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1 Abstract

The purpose of this study is to apply Bayesian methods to synthesize values of income, with
respect to an individual’s socioeconomic, ethnic, and health characteristics. This paper focuses
on the utility and risk evaluation methods of a two-phase income synthesis approach applied to
a publicly released dataset from 2018 annual National Health Interview survey, conducted by the
United States Census. This two-phase approach utilized both logistic and linear regression models.
Findings showed that the two-phase method reached a higher level of utility with a slightly higher
level of risk compared to direct, single-phase income synthesis. We highlight several limitations
and possible future research directions in order to assess the two-phase model, and its utility and
risk evaluations.

2 Introduction

It is impossible to overstate the importance of data in today’s world. Nearly every decision made
by corporations and governments is based off conclusions drawn from data, in one way or another.
However, many datasets structure information on an individual level (microdata) which leads to
the possibility of identifying attributes of an individual or identifying the individual, known as
disclosure risk [2]. Not only can this harm the individual but it may also lead to the disclosure
of legally protected information, such as medical records. This is commonly avoided by using
Bayesian methods to synthesize sensitive variables to reduce identification and attribute risks while
maintaining the utility and relations between variables in the dataset.

The income variable is particularly sensitive due to its uniqueness and potential for outliers.
With certain datasets, income will contain a significant number of zeros (individuals with no in-
come) along with non-zeros (individuals with income), which typically results in a large spread
between values. This can cause certain Bayesian synthesis models to lose effectiveness, thus yield-
ing synthesized data with low utility. To prevent this, we attempt a two-phase income synthesis
process.

For the first phase, we synthesize income categorically using logistic regression, where 0 indicates
no income, and 1 indicates non-zero income. In the second phase, we synthesize all the non-zero
income values using linear regression. Combining the synthetic 0s from the first phase and the
synthetic income values from the second phase results in a completely synthesized income variable.
This two-phase approach is implemented on data collected by the National Health Interview Survey
of 2018 and assembled by the IPUMS Health Surveys1, which collects information regarding health,
healthcare access, and health behaviors of United States Citizens.

1https://nhis.ipums.org/nhis/
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This paper is outlined as follows. In Section 3, we discuss the IPUMS dataset used to fit the
two-phase income synthesis method, why the dataset was chosen, and the pre-processing of the
dataset. In Section 4, we formally explain the two-phase income synthesis method. We present the
results of the synthesis, including various utility and risk evaluation scores, in Section 5. Finally,
we conclude with discussion of limitations and future direction in Section 6.

3 Background and Significance of the Research

Section 3.1 describes the IPUMS dataset, as well as the variables used in this study. Further, we
outline the main ideas of partially synthetic data, followed by the data-cleaning process in Section
3.2.

3.1 The IPUMS Health Database

The IPUMS Health Surveys provide individual-level survey data for research purposes. The dataset
includes extensive information on the demographic, socioeconomic, and health experiences of indi-
viduals living in the U.S. The data were self-reported by random participants representing the U.S.
population. Although the IPUMS provides surveys to the public every year, we focus on the 2018
IPUMS Health Surveys for this study. 72,832 observations were collected from the United States
Census. Specifically, the health and healthcare access information for this study was drawn from
the National Health Interview Survey (NHIS) and the Medical Expenditure Panel Survey (MEPS).

The dataset is composed of a total of eight variables, including age, sex, race, education level,
hours worked, health insurance coverage, hours of sleep, and frequency of worry. The dependent
variable, income, is measured in binary and nominal terms. Specifically in the two-phase synthetic
model, income of zeroes and non-zeroes are used in the logistic regression, and non-zero income are
used in the linear regression. Age, hours worked, hours of sleep and income (linear regression) rep-
resents continuous variables, while sex, race, education level, health insurance coverage, frequency
of worry, and income (logistic regression) represents categorical variables. The variables are all
chosen based on self-intuition of most sensitive variables to an individual’s income. The analyses
for this research are restricted to samples that had all survey fields answered fully with no missing
values to be a part of the sample size.

The income variable was chosen to be synthesized due to the high sensitivity and potential
disclosure risk. When disclosing sensitive information such as income, there is high risk that an
intruder will be able to derive the confidential information given their knowledge of other charac-
teristics. Due to a wide range of possible values, income was deemed the most sensitive among the
nine variables. Specifically, the relationship between income and hours worked, as well as income
and education levels are the most important relationships to preserve. With the addition of six
more health and socioeconomic variables, the identification disclosure risk rises. Thus, the income
variable is partially synthesized due its sensitivity in order to protect the individual’s privacy. In
this case, partial synthesis refers to only replacing income values with simulated values, while the
explanatory variables remain the same.

In order to protect the privacy of both individuals that receive and do not receive income, a
two-phase synthesis measure is implemented. First, income is synthesized as binary values. This
process is important to protect the privacy of unemployed individuals or students who receive zero
income. Next, combining the synthetic 0s from the logistic regression with the non-zero income from
the linear regression completes the full privacy protection method. Thus, the two-phase method
can be applied to various datasets with a number of zero values that could potentially skew the
distribution, in order to maintain high utility, and low disclosure risk.
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Variable Description Type Values Synthesized

Income Total earnings from previous
calendar year

Categorical 0, 1 Yes

Continuous 1 - 149,000
Age Age at time of survey Continuous 18 - 85 No
Sex Participant sex Categorical 1 = Male No

2 = Female
Race Main racial background Categorical 1 = White No

2 = African American
3 = American Indian
4 = Asian
5 = Other races
6 = Two or more races

Education Educational attainment Categorical 1 = 4 years of high
school or less

No

2 = 1 - 4 years of college
3 = 5+ years of college

Hours worked Total hours worked last week
or usually

Continuous 1 - 95+ No

Health insurance
coverage

Health Insurance Categorical No, has coverage No
coverage status Yes, has no coverage

Hours of sleep Usual hours of sleep per day Continuous 0 - 24 No
Frequency of How often feel worried, Categorical 1 = Daily No
worry nervous, or anxious 2 = Weekly

3 = Monthly
4 = A few times a year
5 = Never

Table 1: Variables used. Data taken from the 2018 IPUMS public use dataset.

3.2 Data Preprocessing

The synthetic model was developed using the variables described in Table 1. The data cleaning
process includes multiple steps. All missing or NA observations were removed. Next, NIU (Not
In Universe) values, expressed as 0 and 00, were deleted from education, hours worked, health
insurance coverage, hours of sleep, and frequency of worry. For education, hours worked, and hours
of sleep, all rows that contained a variable value of 97 (Refused), 98 (Unknown- not ascertained),
and 99 (Unknown - don’t know) were removed. Similarly, this was done with health insurance
coverage and frequency of worry for values of 7, 8, and 9, as well as for race but with values
970, 980, and 990. This reduced the dataset size from 72,832 observations to 14,287 observations.
Because of computational limitations, we conducted our investigation using a random sample of
5000 entries. Finally, race and education were re-coded to the values described in Table 1.

The variable race was re-coded into 6 main racial backgrounds demonstrated in Table 1. The
education variable was expressed by education attainment completed by grade, which was collapsed
to 3 categories of 4 years of high school or less, 4 years of college, and 5+ years of college. Thus,
each category is representative of a greater sample size.
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4 Methods Used to Obtain and Analyze IPUMS Data

The paper’s income synthesis method follows a two-phase approach. Section 4.1 explains generating
the synthetic categorical income using a Bayesian logistic regression. The following step to generate
the synthetic income requires a Bayesian simple linear regression, which is described in Section 4.2.

4.1 Generating the Synthetic Categorical Income

For the first step of the partial synthesis, income is synthesized categorically using a logistic regres-
sion. A dummy column is created for variable income with samples with non-zero income re-coded
to 1, while samples with zero income remained as 0. Since income takes a binary out 0 or 1, the
Bernoulli sampling model is used. A logistic regression is used in order to express the relationship
between the binary dependent variable income and the other eight independent variables. Out-
come variable Yi ∈ 0, 1 represents a binomial random variable for i number of trials. incomei is the
success probability of event i taking Yi = 1, or a non-zero income expressed as

Yi ∼ Bernoulli(incomei). (1)

The logit of the Bernoulli probability is a linear combination of the predictors: age, sex, race,
education, hours worked, health insurance coverage, hours of sleep and frequency of worry. In total,
there are 21 parameters. Given the explanatory variables, a linear function of each variable in i
number of trials for the logit of incomei can be expressed as

logit(incomei) = β0 + β1agei + β2sexmalei + β3sexfemalei + β4racewi + β5racebi+

β6raceii + β7raceai + β8raceoi + β9educ1i + β10educ2i + β11educ3i + β12hourswrki+ (2)

β13healthcovi + β14healthnocovi + β15hrsleepi + β16wordailyi + β17worweeklyi+

β18wormonthlyi + β19worfewtimesi + β20worneveri .

We assume normal prior distributions for the regression parameters. With the Bayesian logistic
regression, the Markov Chain Monte Carlo (MCMC) method is used to estimate the model through
JAGS (Just Another Gibbs Sampler). There are relatively large auto-correlations displayed in the
MCMC diagnostics. This could be due to the multi-parameter MCMC algorithms given the param-
eters used in the model, which are highly correlated. A smaller sample size may also contribute to
the high auto-correlation. However, the trace plots indicate a significant amount of movement and
very little stickiness. The posterior parameter draws are used to simulate synthetic data from the
posterior predictive distribution. There are a total of m = 20 datasets generated. Table 2 demon-
strates one of the 20 datasets generated. The synthesized income variable is renamed CatIncomeSyn
(categorical income synthetic).

Table 2 displays the close resemblance between the distribution of synthetic values, CatIn-
comeSyn, and original values, CatIncome. The utility and risk evaluations are explained in the
beginning of Section 5.

4.2 Generating the Synthetic Income

In the second phase of the synthesis model, a Bayesian simple linear regression is used to synthesize
the non-zero income from the previous CatIncome. First, the 181 zero values from the original
income, presented in Table 2 are removed. Then the non-zero income is logged. Let Yi be the
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0 1 Total

CatIncome 181 4819 5000
CatIncomeSyn 168 4832 5000

Table 2: Original and Synthesized Income Comparison.

log(Income) and each Xi represent each variable for observation i. The Bayesian simple linear
regression can be expressed as

Yi | µi, σ ∼ Normal(µi, σ), (3)

µi = β′0 + β′1agei + β′2sexmalei + β′3sexfemalei + β′4racewi + β′5racebi + β′6raceii + β′7raceai+

β′8raceoi +β′9educ1i +β′10educ2i +β′11educ3i +β′12hourswrki +β′13healthcovi +β′14healthnocovi+ (4)

β′15hrsleepi + β′16wordailyi + β′17worweeklyi + β′18wormonthlyi + β′19worfewtimesi + β′20worneveri .

Due to limited prior information about each parameter, a weakly informative prior distribution
is used. We must assume independence of the 22 parameters (21 β′’s and 1 σ). The independence
assumption can be noted as

π(β′0, β
′
1, β
′
2...β

′
20, σ) = π(β′0)π(β′1)π(β′2) · · · π(β′20)π(σ). (5)

Then, assign weakly informative priors for each parameter:

β′j ∼ Normal(µj , sj), (6)

where j = 0, 1, · · · , 20
1/σ2 ∼ Gamma(a, b), (7)

where µ0 = µ1 = µ2 = · · · = µ20 = 0, s0 = s1 = s2 = · · · = s20 = 100, and a = b = 1.
JAGS is used in R to obtain 5000 posterior parameter draws. The MCMC diagnostics show

low auto-correlation, which indicates the chain is mixing well. Further, the trace plots indicate a
lot of movement. Given the posterior predictive distribution of the data values, we generate the
synthetic values for income, called SynIncome (Synthetic Income). Given each explanatory variable
and one set of posterior draws of the parameters (β′0, β

′
1, β
′
2...β

′
20, σ) we could simulate synthetic

values. There are a total of m = 20 synthetic datasets generated. Next, all non-zero income values
in CatIncome, from the phase-one synthesis, are replaced with the SynIncome, synthesized income
values. Thus, the synthesized zero and non-zero income values are merged together to generate full
results in synthetic income.

5 Results of Analysis

The following two Sections, 5.1 and 5.2, outline the measures of utility and risk of the income
synthesis processes, respectively. The utility of the synthetic income is measuring using both
analysis-specific measures and global measures. The risk is analyzed in the context of identification
disclosure. All measures are averages from 20 synthetic datasets.

Throughout the two sections, we compare the utility and risk measures of the two-phase income
synthesis process alongside those of the single-phase income synthesis process. The latter was
accomplished by synthesizing income directly (using the method described in Section 4.2), without
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taking into account any zero values. All measures on the two-phase income synthesis are denoted
with a “t” superscript, whereas all single-phase income synthesis measures are denoted with an “s”
superscript.

From the results of the analysis, we conclude that the utility of the two-phase synthesized income
is fairly high and the identification disclosure risk is relatively low. This is partly because the first
phase of the two-phase synthesis demonstrates high utility, which makes it harder to discriminate
between the original and synthetic data. In addition, there is a high identification disclosure risk
evaluation in the first phase, which is mitigated in the second phase. Thus, the two-phase income
synthesis method results in more data utility than single-phase income synthesis, although resulting
in a slightly higher risk level.

5.1 Utility Measures

Sections 5.1.1, 5.1.2, and 5.1.3 describe the propensity score, cluster analysis measure, and empirical
CDF measure, respectively, as well as list the scores calculated using these measures on our income
synthesis dataset. All of these measures are global utility measures and were originally described
in [3]. Next, in Section 5.1.4, we describe some analysis-specific measures, such as the mean and
median, along with distribution comparisons using the interval-overlap measure.

5.1.1 Propensity Score

The first global utility measure calculated was the propensity score. Described in the context of
data synthesis by Woo et al., the propensity score measure aims to quantify how distinguishable
the masked (synthetized) data values are from the non-masked (original) data values [3]. This
is achieved through merging both the original and synthetized datasets and adding a variable
indicating membership of each unit to either dataset. Then, the probability of belonging to the
synthesized dataset is computed for all values in the merged dataset. Finally, the distributions of
synthetic-dataset membership are compared for both the original and synthesized values. Similar
propensity score distributions indicate similar data distributions, and thus indicating high data
utility [3]. This can be measured by percentile comparison, which is calculated as follows:

Up =
1

N

n∑
i=1

[pi − c]2, (8)

where N is the number of units, pi is the calculated propensity score for each unit, and c is the
proportion of synthetic units in the merged dataset [3].

For both the two-phase and the single-phase income synthesis, c = 1/2 and N = 5000. The
two-phase calculated propensity score for our merged dataset was as follows:

U t
p = 2.41566e− 05, (9)

which implies that pi ≈ c across both the original and synthetic data, indicating high data utility.
The single-phase propensity score, however, was:

U s
p = 0.000567386, (10)

which indicates a slightly lower utility when compared to the two-phase propensity score.
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5.1.2 Cluster Analysis

Next, we calculated the cluster analysis measure [3]. The cluster analysis measure quantifies the
distinguishability of the original and synthetic data from within clusters resulting from cluster
analysis. The proportions of original and synthetic units are compared in each cluster, and then
they are weighted and aggregated across all clusters. A higher score indicates larger differences
between the original and synthetic data, implying a lower utility. In other words, a lower score
indicates similar proportions between the original and synthetic data, implying a higher utility [3].
More formally, the cluster analysis measure can be stated as follows:

Uc =
1

G

G∑
j=1

[
njo

nj
− c

]2
, (11)

where G is the number of clusters, c is the proportion of synthetic data in the merged dataset, and
njo
nj

is the proportion of original units within each cluster j [3].

For our analysis, we set G, the number of clusters, equal to 50. The cluster analysis measure
for two-phase income synthesis was calculated to be as follows:

U t
c = 0, (12)

which indicates high data utility. Similarly, the cluster analysis measure for single-phase income
synthesis was:

U s
c = 0, (13)

again indicating high data utility.

5.1.3 Empirical CDF

Our final global utility measure calculated was the empirical CDF measure. Again described by
Woo et al., the empirical CDF measure “assesses the differences between the empirical distribution
functions obtained from the original and masked [synthetic] data.” [3]. For original dataset X and
synthetic dataset Y , let Sx and Sy be the respective empirical distributions. Additionally, let Z be
the merged dataset. Thus, the following two values are calculated:

Um = max1≤i≤N |Sx(zi)− Sy(zi)|, (14)

Us =
1

N

N∑
i=1

[Sx(zi)− Sy(zi)]
2, (15)

where Um is the maximum absolute difference and Us is the averaged squared difference [3]. For
both equations, lower values indicate higher utility.

Applying this measure to our original dataset and two-phase synthetic datasets resulted in the
following values:

U t
m = 0.10063 (16)

U t
s = 0.002671163, (17)

and applying to our original dataset and single-phase synthetic datasets resulted in:

U s
m = 0.24126 (18)

U s
s = 0.01930874. (19)

Although U t
m and U t

s are relatively close to 0, their values indicate that our original and synthetic
datasets have non-trivial differences between their distributions. Comparatively, U s

m and U s
s are

significantly larger, indicating a decrease in utility.
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5.1.4 Analysis-Specific Measures

For the 5000 original income values, the mean and median are as follows:

meanorig = 50039.58, (20)

medianorig = 40000, (21)

and here are the mean and median for the averaged two-phase synthetic income values:

meantsyn = 50537.89, (22)

mediantsyn = 33954.89. (23)

The difference between meanorig and meansyn is small, indicating high utility. However, the
difference between medianorig and mediansyn is large, indicating that the distribution of income
has changed during the synthesis process. This is evident in the histograms of the original and two-
phase synthesized income values, depicted in Figure 1. The synthetic income histogram appears
to be more skewed towards both 0 and 150, 000 when compared to the original income histogram.
The skew seems to be heavier towards the lower values, which explains the decrease in the median.

This discrepancy is larger when considering the mean and median for the averaged single-phase
synthetic income values:

meanssyn = 54297, (24)

medianssyn = 24570.07. (25)

Figure 2 clearly shows that the original income and single-phase synthetic income are extremely
different, and the distribution explains why the median ((25) above) is significantly lower than the
original income median ((21) above).
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Figure 1: Violin plot of original (0) and two-phase synthetic (1) income.

Figure 2: Violin plot of original (0) and single-phase synthetic (1) income.
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In order to formally explore this disparity, we measured the variability between the 20 synthetic
datasets for both phases, by calculating the following measures [1]:

q̄m =
m∑
i=1

q(i)

m
, (26)

bm =
m∑
i=1

(q(i) − q̄m)2

m− 1
, (27)

vm =
m∑
i=1

v(i)

m
, (28)

where q(i) and v(i) are the point and variance estimates for the income in each synthetically gen-
erated dataset i. The above measures were used to construct an averaged 95% confidence interval
across all synthetic datasets, which was then compared to the 95% confidence interval of the original
dataset by measuring the overlap. For the two-phase synthetic datasets, the calculations resulted
in the following:

q̄tm = 50537.89 (29)

intervalt95 = [49237.86, 51837.91]. (30)

Additionally, measuring the single-phase synthetic datasets resulted in

q̄sm = 54297 (31)

intervals95 = [52640.95, 55953.05]. (32)

The original dataset had the mean listed in (20) above, and had the following 95% confidence
interval:

interval95 = [48941.63, 51137.53]. (33)

In order to compare the overlap between (30,32) and (33), we utilized the following interval overlap
measure [1]:

I =
Ui − Li

2(Uo − Lo)
+

Ui − Li

2(Us − Ls)
, (34)

where [Lo, Uo] is the original confidence interval, [Ls, Us] is the averaged synthetic confidence in-
terval, Li = max(Lo, Ls), and Ui = min(Uo, Us). An interval overlap measure close to 1 indicates
identical intervals and high utility, and a measure close to 0 indicates little overlap and low utility.
Applying this measure to (30) and (33) gave us

It = 0.7978614, (35)

which indicates relatively high utility, although it seems to reflect the disparities in median between
the original and synthetic datasets mentioned above.

Applying the measure to (32) and (33) resulted in:

Is = −0.5692832, (36)

which is negative because the intervals do not actually overlap. This verifies that there was a
significant distributional change between the original income and the single-phase synthetic income,
thus indicating a decrease in utility.
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5.2 Risk Evaluation

We evaluated the risk of our synthetic dataset by measuring identification disclosure through the
expected match risk, the true match rate, and the false match rate [2]. To formally write the
aforementioned measures, let ci be the number of records with the highest match probability for
target record i (records sharing same known variables). Let Ti = 1 be true if the true match is
among ci, otherwise Ti = 0. Additionally, let Ki = 1 if ciTi = 1 (if true match is unique), and
Ki = 0 otherwise. Similarly, let Fi = 1 if ci(1 − Ti) = 1 (if there exists unique match but it is
not true match), and Fi = 0 otherwise. Finally, let N be the total number of records (5000 in our
case) and let s be the number of uniquely-matched records. We assumed the known variables to be
sex, race, and education level. Additionally, we considered a radius for acceptable synthetic income
matches, namely [0.1, 0.2, 0.5, 0.9] multiplied by the original income value.

Intuitively, the expected match risk quantifies the average likelihood of identifying a correct
match for each record, which can be stated as follows:

E =
N∑
i=1

Ti
Ci
. (37)

Higher expected match risks indicate higher identification risk [2]. Next, we considered the true
match rate, which indicates the percentage of true and unique matches. This can be quantified as

T =
N∑
i=1

Ki

N
. (38)

Higher true match rates indicate higher identification risk, and vice versa [2]. Note that the true
match rate is bounded between 0 and 1. Finally, we considered the false match rate. The false
match rate measures the percentage of unique matches that are false matches:

F =
N∑
i=1

Fi

s
. (39)

Unlike the first two measures, higher false match rates indicate lower identification risk [2]. Addi-
tionally, note that the false match rate is bounded between 0 and 1.
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Radius Measure Single-Phase Two-Phase

Expected Match Risk 0.264441 0.4580699
0.1 True Match Rate 0 2e-05

False Match Rate 1 0.9992752

Expected Match Risk 0.3296083 0.3916344
0.2 True Match Rate 0 1e-05

False Match Rate 1 0.9993243

Expected Match Risk 0.315921 0.3566615
0.5 True Match Rate 0 0

False Match Rate 1 1

Expected Match Risk 0.323256 0.3510375
0.9 True Match Rate 0 0

False Match Rate 1 1

Table 3: Risk measures for single-phase and two-phase income synthesis.

Table 3 lists the risk measures while varying the radius for both single-phase and two-phase
income synthesis. For each radius value, there is a significant expected match risk, but the risk is
slightly lower for the single-phase income values. Overall, the risk is slightly lower for single-phase
income synthesis, as there is a lower correlation between the original and the synthesized income
values.

6 Discussion

The two-phase approach is an innovative method for synthesizing income using a Bayesian logistic
and linear regression. In our application, we found that a two-stage approach preserves the rela-
tionships of the variables, while maintaining low disclosure risks. Due to the wide availability of
socioeconomic, demographic, and health characteristics, the risk for intruders to use the IPUMS
database and derive confidential information is a concern for the agencies. With the objective of
lowering disclosure risks, it is also important to maintain high utility so that key relationships are
preserved and inferences can be made. Our results show that a two-stage approach yields higher
utility and similar risk of the partially synthetic data compared to that of the single-phase synthesis.

In this paper, we highlight key steps to use a Bayesian logistic regression to synthesize zero and
non-zero income. Then applying a Bayesian normal linear regression to the synthesized, non-zero
income from the first step. Utility evaluations are estimated using the propensity score, cluster
analysis, empirical CDF, and interval overlap measures. Then we present identification disclosure
risk evaluations by calculating the expected match risk, true match rate, and false match rate. This
study held strong implications for successfully synthesizing income, compared to just a one-phase
approach.

The proposed synthesizer focuses on eight explanatory variables that encompass demographic,
socioeconomic, and health characteristics. We chose the variables based on our own intuition due to
possible correlations and sensitivity to the variable income. However, while significant, there may
be additional variables that can be implemented to improve the utility evaluation and lower the
risk measures. For example, variables related to medical care access, health behaviors, occupation,
and family interrelationships can provide a more accurate model. Thus, an important future work
direction is developing measures to assess what variables hold the most sensitive relationships with
income. It is important to create a full model with as many significant variables, without resulting
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in autocorrelation.
Another limitation is that we assumed random missing for missing values and removed those

observations. However, there might be situations where missing values carry information about the
observations themselves. The removal of certain samples reduces the overall sample size to 14,287.
Due to the still relatively large sample size, the code could not run completely for the utility and
risk evaluations. Thus, we were not able to use the full sample, which may cause the results to be
less accurate. Thus, further exploration should be conducted by including more observations in the
sample, in addition to more variables as mentioned before.

Due to the uncertainty with the current sample size and variables, it is not clear whether
the two-phase model can be applied to other datasets. The study focuses on synthesizing only
income, resulting in a partially synthetic data. However, we have not implemented our model to
a fully synthetic data. We could continue using a Bayesian logistic regression to synthesize the
binary income values, then implement a sequential synthesis for the second phase. Next, we can
sequentially synthesize each variable at a time, given the previously synthesized variable. It would
be beneficial to also implement our two-phase approach to various datasets and synthesize variables
other than income.

A possible future work could involve the assessment of attribute disclosure risks. Attribute
disclosure is when the intruder correctly infers the true values of synthesized variables in the publicly
released synthetic datasets. In the paper, we only focused on three summaries of identification
disclosure risks (expected match risk, true match rate, and false match rate). The addition of
attribute disclosure risks can provide more insight on the effect of the two-phase model compared
to the single-phase model.

Furthermore, research could be conducted to examine a way to synthesize values that are top-
coded. A data point that is top-coded refers to an upper limit on data points that surpass an upper
boundary. This is applied to datasets that may include outliers. The practice of top-coding can
adversely censor high income points, which will make it more difficult to assess the distribution of
income. However, it will protect the privacy of the individual’s income. Developing methods for
integrating top-coding measures, as well as attribute disclosure risk measures, is a key focus for
further research.
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