even remained 
consistently high, but there were no changes in the estimated transmission rate of COVID-19.  
Table 1  
EDA Sample Observations: NPIs and E1(R0) 

Region State Week Number(s) 
(2020) Pertaining to 

Stringency Index 

Sample Observation 

Midwest 

Kansas 
23 𝐸1̅̅ ̅ dropped immediately after stringency index decreased 

24-53 𝐸1̅̅ ̅ remained supercritical while stringency index remained below 50 

Iowa 24 𝐸1̅̅ ̅ increases from 1.0 to 1.4 two weeks after stringency index drops by 35 points 

Wisconsin 35-40 𝐸1̅̅ ̅ remained supercritical while stringency index decreased as low as 33.8 

Tri-State 

New York all 𝐸1̅̅ ̅ remained supercritical most of the year, despite high stringency index  

New Jersey 24-25 𝐸1̅̅ ̅ spiked up two weeks after stringency index dropped  

Connecticut 28 𝐸1̅̅ ̅ spiked up two weeks after to 3.2 after stringency index hit a plateau  

D.M.V. 

D.C. 
22 𝐸1̅̅ ̅ spiked up five weeks after the stringency index began to decrease (week 27) 

30 𝐸1̅̅ ̅ dropped one week after stringency index began to increase again (week 31) 

Maryland 22 𝐸1̅̅ ̅ spiked up two weeks after the stringency index started decreasing (week 22) 

Virginia 
26 𝐸1̅̅ ̅ spiked up two weeks after the stringency index started decreasing (week 28) 

35-50 𝐸1̅̅ ̅ remained supercritical while stringency index remained below 45 

From such high-level exploratory data analysis, it is clear that while there sometimes appears to 
exist a visual relationship between 𝐸1̅̅ ̅ and the NPI stringency index, nothing can be deduced with 
statistical certainty. Specifically, there is no statistical evidence pertaining to significance of the 
relationship between the stringency index and 𝐸1̅̅ ̅, of the classification of the transmission rate of COVID-
19 (e.g., supercritical), or even of the identification of peaks and drops. Additionally, despite seeing how 
certain types of NPIs change in terms of component stringency, there is no insight provided by the plots 
on the actual policy changes being made (merely a high-level change in the type of NPI). That said, to 
address these two primary concerns, the next two sections of the Results outline the findings from an 
ANOVA analysis and a change-point analysis.  
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Table 3 
ANOVA and Shapiro Wilks Test Summary (All States and D.C.) 

On a final note, pertaining to exploratory data analysis, Figure 9G (Appendix G) demonstrates 
some interesting comparisons between the stringency indices of the 8 states and D.C. Interestingly, all 
observed states and D.C. had varying levels of stringency year round. Moreover, in April and May of 
2020, all observed regions demonstrated peaks in stringency indexes, with shared relaxations in summer 
that bounced back with increased stringency toward the holiday season (November and December of 
2020). Furthermore, despite COVID-19 having well demonstrated its presence in Asia and Europe earlier 
in 2020, it is interesting to see all regions had delayed responses in stringency, including in March of 
2020. Specifically, no state/district surpassed a stringency index of 35 until March of 2020. Additionally, 
it is evident that the stringency indices within a region tend to be at similar levels. For instance, the 
Midwestern states have consistently lower stringency indices compared to the Tri-State states. Finally, it 
is worthy to note that New York state appeared to have the highest of stringency indices year round. 

Results of Analysis of Variance 
 Visual analysis of the role of NPIs in the transmission rate of COVID-19 merely provides high-
level insight on the research question. Consequently, this next section of the Results analyzes the 
statistical findings from the ANOVA tests conducted between each state’s 𝐸1̅̅ ̅ and leveled NPI stringency 
index. Consider the example of Kansas in the Table 2: 
  

 

 
 

 
            *p<0.05 

As evident, given the p-value of <0.0002 and 𝛼=0.05, there is statistically significant reason to 
believe that the different groups of the stringency index in Kansas have different 𝐸1̅̅ ̅ . In order to further 
validate the results of the ANOVA, a Shapiro Wilks Test for normality was performed. Specifically, 
given the resulting p-value of 0.9031 being above the level of significance of 0.05, there is no sufficient 
reason to reject the null hypothesis that the distribution is normal in Kansas. Hence Kansas exhibits a 
meaningful statistically significant association between its 𝐸1̅̅ ̅ and the NPI Stringency Level.  

 

            *p<0.05 

Similar analysis was repeated for all the states and D.C., as summarized in Table 3 above. Per the 
findings of the ANOVA tests, it is clear that only Kansas yielded significant results that could be 
interpreted as meaningful due to the normality assumption being met. Nonetheless, as mentioned, Kansas 
had a low R-squared value, indicating that the simple model regressing 𝐸1̅̅ ̅ against levels of the NPI 
stringency index may not have been sufficient. Wisconsin also demonstrated significant differences in 
𝐸1̅̅ ̅ based on the level of the NPI stringency index. However, unlike Kansas, the normality assumption was 

Source Degrees of Freedom  Sum of Squares Mean Squares F Ratio 

Model 2 2.5644457 1.28222 11.1742 

Error 36 4.1309395 0.11475 Prob > F 

Total 38 6.6953852  0.0002* 

Region State n  ANOVA Significance  
(p-value) 

Normality Assumption 
(Shapiro Wilks Test) 

ANOVA Summary 

Midwest 
Iowa 39 0.8872 0.4211 ANOVA results are NOT significant 

Kansas 39 <0.0002* 0.9031 ANOVA results ARE significant 
Wisconsin 40 0.0205* 0.0006* ANOVA results ARE significant 

Tri-State 
New York 40 0.4671 <0.0001* ANOVA results are NOT significant 
New Jersey 40 0.2387 <0.0001* ANOVA results are NOT significant 
Connecticut 39 0.9971 <0.0001* ANOVA results are NOT significant 

D.M.V. 
D.C. 36 0.2737 0.0628 ANOVA results are NOT significant 

Maryland 40 0.1133 0.0015* ANOVA results are NOT significant 
Virginia 39 0.6849 0.0011* ANOVA results are NOT significant 

Table 2  
Kansas ANOVA Results 
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not met in Wisconsin, indicating that the ANOVA results may be questionable in interpretation. For Iowa 
and D.C, while the ANOVA tests were not significant, this could be interpreted as meaningful due to the 
normality assumption being met. Finally, the remaining states did not yield significant results for the 
ANOVA tests, which may not be meaningful given that their normality assumptions were also violated. 
 Of the three regions, the Midwest region was the only region where there was a significant 
association between NPI stringency index and 𝐸1̅̅ ̅ values. Even though Wisconsin did not meet the 
normality assumptions, Kansas did. When not considering the normality assumption, this may indicate 
that NPIs play a more prevalent role in the Midwest region of the U.S. compared to other regions. 
Moreover, this analysis provides slight insight that NPIs play different roles in different states, which is 
not surprising given the variability of U.S. policy by region, state, and county. Nonetheless, further testing 
would be required to draw more definitive conclusions, as discussed in the Discussion & Conclusions. 

Results of the Change-Point Analysis 
 Although the ANOVA analysis provided some insight into the roles NPIs play in the transmission 
rate of COVID-19, further analysis was sought to look deeper into the actual NPIs implemented at 
specific change-points. To reiterate, change-points are classified as peak or drop estimates of 𝑅0 on a 
given week (i.e., 𝐸1,𝑖̅̅ ̅̅  that are significantly different compared to the previous week 𝐸1,𝑖−1̅̅ ̅̅ ̅̅ ̅). For instance, 
consider the plots below in Figures 10 and 11 from the Tri-State region as an example. Figure 10 shows 
the confidence intervals of 𝐸1̅̅ ̅ for the region since the first observed case on March 5th, whereas Figure 
11 is zoomed in to 28-39 weeks after the first observed case on March 5th (i.e., September to late 
November). 

As evident from a high-level glance of Figure 10, there are various change-points visible to the 
eye. As outlined in the Methodology and Techniques section, to confidently determine such points, 
significance testing was performed by comparing confidence intervals of different points. In all, the Tri-
State region had 43 particular change-points, with further breakdowns provided in Table 1I (see Appendix 
I). In Figure 11, it can be seen that both New Jersey and Connecticut share change-points on the week of 
October 22 (circled in red). When looking at the specific NPIs implemented in the two weeks leading up 
to that change-point, it was noted that there were in fact no new changes or modifications to NPIs in New 
Jersey. On the other hand, in Connecticut, the state entered Phase 4 of its reopening plan, which did 
include increased capacity of indoor gatherings, including weddings. This point draws a few observations 
of interest. First, it can be seen that NPIs do indeed vary by state, even if they do fall in the same region. 
Second, despite sharing a change-point peak, only one state seems to have a possible observational 
linkage to NPIs. And third, among many more observations, there is the possibility that reopenings in 
Connecticut played a role with the spike in the transmission of COVID-19 at that time. To reiterate, 
however, it cannot be said with statistical certainty if such findings were due to the relaxation of public 
gathering NPIs in the state. Moving beyond the general change-point analysis, the confidence bounds in 
Figures 10 and 11 also demonstrate that Connecticut experienced higher variability over time compared to 

Figure 10  
Tri-State Region: 95% Confidence Interval for 𝑬𝟏̅̅̅̅  

Figure 11  
Tri-State Region: 95% Confidence Interval for 𝑬𝟏̅̅̅̅ : Sept to Nov 
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its peer states. This is not surprising, given the state only had 8 counties, whereas the other two states had 
many more. 
 Given that the change-point analysis was extensive in nature, Table 1I (See Appendix I) intends 
to summarize other such findings for the observed regions. Such sample observations in the table are 
merely selected to demonstrate the general variability of NPIs and are by no means intended to provide 
any definitive explanations. To reiterate, the table is merely a sample of findings. For the most part, it was 
observed across all three regions that most weeks had no clear linkage between NPIs and change-points in 
the transmission of COVID-19. However, when there did appear to be a linkage, interesting findings 
emerged. As expected, the Tri-State region had drastically more stringent NPIs compared to the other 
regions observed. For instance, in New York State, gyms and restaurants rarely opened until much later in 
the year, as compared to the Midwest which had already opened up such services by May.  

Moreover, there appeared to be much greater coordination between the three governors in the Tri-
State area, whereas this trend did not appear in the other two regions. As another difference, of the weeks 
observed, there were only two references to mandates of NPIs through fines, and these appeared strictly in 
the Midwest. Of course, this may just be an observational finding, given that not every single NPI was 
examined (only those near change-points were analyzed). It nevertheless remains an interesting 
observation worthy of mention, as it emphasizes the variability of NPIs between different regions across 
the country. As a final comparison, among many others, a common trend observed with some of the peaks 
was reopenings. For instance, of the few change-points of transmission with plausible linkages with NPIs 
in the D.M.V., reopenings were a common trend. For instance, reopenings of public settings and relaxed 
restrictions of social gatherings in the summer were often observed with peaks in the transmission rates. 
This trend was also frequently observed in the analysis of the other two regions. Nonetheless, to reiterate 
once more, these trends are merely observational and representative of a small sample of all the NPIs 
implemented in these regions. Observing all NPIs and conducting more statistical analyses to validate the 
linkage between transmission rates and NPIs is beyond the scope of this paper's timeframe.  

Results of Confidence Intervals Analysis 
 A final analysis relating to the change-point analysis pertains to the usage of the confidence 
intervals for other general regional comparisons. As Table 2I (See Appendix) demonstrates, the number 
of significant peaks and drops (or change-points) was more or less the same across the different regions. 
However, neither this nor the other analyses shine light on two other areas of analysis pertaining to the 
estimated transmission rate of COVID-19: (1) inter and intra regional overlaps of change-points and (2) 
inter and intra regional overlaps of epidemiological classifications of transmission. Beginning with intra-
regional change-points, Table 4 highlights the week numbers of intersections:  

Table 4 
Regional Intersections of Peak and Drop Change-Points (Weeks) 

Region Shared Peak Weeks Shared Drop Weeks 
Midwest 42, 44, 50 30, 47, 48, 53 

Tri-State 31 32 
D.M.V. 17 39, 51 

 From Table 4, it appears that of the many change-points, very few actually were shared by the 
states in a region. This provides insight indicating that other confounding factors specific to each state (or 
district) may have played a role in the estimated transmission rates of COVID-19. Moreover, when 
comparing all three regions, not a single one shared a peak or drop. Nonetheless, this does not mean to 
say that peaks and drops were not shared by any two regions. In fact, the general exploratory data analysis 
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plots from the earlier sections of analysis still tended to signify that there were more broader time periods 
(e.g., summer) where trends were the same.  
 In regard to the epidemiological classifications of the estimated transmission rates, Table 5 aims 
to provide insights. In particular, the confidence intervals of the estimated transmission rates were used to 
assess at a level of significance of 0.05 whether the transmission should be classified as subcritical, 
critical, or supercritical. In particular, Table 5 primarily looks at the intersection of these classifications 
between the states of a given region. 

Table 5 
Regional Intersections of Epidemiological Classifications of 𝑬𝟏̅̅̅̅  

Region Shared Subcritical Weeks Shared Critical Weeks Shared Supercritical Weeks 

Midwest 11, 12, 13, 15, 49 25, 26, 36 38, 39, 40, 42, 43, 44, 45, 46 

Tri-State N/A 16,17,18,19,23,25,26,27,28,32,36,40,42,53 47,50 

D.M.V. 10, 11 16, 21, 30, 33, 34, 36, 37, 39 14, 41, 44, 46, 47 

As Table 5 shows, in terms of regions, states in the Tri-State region tended to have significantly 
critical levels of transmission on the same weeks more often than states of the other two regions. 
Moreover, a sequence of back-to-back weeks from September to December in all three states of the 
Midwest appeared to have significantly super-critical levels of transmission. To that end, though further 
analyses could be provided on such findings, they only play a minor role in comparison of the regions in 
terms of change-points and classifications of transmissibility. As the complex findings of the various 
analyses have shown, NPIs and estimators of transmissions vary by states and regions in many different 
ways, prompting further research outlined in the Discussion & Conclusions section. 

DISCUSSION & CONCLUSIONS 
 To recap, after identifying a preferred estimator of COVID-19 transmission rates for subsequent 
analyses such as ANOVA and change-point analysis, various findings emerged. Generally speaking, the 
exploratory data analysis of the NPIs alongside the estimated state-level transmission rate overtime set the 
scene, indicating that while certain time points may have had interesting relationships with NPIs, this was 
generally not true for most of the remaining time points. The statistical test results (i.e. ANOVA) further 
supported this, given that only two states demonstrated statistical significance in the relationship between 
the estimated transmission rate (�̅�1) and the stringency index of NPIs. Even then, at best, only one of 
those two states with significant results could be deemed as meaningful given the normality assumptions. 
Finally, while the change-point analysis provided more nuanced insights on the actual NPIs themselves, 
the general analysis reaffirmed the uncertainty in the role of NPIs in the transmission of COVID-19, as 
there were ultimately no clear trends that emerged between the two variables of interest.  
 These findings are of relevance as they ultimately indicate that while COVID-19’s transmission 
rate may have been influenced to some extent by NPIs in the focused areas, there are no definitive 
conclusions. A speculated reason for the lack of definitive conclusions is due to the complexity and 
variability of U.S. policy, as noted by existing literature (Ebrahim et al., 2020). The incongruence of NPIs 
was certainly observed by the in-depth change-point analysis, as it was noted that different states had 
different NPIs and stringency levels during the same time frames. Moreover, though the Oxford’s NPI 
dataset was organized by state, it was evident that county level governments varied in their NPIs related 
to COVID-19. This particularly highlights the variability of policy in the U.S. due to its unique 
approaches in implementing policies. Alternatively, this may have also been due to issues in data being 
used in estimating 𝑅0. The data observed in this research project relied on open source public health data 
which may often be messy and changed overtime due to integrity of COVID-19 test results (e.g., cases 
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may not have been truly confirmed). Consequently, such unpredictability in the data may have resulted in 
biased peaks/drops that may have demonstrated trends contrary to the true changes of 𝑅0 over time. One 
such implication of this is that greater research is necessary in gathering more reliable case data, such as 
direct hospital data. In particular, hospital data on COVID-19 cases may be more credible, given the 
centralized distribution of reliable tests, consequently allowing researchers to formulate more reliable 
estimators of 𝑅0 while exploring its linkage with other variables such as NPIs. 
 That said, there are various potential confounding variables to consider in such an analysis. The 
most notable confounding factor is the actual enforcement of NPIs. Though this research focused on the 
implementations of NPIs, it is important to consider that implementations and enforcements are very 
different in nature. When dealing with enforcement of NPIs, it is unclear how exactly the NPIs are being 
enforced by the different regions, states, and counties. For instance, from our observation, there was a 
minimal mention of fines or imprisonment for violating the implemented NPIs. Secondly, there is no clear 
indication based on this research or the data used as to how long it actually takes for NPIs to succeed, if at 
all. Moreover, the complexities of enforcement of policies raises further underlying confounding factors. 
For instance, culture and geographic demographics to mention a few. It may be possible that policy 
enforcement varies by urban and rural demographics. Moreover, political beliefs, cultural values, and 
general shock may have also played a role into whether individuals in the U.S. actually abided by such 
NPIs or not. In fact, a Cornell study briefly indicated that miscommunication by political and public 
health figures played a role in the transmission of COVID-19 (Fricker, 2021). This opens up the 
discussion for the need for further statistical analysis of the general effectiveness of and adherences to 
policies (not necessarily restricted to NPIs).  

Aside from this subtle difference between enforcement and implementation, there are many other 
potential confounding variables. For instance, the data does not account for which type of tests were 
provided by the various health departments of the U.S. As the summer rolled out, it was inevitable for 
travel plans to be made, requiring non-traditional COVID-19 tests such as the Rapid-PCR Tests. With 
such tests, those tested trade-off reliability for speed, which may unfortunately be reflected in data-based 
studies such as this. The same holds for different antibodies used in testing as well as the physical means 
of testing (e.g., blood samples versus respiratory samples) (Capuzzo et al., 2020). Variations transcend the 
testing process and into the diseases itself. Specifically, variants of COVID-19 itself may have also acted 
as a confounding factor, especially in the later half of 2020 with the introduction of variants of the virus. 
In particular, B.1.1.7, speculated to have originated in the U.K., has been identified as spreading more 
easily compared to the original disease (CDC, 2021). Aside from such variations, it is also reasonable to 
believe that such test data does not reflect everything going on in all the observed states. For instance, 
regions such as Northern Virginia, D.C. and Baltimore are tightly interconnected, so movement between 
states may have played a role as well. The same may be considered for the Tri-State area, wherein the 
states are closely packed in close proximity. Finally, travel by individuals between states due to holidays, 
seasons, and other reasons unbounded by NPIs may have also played underlying roles in the transmission 
rates of COVID-19. 

Limitations & Future Work 
  Taking into account the implications and confounding factors of this research problem, it is 
imperative to provide considerations into limitations of the research, namely, to identify paths forward. 
Beyond the need for more reliable data, this research was limited in terms of resources needed for further 
analysis, specifically due to time and labor constraints. Previous studies as such have been contributed to 
by many more researchers, in wider time frames, and with the help of volunteers to collect and analyze 
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the data. Consequently, given this constraint, our research limited its focus to merely a few statistical 
analyses of a single estimator of 𝑅0. Though mentioned that 𝐸3̅̅ ̅ and 𝐸4̅̅ ̅ were more biased in their 
fluctuations, it nevertheless would have been interesting to conduct ANOVA and change-point analyses 
using those estimators of 𝑅0. Furthermore, such estimators may have provided different insights on the 
roles of NPIs on the transmission rate of COVID-19. Similarly, such limitations also narrowed the scope 
of estimators analyzed. With the ever growing changes in assumptions of COVID-19 transmission 
mechanisms, other estimators of 𝑅0 could have been explored if time permitted. 
 Shifting to future research, it is firstly highly recommended to expand this research to encompass 
other regions in the U.S. The obstacles that limited the scope of analyses and estimator assumptions also 
limited the scope of the regional analysis. In our paper, the majority of the regions were located in the east 
coast, providing no consideration to the role of NPIs in the transmission rate of COVID-19 in other 
regions of the U.S. Such regions include, but are not limited to the west coast, additional states in the 
Midwest, the southwest, central states, and also non-inland territories. By conducting further analysis into 
additional regions, if not the whole U.S., more regional comparisons may have surfaced regarding the role 
of NPIs in the transmission of COVID-19. An alternative recommendation for research would be to 
narrow the scope of focus to a particular state. As discovered, NPIs vary by state and county, often 
obscuring the analysis of linkages between NPIs and COVID-19 transmission rates. Research on a 
particular state/region would allow for more refined policy analysis, consequently enabling more nuanced 
conclusions. Final alternatives would be to draw on existing research such as the one described in this 
paper. For example, it is recommended to compare such a study against a similar study in countries or 
regions that implement NPIs more uniformly. This would provide further insights on the topic at hand. 
Similarly, one could draw on this research to develop more improved estimators of 𝑅0 as continuing 
research on the transmission mechanisms of the disease and its variants continues to surface. Above all, it 
would be recommended to conduct further assessments on the associations, particularly with non-
parametric methods such as the medians-test for state’s whose residuals do not satisfy the normality 
assumptions for ANOVA. 
 All in all, despite recent developments of pharmaceutical measures such as vaccines, continued 
research needs to be done at the intersection of public health policy such as NPIs alongside COVID-19. In 
2020, the world was undoubtedly blindsided by the infectious disease, wrecking disruptions to societal 
norms of living and economic markets among other realms. Though the prediction of a future pandemic 
unrelated to COVID-19 is not feasible, extensive research into mechanisms that help minimize the 
disruptions of such diseases may prove to be worthwhile for all people, policymakers and public health 
specialists. 
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APPENDICES 
Appendix A: Frequently Used Acronyms 

 
Table 1A 
Acronym Meanings 

Acronym Meaning 
D.M.V District of Columbia, Maryland, Virginia 
NPI Non-Pharmaceutical Interventions 
COVID-19 Coronavirus 2019 
CPA Change-Point Analysis 
EDA Exploratory Data Analysis 
ANOVA Analysis of Variance 
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Appendix B: Variable Names and Descriptions 
 
Table 1B 
NYT COVID-19 us-counties Dataset Used Variables 

Variable Name Type Description 
Date String String representing daily date of positive cases and deaths for each county 
County String U.S. county in a given state 
State String U.S. State (also including D.C. and federal territories) 
FIPS Int Federal Information Processing Standards Code assigned to each county 
Cases Int Cumulative number of cases in a given county 

 
Table 2B 
Appended Variables to us-counties Dataset by Researchers 

Variable Name Type Description 
Day_of_Week String String representing weekday (i.e., “Thursday”) used to filter down data 
Diff_cases Int Difference of cumulative cases of two consecutive weeks to derive the 

approximate number of new cases in a given week (as opposed to 
cumulative) 

Mean_cases_E1 Float Estimated 𝑅0 in a single county using estimator 1 derivation 
Mean_cases_E2 Float Estimated 𝑅0 in a single county using estimator 2 derivation 
Mean_cases_E3 Float Estimated 𝑅0 in a single county using estimator 3 derivation 
Mean_cases_E4 Float Estimated 𝑅0 in a single county using estimator 4 derivation 
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Table 3B 
OxCGRT Dataset Used Variables  

Variable Name Type Description Coding 
Stringency index Float Records the strictness 

of “lockdown” style 
policies that primarily 
contain/restrict 
people’s behaviors 
(scaled 0-100) 

 

C1_School closing Int (Ordinal)  Records closings of 
schools and 
universities  

0 - no measures 
1 - recommend closing or all schools open with alterations resulting in significant 
differences compared to non-Covid-19 operations 
2 - require closing (only some levels or categories, e.g. just high school, or just public 
schools) 
3 - require closing all levels 
Blank - no data 

C2_Workplace closing 

Int (Ordinal)  

Record closings of 
workplaces 

0 - no measures 
1 - recommend closing (or recommend work from home) or all businesses open with 
alterations resulting in significant differences compared to non-Covid-19 operation 
2 - require closing (or work from home) for some sectors or categories of workers 
3 - require closing (or work from home) for all-but-essential workplaces (e.g. grocery 
stores, doctors) 
Blank - no data 

C3_Cancel public events 

Int (Ordinal)  
Record cancelling 
public events 

0 - no measures 
1 - recommend cancelling 
2 - require cancelling 
Blank - no data 

C4_Restrictions on 
gatherings 

Int (Ordinal)  

Record limits on 
gatherings 

0 - no restrictions 
1 - restrictions on very large gatherings (the limit is above 1000 people) 
2 - restrictions on gatherings between 101-1000 people 
3 - restrictions on gatherings between 11-100 people 
4 - restrictions on gatherings of 10 people or less 
Blank - no data 

C5_Close public 
transport 

Int (Ordinal)  

Record closing of 
public transport 

0 - no measures 
1 - recommend closing (or significantly reduce volume/route/means of transport 
available) 
2 - require closing (or prohibit most citizens from using it) 
Blank - no data 

C6_Stay at home 
requirements 

Int (Ordinal)  

Record orders to 
"shelter-in-place" and 
otherwise confine to 
the home 

0 - no measures 
1 - recommend not leaving house 
2 - require not leaving house with exceptions for daily exercise, grocery shopping, and 
'essential' trips 
3 - require not leaving house with minimal exceptions (e.g. allowed to leave once a 
week, or only one person can leave at a time, etc.) 
Blank - no data 

C7_Restrictions on 
internal movement 

Int (Ordinal)  Record restrictions on 
internal movement 
between cities/regions 

0 - no measures 
1 - recommend not to travel between regions/cities 
2 - internal movement restrictions in place 
Blank - no data 

C8_International travel 
controls 

Int (Ordinal)  

Record restrictions on 
international travel 

0 - no restrictions 
1 - screening arrivals 
2 - quarantine arrivals from some or all regions 
3 - ban arrivals from some regions 
4 - ban on all regions or total border closure 
Blank - no data 

H1 
Int (Ordinal)  H1_Public 

information 
campaigns 

Ordinal scale 
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Appendix C: Sample Code 
Code 1C 
Sample Pre-Processing and Estimator Derivation of Estimators in NY State 

NY_data = covid_data[covid_data.state == 'New York'] 

 

#NY Compute Differences 

NY_data['diff_cases'] = NY_data.groupby('county')['cases'].diff() 

NY_data['diff_deaths'] = NY_data.groupby('county')['deaths'].diff() 

 

#Sort Data first by county then date 

NY_data = NY_data.sort_values(by=['county','date']) 

 

#first estimator - new cases in week n / new cases in week (n-1) 

NY_data['mean_cases_E1'] = NY_data.diff_cases/NY_data.diff_cases.shift() 

 

#second estimator - cumulative cases in week n / cumulative cases in week (n-1) 

NY_data['mean_cases_E2'] = NY_data.cases/NY_data.cases.shift() 

 

#third estimator - new cases in week n / new cases in week (n-1) + new cases in week (n-2) 

NY_data['mean_cases_E3'] = NY_data.diff_cases/(NY_data.diff_cases.shift(1) + NY_data.diff_cases.shift(2)) 

 

#fourth estimator - new cases n + n-1 / n-2 + n-3 

NY_data['mean_cases_E4'] = (NY_data.diff_cases + NY_data.diff_cases.shift(1))/(NY_data.diff_cases.shift(2) + NY_data.diff_cases.shift(3)) 

 

#post-estimator derivation cleans up 

NY_data.replace([np.inf, -np.inf], np.nan, inplace=True) 

NY_data.fillna(0, inplace=True) 

NY_data.loc[NY_data.groupby('county')['mean_cases_E2'].head(1).index, 'mean_cases_E2'] = 0 

NY_data.loc[NY_data.groupby('county')['mean_cases_E3'].head(2).index, 'mean_cases_E3'] = 0 

NY_data.loc[NY_data.groupby('county')['mean_cases_E4'].head(3).index, 'mean_cases_E4'] = 0 
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Appendix D: Additional Poisson Model Simulation Plots (With Various Lambda) 
 
Figure 1D 
Poisson Model Simulation: Generation # vs. Means (1 Run; Lambda = 1.6)  

 
Figure 2D 
Poisson Model Simulation: Generation # vs. Means (1 Run; Lambda = 1.7)  

 
Figure 3D 
Poisson Model Simulation: Generation # vs. Means (1 Run; Lambda = 1.8)  

 
Figure 4D 
Poisson Model Simulation: Generation # vs. Means (1 Run; Lambda = 1.9)  

 
Figure 5D 
Poisson Model Simulation: Generation # vs. Means (1 Run; Lambda = 2.0)  
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Figure 6D 
Poisson Model Simulation: Generation # vs. Means (1 Run; Lambda = 2.1)  

 
Figure 7D 
Poisson Model Simulation: Generation # vs. Means (1000 Runs; Lambda = 1.6)  

 
Figure 8D 
Poisson Model Simulation: Generation # vs. Means (1000 Runs; Lambda = 1.7)  

 
Figure 9D 
Poisson Model Simulation: Generation # vs. Means (1000 Runs; Lambda = 1.8)  

 
Figure 10D 
Poisson Model Simulation: Generation # vs. Means (1000 Runs; Lambda = 1.9)  
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Figure 11D 
Poisson Model Simulation: Generation # vs. Means (1000 Runs; Lambda = 2.0)  

 
Figure 12D 
Poisson Model Simulation: Generation # vs. Means (1000 Runs; Lambda = 2.1)  
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Appendix E: Full Estimator Plots (Regional) 
Figure 1E 
𝑬𝟏̅̅̅̅  across the Three Regions (Full) 

 
Figure 2E 
𝑬𝟐̅̅̅̅  across the Three Regions (Full) 

 
Figure 3E 
𝑬𝟑̅̅̅̅  across the Three Regions (Full) 
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Figure 4E 
𝑬𝟒̅̅̅̅  across the Three Regions (Full) 
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Appendix F: Additional Variance Plots 
 
 
 

 
Figure 2F 
Variances of 𝑬𝟐̅̅̅̅  of 8 States and D.C. 

 
Figure 3F 
Variances of 𝑬𝟑̅̅̅̅  of 8 States and D.C 

 
 
 

  

Figure 1F 
Variances of 𝑬𝟏̅̅̅̅  of 8 States and D.C. 
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Figure 4F 
Variances of 𝑬𝟏̅̅̅̅  of Midwest Region 

 
Figure 5F 
Variances of 𝑬𝟏̅̅̅̅  of Tri-State Region 

 
 
Figure 6F 
Variances of 𝑬𝟏̅̅̅̅  of DMV Region  
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Appendix G: Additional Comparison Plots of NPI breakdowns and E1 

Figure 2G 
Kansas: COVID-19 NPI Stringency Index vs 𝑬𝟏̅̅̅̅  (2020) 

 
 
  

Figure 1G 
Iowa: COVID-19 NPI Stringency Index vs 𝑬𝟏̅̅̅̅  (2020) 
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Figure 3G 
Wisconsin: COVID-19 NPI Stringency Index vs 𝑬𝟏̅̅̅̅  (2020) 

 
Figure 4G 
New York: COVID-19 NPI Stringency Index vs 𝑬𝟏̅̅̅̅  (2020) 
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Figure 5G 
Connecticut: COVID-19 NPI Stringency Index vs 𝑬𝟏̅̅̅̅  (2020) 

 
Figure 6G 
Virginia: COVID-19 NPI Stringency Index vs 𝑬𝟏̅̅̅̅  (2020) 
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Figure 7G 
Maryland: COVID-19 NPI Stringency Index vs 𝑬𝟏̅̅̅̅  (2020) 

 

 
Figure 8G 
Washington D.C.: COVID-19 NPI Stringency Index vs 𝑬𝟏̅̅̅̅  (2020) 

 

 
 
 
 
Figure 9G 
Monthly Stringency Index of All States and D.C. 
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Appendix H: Additional Change-Point Plots 
 

Figure 1H 
 

DMV Region: 95% Confidence Interval for 𝑬𝟏̅̅̅̅ : Sept to Nov 

 
 
 
 
 
 
 
 
 
 
 
  

Figure 2H 
 

Midwest Region: 95% Confidence Interval for 𝑬𝟏̅̅̅̅ : Sept to Nov 
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Appendix I: Change-Point Analysis Sample 
 
 
 
Region State Date of 

Change
-Point 

Type of 
Change 
(Peak or 

Drop) 

NPI Changes 
Two Weeks Prior 
to Change-Point 

NPI Changes One 
Week Prior to 
Change-Point 

NPI Changes Week of 
Change-Point 

Summary of NPI Linkage to Change-
Point 

Midwest 

Iowa 5/7 Peak None Reopening of malls, 
restaurants, gyms) 

None Perhaps premature reopenings early in 
the summer played a role in the peak 
change-point 

Iowa 10/8 Drop None None None No clear linkage 
Kansas 10/15 Peak None Reopening of schools 

in multiple counties  
None Perhaps reopenings of public schools is 

linked with this peak change-point 
Kansas 5/14 Drop None Relaxation of stay at 

home measures  
Increased public health 
campaigns through the 
launch of COVID-19 

website 

Contradictory NPI changes (relaxation 
of some, increase in others)  

Wisconsin 4/2 Peak None Closure of all public 
schools, non-essential 
businesses, and public 

gatherings 

Fines for mass 
gatherings 

Despite proactive measures in the first 
few weeks of COVID-19 cases in the 
state, there was still a peak 

Wisconsin 11/26 Drop None Limitations on public 
transportation and 
social gatherings 

None Perhaps increased stringency on social 
and public gatherings is linked with this 
drop change-point 

Tri-State 

New York 6/25 Peak Relaxation of 
Social gathering 

restrictions (up to 
50 people)  

None Regional reopenings of 
public pools and 

playgrounds 

Perhaps increased reopenings in various 
contexts and intra-state regions is linked 
with this peak change-point 

New York 5/7 Drop None None Governor releases 
executive order 

requiring masks in 
public 

Perhaps public announcement led by the 
Governor is linked with this drop 
change-point 

New Jersey 7/16 Peak None None Reopening of indoor 
dining and increased 

outdoor gathering 
capacity up to 500 

people 

Perhaps relaxations on previous indoor 
dining and outdoor social gathering 
restrictions are linked with this peak 
change-point 

New Jersey 8/6 Drop None None None No clear linkage; *There were no clear 
linkages for any drop change-point in 
New Jersey 

Connecticut 8/20 Peak None None  None No clear linkage; *Note, even on peak 
change-points, there are no clear 
linkages 

Connecticut 4/16 Drop None Increased public 
health campaigns to 
stay home (including 

in Spanish) 

None Perhaps government-led campaigns are 
linked with this drop change-point 

D.M.V. 

D.C. 10/8 Peak None None None No clear linkage 
D.C. 5/30 Drop Continued 

reopening of 
businesses 

Start of reopening of 
non-essential 

businesses 

Requirements of face 
masks in public transit 

Contradictory results. Despite increased 
reopenings, there was a drop, perhaps 
linked with the mask mandate. 

Maryland 4/2 Peak Closure of public 
buses 

Closure of non-
essential businesses 

and gatherings 

Stay-at-home order 
limited to 10 
individuals 

Despite proactive measures in the first 
few weeks of COVID-19 cases in the 
state, there was still a peak 

Maryland 8/20 Drop Reopening of 
college campuses 

(UMD) 

None Announcement of 
public schools being 

mostly online 

Contradictory results between types of 
reopenings; No clear linkage. 

Virginia 7/16 Peak None None Reopening of 
entertainment and 

recreational gatherings 
up to 250 individuals 

Perhaps an increase in the number of 
individuals at gatherings is linked with 
this peak change-point. 

Virginia 12/3 Drop None None None No clear linkage; *Week after had the 
highest peak change-point in VA. 

 

Table 1I 
Regional and State-Level Breakdown of Change-Points 
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Region State n (change-points) n (peaks) n (drops) 

Midwest 
Iowa 17 10 7 

Kansas 12 6 6 
Wisconsin 12 7 5 

Midwest Totals 41 23 18 

Tri-State 
New York 15 8 7 
New Jersey 16 7 9 

Connecticut 12 6 6 
Tri-State Totals 43 21 22 

D.M.V. 
D.C. 8 4 4 

Maryland 16 8 8 

Virginia 16 10 6 
D.M.V. Totals 40 22 18 

Overall Totals 124 66 58 

 

Table 2I 
Regional Comparison of n weeks pertaining to peak and drop change-points 


