
Methods for Freeing Public Election Data from PDFs

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Abstract

This paper details our work in contributing to the open-source Open Elections project. 
The goal of the Open Elections project is to turn unstructured election data from 
government offices in the United States into a standard, free and usable form for the 
public. In order to make election data accessible to the general public, we created 
parsers, packages, helper programs, python packages, and data visualizations with 
extensive documentation. We successfully completed parsers for the election results of 
31 different counties from California, Michigan, Missouri and Indiana. The parsers 
results and accuracy (at least one county’s PDF format from each state was successfully 
parsed with 100% accuracy), along with their ability to be generalized further to other 
states are discussed in the paper. In addition, we built a Shiny application with an 
interactive data visualization. The purpose of our paper is to outline the procedure on 
how to successfully free election data from text-based PDFs and convert them into 
usable formats such as the standard Open Elections CSV format and interactive 
visualizations. Through our work with the election data, we discovered the extreme 
difficulty of meeting the goals of the Open Elections project due to the variations in the 
election data. Not only does our project contribute to Open Elections by providing 
effective parsers, a visualization and a starting point for future work, but it also reveals 
the severe lack of standardization of election data in the United States and a significant 
need for work similar to that of the Open Elections team.

Introduction

Since the country’s inception, the United States has used elections to appoint its 
government officials. Today, there are over 500,000 elected officials in the United States 
[1]. Currently, there is an information gap in voting record data for the election of these 
officials at the state and local levels. Although United States citizens are given the right 
to access any election data through acts such as the Freedom of Information Act [2], 
election information is often not easily accessible or usable.

Firstly, election data is not always easy to find. Despite the advancement of 
technology and the popularity of the internet, not all government offices use the internet 
to publicize their election data. Additionally, there is no standard way for government 
offices to collect election data. Thus, election data can come in the form of PDFs, 
databases, images and other various formats. Therefore, elected offices of the United 
States lack a standardized format for publishing voting results.

The lack of a standard format for voting results poses a serious problem for those 
seeking to analyze election data. There is currently no free, extensive and easily 
accessible way of gathering election data from multiple election offices. Anyone who is 
interested in working with election data often struggle to gather usable election data. 17

December 18, 2019 1/15



This is particularly troublesome when people want to build visualizations, graphics or 18

analyses based off of aggregated election results. 19

Open Elections is an open-source political-party-independent project started by 20

Derek Willis, an interactive developer at the New York Times, to provide clean and 21

usable data from state and local elections to those who need it regardless of that 22

persons data literacy. From their website, when speaking about the goals of the Open 23

Elections project, they state: 24

“we want the people who work with election data to be able to get what 25

they need, whether that’s a CSV file for stories and data analysis or JSON 26

usable for web applications and interactive graphics . . . Our goal is to create 27

the first free, comprehensive, standardized, linked set of election data for the 28

United States, including federal and statewide offices.” [3] 29

In order to achieve their goal, the Open Elections project has a team of volunteers 30

that tackle every step of the process of getting the non-standardized election data from 31

government offices to a standard form accessible on their GitHub repository [4]. This 32

process entails many steps, starting with gathering the election data and putting them 33

into their databases. As previously mentioned, the election data can have a variety of 34

forms and sources thus the volunteers work on obtaining the election data which can 35

mean anything from scraping from a website to calling a government office and asking 36

for mailed documents. After gathering the election data, volunteers use a variety of 37

techniques to convert the election data into the standard CSV format used by the Open 38

Elections project. Depending on the skill sets of the volunteers involved in this process, 39

this is done by methods such as manual data entry or python scripts. 40

Although the Open Elections project has a large team behind it, there is a copious 41

amount of work that needs to be done in completing its goals. There are thousands of 42

elected offices and years of election results that need to be transformed into their 43

standard format. The goal of our project is to contribute to the Open Elections project 44

by delineating methods that can be used to free the election data from PDFs effectively 45

and then convert the data into usable forms such as the Open Elections standard CSV 46

format and an interactive visualization. 47

About the PDFs 48

While the information contained on the multiple PDF documents of voting data 49

provided by state and local governments are valuable, the format they are stored in is 50

inaccessible to the average data consumer. Each local government office publishes their 51

own information in PDF files, many of them with distinct layouts. In order to make 52

data accessible we created methods to extract PDF files into the common CSV format 53

used by Open Elections. 54

We chose PDFs from California, Indiana, Michigan and Missouri as the PDFs we 55

will convert into the standard CSV format. These states were selected because they 56

contained counties with many precincts that publish their election data in PDFs that 57

span hundreds of pages, which make manual data entry an extremely tedious task. In 58

addition, we chose to work with only text-based PDFs (as opposed to image-based 59

PDFs) and these states had many counties that only used text-based PDFs. Also, few 60

to no volunteers had previously worked with the specific PDFs that we selected, thus 61

there was a high demand for progress to be made in these untouched areas. 62

All PDFs are publicly available on the Open Elections’ official GitHub repository [4]. 63

Each PDF represents a particular county’s voting results for a specific year. These 64

PDFs all contain information on the precinct-level on the different candidates, their 65

number of votes, the office they are running for, their party affiliation and the number 66

December 18, 2019 2/15



of votes they received. However, the format in which this information is displayed varies 67

by state and for some states it varies by county. The PDFs we built parsers for are from 68

California, Indiana, Michigan, and Missouri. Figures 1, Figure 2 and Figure 3 show 69

excerpts of these PDFs. These figures demonstrate that each PDF can vary greatly 70

from the others in how they display the election data. Figure 1 demonstrates a box 71

based format, Figure 2 illustrates a table based format with vertical column names and 72

Figure 3 shows a horizontal text based format. 73

Fig 1. Excerpt from Howard, MO 2018 General Election PDF.

Fig 2. Excerpt from Sonoma, CA 2018 General Election PDF.

December 18, 2019 3/15



Fig 3. Excerpt from Clay, IN 2018 General Election PDF.

About the Visualization 74

In addition to parsers, we created an interactive visualization based on the data 75

made available by the Open Elections project. The purpose of creating this 76

visualization is to demonstrate how the data from the Open Elections project can be 77

used to create meaningful visualizations that people can use to better understand the 78

election data. Since our goal also involves creating work that other volunteers can use, 79

we also created a website with our work and comprehensive descriptions about it. The 80

website is hosted publicly on GitHub [5]. 81

For our project, we focused on a visualization that depicts political parties’ 82

performance by state offices within a state. The visualization features the breakdown of 83

votes by party for each elected state office within a county. It is a stacked bar plot, 84

where each bar represents an elected state office and each stack represents the 85

percentage won by a political party. 86

Methods 87

Turning Election Data from PDFs into a Standard CSV Format 88

Below describes our process in turning the text-based PDFs into the standard CSV 89

format used by Open Elections. This process is can also be viewed in flowcharts 90

provided in the Appendix Figures 5-6. 91

December 18, 2019 4/15



1. Locate Available Election Data 92

All the data (the PDFs) from the Open Elections project can be found on their 93

GitHub page [4]. The PDFs we used were added to the GitHub repository by previous 94

volunteers. Typically, volunteers of the Open Elections project pull the PDFs from 95

elected offices’ public websites. 96

2. Select Election Data to Transform 97

We focus on PDFs that are important to parse, consistent, and text-based. PDFs are 98

important to programmatically parse when they are large since they would otherwise 99

require many hours to process by hand. Also, PDFs need to be programmatically 100

parsed when they are counties or states that have few volunteers assigned to them 101

which means that the interest in manually parsing the PDFs is low. PDFs are 102

consistent when they feature precincts that report election results in a way that can be 103

exploited programmatically, such as having similarly formatted pages. Consistency is 104

added when an entire state has a common way of reporting election data which further 105

adds to the value of creating a programmatic parser for a set of PDFs. 106

Each parser we built were made to accommodate certain types of PDF formats. 107

Thus, each parser has specific requirements to work on a PDF. In general, the main 108

requirement for any PDF to be parsed using our parsers is that the PDF is text-based, 109

since our parsers use various PDF text reading libraries. The parsers will not work on 110

any image-based PDFs. 111

It is also important to select PDFs that have similar formats in order to effectively 112

create a parser for them. For example, within the state of Indiana we were able to 113

identity 24 counties with similar formats. Since many pages of the PDFs of multiple 114

counties within the state of Indiana were very similar in format, we were able to select 115

these counties and build a valuable parser to process the data from the counties’ PDFs. 116

3. Transforming Election Data 117

The first step of transforming the election data to the standard CSV format used in 118

the Open Elections project is to extract the text from the PDFs. We identified two main 119

methods in order to extract the election data: parsing with a text-based PDF extraction 120

package pdftotext [6] and parsing with a table-based PDF extraction package tabula 121

[7]. For our project, we used the pdftotext[6] to parse counties from Indiana and 122

Michigan and the tabula [7] to parse counties from California and Missouri. 123

Parsing with PdfToText 124

When extracting text from PDFs consisting of single-column PDFs with exclusively 125

horizontal words (as opposed to vertical words [e.g. column names that are rotated 90 126

degrees]) it is advantageous to use pdftotext. This is because one can exploit 127

information within the text of the PDF in order to create booleans to test for the 128

presence of information. The most vital structure used when creating a parser that uses 129

pdftotext [6] involves looping line by line and testing for conditions. The conditions 130

tested for may very between PDF-type, however the pdftotext parser commonly 131

features these checks: 132

� test for the “candidate line” which contains candidate name and number of votes 133

� test for lines that contain information outside of “candidate line” which may 134

include, precinct, party, district, office 135

December 18, 2019 5/15



Parsing with tabula 136

On the other hand, tabula [7] works better on PDFs with more complicated table 137

formatting options such as vertical or rotated columns and multiple 138

horizontally-concatenated tables with different headers. In these cases, tabula [7] is 139

superior because users can specify the area coordinates and page numbers they would 140

like tabula to extract data from. Therefore, when page layouts become messier, one 141

can execute multiple tabula extraction commands for designated areas to extract 142

different types of information constituting a table. For example, one can opt to read in 143

the table headers, table body, and metadata including time stamp and county 144

information separately with tabula and then combine the various elements in the 145

parser later on. The tabula package also dictates that it works better with tables with 146

clear divisions between cells, either by white space or by cell borders, and that it needs 147

to work with PDFs in which the same area on each or every few pages contains the 148

same type of information. 149

150

151

After successfully extracting the text from the PDFs, one can begin work to 152

manipulate the text into the standard CSV format used in the Open Elections project. 153

Table 1 is an example of a table that follows the standard CSV format, with the proper 154

column headers and five rows of election data from Blackford, Indiana. 155

Table 1. A sample CSV table for Blackford, IN that follows the standard Open
Elections CSV format.

county precinct office district party candidate votes

Blackford Harrison 1 U.S. Senate NA R Mike Braun 206
Blackford Harrison 1 U.S. Senate NA D Joe Donnelly 142
Blackford Harrison 1 U.S. Senate NA L Lucy M. Brenton 40
Blackford Harrison 1 U.S. Senate NA NA Write in 0
Blackford Harrison 1 State Secretary NA R Connie Lawson 235

Since each PDF of election results leads to a CSV with the same formatting, we 156

created two packages (utils and table) that are used regardless of the PDF’s format. 157

The utils package contains common functions that are useful when converting the text 158

from the PDF into lists. The table package is used after manipulating the text 159

extracted from the PDFs into lists, to turn the lists into a CSV with the standard Open 160

Elections format. 161

Utils Package 162

The utils package contains functions that are useful across all the parsing work. 163

This package includes the following functions: 164

� a function to convert a two column CSV into a dictionary, 165

� a function that changes an office name to a standard office name (e.g. “state 166

senate” and “state senator” should be “State Senate” in the CSV), 167

� a function that checks if an inputted office string is an “accepted” office (an 168

accepted office is an office that the client would like included in the CSV), 169

� a function that cleans an inputted string by removing spaces and lowercase the 170

string, 171

� a function that rotates a PDF file 90 degrees (to read rotated column names), 172

� a function that cleans candidate names and adjusts capitalization. 173

December 18, 2019 6/15



Table Package 174

The table package contains Table and Row classes with functions to output data in 175

the proper CSV format. The Row class is used to create an object that is representative 176

of a row in the CSV and a Table represents a collection of rows that will output to a 177

CSV. It has a function to add more rows to the table if it is not already in the list that 178

was input, and a function to convert the list to a CSV. 179

After using these methods, one will have successfully parsed the data from a PDF 180

into a CSV following the standard format used by Open Elections. The next step is to 181

validate that the data has been parsed correctly. 182

4. Validate the Data 183

After processing the data into the Open Elections data format, one must ensure that 184

the data has been transformed correctly. This step can be done in different ways, 185

depending on the existing data (and its quality) on the PDFs parsed. If the data was 186

already manually processed into CSV format one could use a validator script we built 187

for this project that can calculate the percent similarity between the programmatically 188

parsed CSV and the manually parsed CSV. This is done by using the python library 189

Pandas [8] to compute the symmetric difference between the two CSVs. The percent 190

similarity between CSVs is calculated by using the below formula where A denotes the 191

number of lines in one CSV, B denotes the number of lines in another CSV, and C 192

denotes the number of lines in the symmetric union of these two CSVs. 193

A + B − C

A + B
∗ 100

Even between highly similar CSVs the validator may return a percent similarity of 194

0% because of differences in string formatting between the new and old CSV 195

(e.g. capitalization differences). For this reason, for some states it is important to make 196

sure that slight differences are changed to have a more precise measure of accuracy. For 197

example, all instances of “Jane J. Doe” may need to be changed to “Jane J Doe” and 198

“BLACKFORD 02” to “Blackford 2” when checking two CSVs against each other. 199

If there is no manually processed data available then manually checking between the 200

PDF and the CSV may be necessary. A couple of common methodologies include 201

making sure that all the precincts present with the PDF are also present in the CSV, 202

checking that the total number of votes for candidates are accurate and ensuring that 203

the office name is listed correctly. Also, if each page is similarly formatted, it may be 204

possible to randomly select a few pages of the PDF for manual validation instead of the 205

entire PDF document which may span hundreds of pages. Additionally, it could be 206

possible to use other data such as state or county-wide data that has been extracted 207

from other sources to cross-check the precinct level data. After validating the CSV, it 208

can be used to conduct data analyses and create visualizations. 209

Creating a Visualization Using the Open Elections Data 210

A description of our methods in creating the visualization is below. 211

1. Locating and Selecting the Data 212

Our visualization is intentionally using the data from Open Elections. For our 213

particular visualization, we used the 2016 New York General election results from the 214

Open Elections GitHub repository [9]. 215

December 18, 2019 7/15



2. Clean the Data 216

After getting the data from the Open Elections GitHub, the data needs to be cleaned 217

before creating the visualization. We used the Pandas [8] library to build a python 218

program that cleans the CSV. Our cleaning steps include the following: 219

� drop all NaN columns, 220

� drop duplicate rows, 221

� calculate a total percentage for each party in each elected office’s results, 222

� pivot the table to have columns representing party results, 223

� add a column called sum that represents the sum of all party percentages aside 224

from the Democratic and Republican parties (since our visualization focuses on 225

these two majority parties, we only want to show a single percentage for the other 226

parties) 227

3. Create the Visualization 228

Finally, the last step is to create the visualization. We created the visualization using 229

R — we used plotly [10] to build the bar chart and Shiny [11] to host the plotly 230

chart on an interactive application. Shiny allows one to build visualizations in 231

interactive web applications by combining the power of R visualizations with the 232

interactivity of html widgets. This will enable us to host the visualization on a website 233

for others to view freely. Our Shiny application is hosted on shinyapps.io [12] and is 234

featured on our website using an embedded iframe that is linked to the application. 235

Results 236

Parsers 237

The goal we set for our parsers was to make sure we were at least able to parse all 238

the information from the PDF that would be needed for the CSV to be considered 239

completed. This includes the following columns: precinct, office, candidate, votes, 240

and county. All of the information for these columns are typically included in the 241

PDFs. Optional columns include districts, candidate parties and extra voting types 242

such as mail, provisional, absentee and more. We built four parsers that take 243

different PDF formats and output a CSV with at least the minimum requirements for 244

the standard CSV format (the code for the parsers can be found on our website [5]) . A 245

general description of each parser, including the county formats that they work with, is 246

detailed below. 247

Indiana Parser 248

As previously mentioned, the Indiana parser works with 24 different Indiana counties: 249

Adams, Bartholomew, Blackford, Boone, Clay, Clinton, Decatur, Dekalb, Delaware, 250

Dubois, Greene, Hendricks, Huntington, Jasper, Jefferson, Kosciusko, Lawrence, 251

Marshall, Morgan, Noble, Pulaski, Randolph, Shelby and Whitley. Since the parser 252

is a pdftotext parser, its main structure is reading the PDF line by line and relying on 253

boolean statements that check for certain information. This specific parser checks for 254

four things: 255

1. If the line contains an office name and a district number. 256

2. If the line contains a precinct name. 257

3. If the office is a state office. 258

4. If the line contains a candidate’s name, party and number of votes. 259

December 18, 2019 8/15



It is important to note that the parser relies on the fact that the office name, district 260

number, precinct name and state office for a row in the CSV always come before a 261

candidate’s name, party and number of votes. Since a line containing the candidate 262

name, party and number of votes in the PDF represents a row in the CSV, once such a 263

line has been detected a row is created in the CSV with the appropriate column values. 264

After every line of a county’s PDF has been read in, the parser will have finished 265

building a list of values for the CSV which will then be converted into an actual CSV 266

using the table package. 267

Michigan Parser 268

As another pdftotext parser, the Michigan parser is very similar to the Indiana 269

parser. The Michigan completely parses the Muskegon county’s format. Its structure 270

and checks are the same as the Indiana parser. 271

California Parser 272

The California parser successfully parses the Sonoma, Modoc and Plumas county 273

formats. As a tabula parser, the main structure of the parser is to convert the table 274

format of the PDFs into the desired CSV format. The main parts of this process is to: 275

1. Split the table into three parts to help the tabula package read each part 276

accurately. These three parts are: 277

� The column names (which are candidate name, and each column value 278

represents the number of votes the candidate won) 279

� The row name which contains the name of the precinct and/or the type of 280

vote 281

� The table’s actual values (without the row or column names) 282

2. Recreate the table structure within the program with the cleaned data. 283

3. Convert the table into the CSV format by reading in the table cell by cell, and 284

creating a list of values for the CSV from those cells. 285

The California parser also includes functions that deal with rotating column names 286

so that they can be properly read, merging tables on different pages together, checking 287

if the table represents a state office and cleaning whitespace and percentage values in 288

the table. The final step of the California parser uses the list of values for the CSV to 289

create the CSV using the table package. 290

Missouri Parser 291

The Missouri parser completely parses the Franklin, Christian and Cape 292

Girardeau county formats. It is also a tabula parser that relies on first creating a 293

table format and then later converting into a CSV. The most significant difference 294

between this parser and the California parser is how the tables on each page are split. 295

The tables of the Missouri counties are split into the following three parts: 296

1. The office and party information 297

2. The table headers 298

3. The body of the table (including row names) 299

After splitting the table into these three parts, the Missouri parser follows the same 300

steps as the California parser, with slightly different checks to account for small 301

differences between the county formats (e.g. different locations for precinct names). 302

December 18, 2019 9/15



Again, it uses the table package to convert a list of values into a CSV after the entire 303

table is read and cleaned. 304

305

Overall 31 files were parsed with varying degrees of accuracy. The table below shows 306

the files that were parsed and the percentage of similarity to manually processed 307

election results calculated using the validation script we built. Those that are marked 308

NA have no manually processed election results. Again note that files may show less 309

than 100% accuracy because of manual data entry errors due to differences in the way 310

that the data is displayed (e.g., precinct names ‘Randolph 01’ vs. “Randolph 1”) rather 311

than an actual inaccuracy in the data parsed. 312

Table 2. Table detailing information about the 36 programmatically parsed PDF files
with the number of lines parsed and percent similarity to the manually parsed CSV

date state election type county number of lines percent valid

2018-11-06 CA General Sonoma 13024 100
2018-11-06 CA General Plumas 660 100
2018-11-06 CA General Modoc 484 100
2018-11-06 IN General Clay 506 100
2018-11-06 IN General Dubois 800 100
2018-11-06 IN General Morgan 972 100
2018-11-06 IN General Dekalb 731 100
2018-11-06 IN General Randolph 396 96
2018-11-06 IN General Hendricks 1857 95
2018-11-06 IN General Marshall 538 94
2018-11-06 IN General Noble 493 91
2018-11-06 IN General Whitley 639 91
2018-11-06 IN General Lawrence 627 89
2018-11-06 IN General Pulaski 268 88
2018-11-06 IN General Greene 606 87
2018-11-06 IN General Shelby 686 85
2018-11-06 IN General Jasper 456 83
2018-11-06 IN General Bartholomew 1286 83
2018-11-06 IN General Clinton 660 74
2018-11-06 IN General Rush 253 65
2018-11-06 IN General Delaware 1480 59
2018-11-06 IN General Huntington 454 38
2018-11-06 IN General Jefferson 515 37
2018-11-06 IN General Decatur 357 35
2018-11-06 IN General Putnam 570 7
2018-11-06 IN General Blackford 229 0
2018-11-06 IN General Boone 1036 0
2018-11-06 IN General Adams 316 0
2018-11-06 IN General Wabash 13 0
2018-11-06 IN General Kosciusko 1104 0
2018-11-06 IN General Hamilton 4112 0
2018-11-06 MI General Muskegon 1477 NA
2018-11-06 MO General Franklin 2401 NA
2018-11-06 MO General Christian 550 NA
2018-11-06 MO General Cape Girardeau 490 NA

December 18, 2019 10/15



Visualization 313

Figure 4 displays the visualization as it is on our website. The user can hover over 314

the bars to see the percentage of votes the party has. Also, the user can select which 315

county and elected offices to view in the bar chart. 316

Fig 4. Screenshot of visualization as it is displayed on our website. In this screenshot,
the cursor is hovering over the Albany’s U.S. Senate office’s Democratic party results.
The popup details the party, the office and the percentage of votes won by the party.

Discussion 317

Limitations of Parsers 318

Currently, the four parsers that were created for this project can only parse the 319

county formats they were built to parse. This is due to the fact that the parsers rely on 320

specific attributes of the files. For example, a limitation of the pdftotext parsers is the 321

reliance on indices to locate information (e.g. precinct names are the first index of the 322

list that is created by the pdftotext text extraction for our particular counties). The 323

tabula parsers also rely on specific attributes of the PDFs, such as the coordinates of 324

the tables due to the nature of how the tabula package is meant to be used. However, 325

these parsers have valuable cleaning and detection functions that can be used for other 326

PDF formats. For example, the California parser features effective whitespace cleaning 327

for the tables, since tabula sometimes improperly reads whitespace if the numbers are 328

too close together in a table. 329

Limitations of the Visualization 330

The visualization is limited such that it is only able to show the CSV that has been 331

loaded into the application. This means our visualization currently can only show the 332

New York 2016 general results. In order to incorporate more states, one will need to 333

follow the methods delineated for creating a visualization, and change the visualization 334

such that it can allow switching between states. Furthermore, the visualization is only 335

displaying one bar plot at a time — it may be more useful if one can show multiple bar 336

plots at once, or if there were more interactive components. 337

December 18, 2019 11/15



Future Work 338

Running the parsers require beginner Python knowledge since the parsers will ask for 339

the user to manually enter information such as the name of files or the coordinates of 340

regions that were significant in a PDF. Furthermore, one who wishes to dive deeper into 341

understanding the parsers will need to understand Python. With that in mind, our code 342

is heavily documented along with READMEs and requirement files. In the future, it 343

would be beneficial to create a graphical user interface (GUI) that removes the need of 344

interacting with the Python program to enter things manually and thus make the 345

parsers more accessible to new users. 346

In addition there are many other states and counties that have not been fully parsed. 347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

Therefore, modifying the previously created parsers to accommodate different PDF 
types can be a future endeavor. It may be possible to build a GUI that walks the user 
through the potential different formats of the PDFs and showing the user what code has 
been made to successfully parse the data from these formats. Also, image recognition 
technology can possibly be incorporated to identify the different PDF formats and 
recommend parsers for the format.

Based on the unique qualities of each elected office’s statement of votes and the 
limited abilities of current PDF readers, we determined that is likely impossible to 
completely automate parsing all the statement of votes PDFs into the standard Open 
Elections CSV format. However, there is a large potential to build a guided GUI to 
expedite the parsing process by helping volunteers gain a better understanding of 
previous work done.

Conclusion

Despite the limitations of our parsers, they are still able to parse a large amount of 
PDFs effectively and serve as great starter code for future parsing work. Individuals 
who are interested in using these parsers for other counties may find it possible to use 
the same functions with a few changes. Unfortunately, there is no guarantee that the 
counties will continue to use similar PDF formats for their election votes. Perhaps the 
greatest finding of this project is that despite the fact that election results are supposed 
to be made available to the public, they are inaccessible in many ways (such as a lack of 
a standard format for hundreds of pages of election data).

Our project represents the workflow of someone who is interested in looking at 
election results at a large level — they first begin by gathering the election data made 
available by county governments and eventually create a visualization. The process 
required a significant amount of work by students who were trained in programming 
and data science concepts. Even with our skill sets, we still faced quite a few challenges 
in our work. Therefore, there is clearly a need for standardized election formats across 
the country. Furthermore, the lack of standardization and usability proves that the 
work that the volunteers at Open Elections do is integral to keeping election results 
truly accessible to the public. Contributions to the Open Elections project such as this 
project help make it possible for anyone with access to the internet find readable and 
comprehensive election data to learn more about the democratic processes that greatly 
impact their lives.

384

December 18, 2019 12/15



385

386

Appendix

387

Fig 5. A broad view of the process to transform data from PDFs into a standard CSV
format

December 18, 2019 13/15



Fig 6. A detailed view of the process to transform data from PDFs into a standard
CSV format. Following the steps outlined in the Figure 5, the orange boxes align with
step 1, yellow boxes align with step 2, red boxes align with step 3, and brown boxes
align with step 4.

December 18, 2019 14/15



References 388

1. Lawless JL. Becoming a candidate: Political ambition and the decision to run for 389

office. Cambridge University Press; 2012. 390

2. Freedom of information act [Internet]. FEC.gov. Available: 391

https://www.fec.gov/freedom-information-act/ 392

3. Willis D. Welcome to openelections [Internet]. OpenElections. Available: 393

http://openelections.net/about/ 394

4. Willis D. The openelections project [Internet]. GitHub. Available: 395

https://github.com/openelections 396

5. Xiao T. SDS capstone open elections github [Internet]. Available: 397

https://sds-capstone.github.io/openelections/ 398

6. Pdftotext [Internet]. xpdf. Glyph & Cog; Available: 399

https://www.xpdfreader.com/pdftotext-man.html 400

7. Aristarán M, Tigas M, Merrill JB. Tabula-py [Internet]. PyPI. Available: 401

https://pypi.org/project/tabula-py/ 402

8. McKinney W. Data structures for statistical computing in python. In: Walt S van 403

der, Millman J, editors. Proceedings of the 9th python in science conference. 2010. pp. 404

51–56. 405

9. Openelections. Openelections/openelections-data-ny [Internet]. GitHub. 406

Available: https://github.com/openelections/openelections-data-ny/blob/ 407

master/2016/20161108__ny__general.csv 408

10. Sievert C. Plotly for r [Internet]. 2018. Available: https://plotly-r.com 409

11. Chang W, Cheng J, Allaire J, Xie Y, McPherson J. Shiny: Web application 410

framework for r [Internet]. 2019. Available: 411

https://CRAN.R-project.org/package=shiny 412

12. Shinyapps.io [Internet]. shinyapps.io. Available: https://www.shinyapps.io/ 413

December 18, 2019 15/15

https://www.fec.gov/freedom-information-act/
http://openelections.net/about/
https://github.com/openelections
https://sds-capstone.github.io/openelections/
https://www.xpdfreader.com/pdftotext-man.html
https://pypi.org/project/tabula-py/
https://github.com/openelections/openelections-data-ny/blob/master/2016/20161108__ny__general.csv
https://github.com/openelections/openelections-data-ny/blob/master/2016/20161108__ny__general.csv
https://github.com/openelections/openelections-data-ny/blob/master/2016/20161108__ny__general.csv
https://plotly-r.com
https://CRAN.R-project.org/package=shiny
https://www.shinyapps.io/

	Introduction
	About the PDFs
	About the Visualization

	Methods
	Turning Election Data from PDFs into a Standard CSV Format
	1. Locate Available Election Data
	2. Select Election Data to Transform
	3. Transforming Election Data
	4. Validate the Data

	Creating a Visualization Using the Open Elections Data
	1. Locating and Selecting the Data
	2. Clean the Data
	3. Create the Visualization


	Results
	Parsers
	Indiana Parser
	Michigan Parser
	California Parser
	Missouri Parser

	Visualization

	Discussion
	Limitations of Parsers
	Limitations of the Visualization
	Future Work
	Conclusion

	Acknowledgements
	Appendix
	References

