
Advanced Decision Making and Interpretability through
Neural Shrubs

Abstract

Advanced decision making using machine learning should be both accurate and
interpretable. Many standard machine learning techniques suffer from an inherent
lack of transparency with regard to how the resulting decision was made. In the
current work we aim to overcome this issue by introducing a hybrid learning approach
using classical decision trees alongside artificial neural networks, dubbed a “neural
shrub". The Neural Shrub methodology presented in this paper aims to maintain as
much interpretability as possible without sacrificing either classification or regression
accuracy. Experimental results are presented on several benchmark data sets to
validate the proposed approach as well as provide insight into future research directions.

Keywords: Interpretable AI/ML, Decision trees, Neural networks

1 Introduction

Artificial intelligence (AI) and neural networks has been successfully applied to many fields. With
the increase in the data volume and computation power, artificial intelligence focuses on making
models to extract valuable information from large data to predict future behavior. Some of the
popular applications of artificial intelligence and neural networks are seen in pattern recognition,
system modeling and identification, signal processing, image processing, and stock market predictions
to name but a few [1].

However, the advancement of artificial intelligence and neural networks has recently come
under scrutiny, especially from the statistical community, due to lack of tools available to determine
how or why a particular decision is being made [2]. Although powerful and highly effective at
predicting behavior in non-linear data, lawyers and business practitioners are reluctant to use
these tools because it is nearly impossible to explain the results and decisions made by these
technologies [3]. In addition to their inherent lack of interpretability, quantifying the predictive
capabilities and validity of such models often poses a significant challenge [4]. Therefore, this
paper aims to answer this fundamental research question in artificial intelligence.

In attempt to provide more transparency of AI models this paper proposes a hybrid method that
combines neural networks with binary decision trees. The advantage of our approach is that we
maintain the interpretabilty of our predictions by partitioning the data space with a binary decision
tree without sacrificing the accuracy of a standard feed forward neural network.

In the experiments section of this paper it will be shown that our approach improves the binary
decision tree but is slightly less accurate than a standard neural network. We make the case that
the small decrease in accuracy is well worth the benefit of having a partitioned data space which
increases the interpretability of the results.

The remainder of this paper is organized as follows. We will discuss about binary decision
trees and neural networks in the background. We will look into limits of some past works on hybrid
methods similar to Neural Shrubs in related works. In methodology, will outline the neural shrubs
algorithm, which will be followed by a comparison of its performance against a standard binary
decision tree and neural a network. Finally, we will conclude by providing some interpretative
remarks and future directions.

1

2 Background

2.1 Decision Trees

A binary decision tree organizes the available data by performing data partitions in response
to simple yes/no questions based on predictor variables. They trace their initial roots back to
social scientists in the early 60’s [5]. With the development of the Automatic Interaction Detection
(AID) program by Morgan and Sonquist [6], binary decision trees started to become a popular
tool for organizing and interpreting data. Leo Breiman and Jerome Friedman began working on
trees independently in the early 70’s and then teamed up with Stone and Olshen to publish what
most would consider the authoritative work on the subject, “Classification and Regression Trees
(CART)” [7]. Since the 80’s CART has become one of the more popular machine learning tools.

Tree based models or binary decision trees are generally used to solve two basic types of
problems: (1) Classification, which has a categorical response variable, and (2) Regression, which
involves a continuous response variable.

The CART algorithm is a greedy algorithm, meaning at each step it determines the partition
that minimizes the impurity. For classification trees, this usually implies that it selects the partition
that has the minimum number of misclassified cases. For regression trees, this usually implies that
the selected partition has the smallest sum of squares of the target variable [8]. Trees are generally
over grown by choosing locally optimum splits and then pruned back to the optimal depth using
cross-validation in an effort to prevent over fitting.

To illustrate the interpretability of a decision tree, we provide an elementary example by considering
the problem of predicting survivors for those who embarked on the titanic. The general idea
here is that, based on factors such as sex, passenger class, sibling counts, etc., can we deduce
information from these factors and use them for prediction? In other words, can we determine
which factors (i.e. attributes) are most likely to lead to the passenger surviving the disaster [9].
Using the factors available in the dataset, as well as the known categorical response (survived/died),
we used the standard CART methodology described above to build the tree illustrated in Figure 1.
Reading the tree in a top down manner, we see that the most important factor is the sex of the
passenger. From the root (top) node in the tree we see that 59% of the females survived as
opposed to 41% of males. As you work your way down the tree you can see which other factors
contribute to passenger survivability.

The decision tree partitions the data into two distinct classes (1 = survived and 0 = died) at
each of the leaf nodes (i.e., the terminal nodes of the tree). Each branch of the tree is a decision
that the tree makes to arrive to the value in the leaf node. Using some of the other factors, we see
that the best chance of survival occurs when the passenger was a female and not a third class
passenger. The far right leaf node in Figure 1 shows that 22% of the data consisted of females
who were not 3rd class passengers. For those passengers, 93% survived and only 7% died.

As this example illustrates, binary decision trees are exceedingly useful because interpretation
is very straight forward. In addition, for a given data set, the topology of the tree will always be
the same regardless of how many times the tree is built (i.e., the build process is repeatable). The
disadvantage of decision trees is that other machine learning techniques (e.g. Neural Networks,

2

Figure 1: Example of a decision tree using the CART methodology for the Titanic dataset illustrating the simplicity of
interpretable results. From the top (root node) we see that the most important predictor for survival is the sex of the
passenger followed by either age (if you’re a female) and passenger class (if you’re a male).

Support Vector Machines) often outperform trees in terms of accuracy on independent data. As
illustrated in Subsection 2.2, a relatively simple artificial neural networks (ANN) can achieve close
to 84% prediction accuracy whereas the accuracy of the tree depicted in Figure 1 is closer to 80%.

2.2 Neural Networks

Although the idea of neural networks, also known as Artificial Neural Networks (ANNs) dates
back to the late 1800’s, the first computational model can be attributed to McCulloch and Pitts in
1943 [10]. However the research into computational neural networks stagnated when Minsky and
Seymour presented two fundamental issues, 1) a single layer neural network could not model
the exclusive-OR circuit and 2) the computational burden required for complex networks was
unfeasible at the time [11]. Fast forward three decades, and due to increased computational
power, and new application areas, neural networks have seen a major comeback.

ANNs have received considerable attention over the last several decades due to their ability to
learn nonlinear mappings from one space to another [12–15]. While predominantly developed
for their powerful classification capabilities, neural networks have branched out to solve both
classification and regression problems, as well as a host of other problems in data science (e.g.,
time-series prediction, image/video annotation, dimensionality reduction, and more recently generation
of new data) [16–24].

3

Neural networks represent a very powerful class of machine learning tools. As the name
implies, ANNs are inspired from the brain and the nervous system. Like our brain, the neural
network has the ability to learn and adapt. The basic building blocks of neural networks is a
neuron. A neuron is a processing unit of a neural network. Depending on the type of connections
between neurons, there are two main categories of network architectures, feed-forward neural
network and recurrent neural network. If there is no feedback from the outputs of the neurons
towards the inputs throughout the network, then the network is referred as a feed-forward neural
network. Otherwise, it is called a recurrent neural network [1]. In this paper, we will focus on
feed-forward neural networks.

Figure 2: A multi-layer feed-forward artificial neural network consists of an input layer, which receives data; the hidden
layer and output layer does the computation; and the result is transferred to the outside world through the output layer.

The structure of a feed-forward neural network is shown in Figure 2. It consists of an input
layer, which receives the data. This layer does not do any computation. The data is processed in
the hidden layer and output layer and it is transferred to the outside world through the output layer.
Activation functions decide whether the neuron should be activated or not. This helps in adding
non-linearity into the output [1].

As mentioned previously, neural networks have come under scrutiny because it is nearly
impossible to determine how or why a particular decision is being made [2]. An example of this
is illustrated in Figure 3, where one ANN topology might decide to separate class boundaries by
artificially imposing a torus around the data sets (middle figure), whereas another topology may
simply map the data to an entirely new space to simplify the class separation process using a line
(right figure). Unfortunately, the ability to easily interpret which of these two approaches is being
implemented is difficult if not impossible to determine in practice. Therefore, neural networks have
been commonly referred to as “black box”.

If we consider the same dataset outlined in Subsection 2.1 where the goal is to predict survivors
who embarked on the Titanic journey, a basic feed-forward ANN is both time consuming and
tedious to interpret. For an input layer with 15 neurons, a single hidden layer with 14 neurons (both
using rectified linear unit activation with external bias), and a single output layer using a soft-max
activation, the network needs to learn 359 different parameters in order to achieve 84% prediction
accuracy. If we compare this to the results obtained in Subsection 2.1 for the classical decision
tree, only 5 parameters were required to achieve 80% classification accuracy (sex, age, passenger

4

Figure 3: Graphical example of two potential ANN topologies creating drastically different results for the same two class
data (left). The first ANN topology attempts to separate class boundaries by artificially imposing a torus around the data
sets (middle), whereas another topology simply maps the data to an entirely new space to simplify the class separation
process (right). Unfortunately, the ability to easily interpret which of these two approaches is being implemented is
difficult if not impossible to determine in practice.

class, number of siblings, and passenger fare). Furthermore, while the tree is a deterministic
process (i.e., the same tree will always result), the ANN can change during each training cycle due
to gradient decent stagnation and/or convergence toward local minima. In addition, different ANN
topology and hyper-parameters may produce drastically different prediction results and training
rates.

5

3 Related Works

Substantial research has been published that combines decision trees and ANNs. The bulk of this
research involves using ANNs to design a decision tree [25–28]. All of these methods have been
shown to improve the decision tree and aid in interpretability. Others have used a ANNs to improve
the splitting in a decision tree. Frosst et al. [29] use a distilling neural network to build what they
call a “soft" decision tree. In a soft decision tree, the ANN is used to determine the splits. Bul
and Kontschieder [29,30] use an ANN to determine splits for a random forest. Other seminal work
include using a random forest to do prediction after designing an ANN [31] and Chakraborty et
al. [32] use a decision tree to determine the salient features that should be used when designing
an ANN.

Finally, in [33] the authors show that adding an ANN to the leaf nodes of a decision tree
improves water state forecasts in river basins during typhoon events. The authors use the tree
to partition the data space prior to attaching either a multi-layer perceptron (MLP) or radial basis
network (RBN) to each leaf node of the tree in an effort to improve the overall forecasts.

The current research investigates a similar structure for both multi-class classification and
regression problems by capitalizing on a hybrid methodology. However, rather than simply attaching
an ANN to each leaf node of the decision tree, we illustrate that topologically similar data in the
high dimensional data space can be grouped using the neural shrub architecture for improved
classification/regression accuracy. We refer to this overall architecture as a neural shrubs because,
not unlike the shrub (i.e. bush), it differs from a tree in that it has multiple stems and is generally
shorter in height.

6

4 Methodology

All of these hybrid techniques are fundamentally different from the method proposed in this paper.
The Neural Shrubs methodology is a 2-step process. First, we create a standard decision tree
using the traditional CART methodology as described in Section 2.1 to both pre-partition the data
space, and determine which predictor variables are the most useful [7]. Next, we find the terminal
nodes that contain topologically similar data. In other words, those terminal nodes that result in
the same class prediction. According to [7], this means the class that has the highest posterior
probability. Using this data, we build ANNs.

Figure 4: Graphical example of the neural shrubs approach outlined in the current paper applied to topologically similar
data. The original data is shown in the upper left figure. Classical data space partitioning using CART is illustrated in
the top middle figure with the resulting decision tree in the bottom left figure. The method proposed by [33] (applying
an ANN to each leaf node) is shown in the upper right figure, and our neural shrubs approach (applying an ANN to
topologically similar data) is illustrated in the bottom right figure.

This concept is best illustrated through a practical example as depicted in Figure 4. In this
figure, the original data contains two classes (red x’s and blue o’s) in the shape of a torus (top
left). A classical decision tree using the CART algorithm described above would simply partition
this particular data-space into five distinct regions based on the two predictor variables x1 and
x2 (top middle) to produce the tree structure shown in the bottom left. From this partitioning, the
approach outlined in [33] would simply train an ANN on each of the five leaf nodes for subsequent
classification or regression (illustrated in the top right figure). However, in this particular example,
we see that even though the resulting decision tree contains five leaf nodes, only one of those
five would “predict" class 2 whereas the other four would “predict" class 1, i.e., the additional
four leaf nodes contain topologically similar data in the data space. Because this information can
be determined a priori, the current work proposes grouping such topologically similar data into a
single data set and training an ANN on this data set only as illustrated in the bottom right figure.

7

Unlike the data space pre-partitioning a decision tree performs as outlined in Figure 4, a single
ANN could be used for classification and/or regressions. The advantage is that the ANN has the
ability to learn nonlinear boundary conditions in an attempt to perform class separation in the
data space. The drawback of course is the way in which the ANN learns to do this partitioning
is unpredictable, uninterpretable, and can change based on network topology (and/or change of
hyper-parameters).

The neural shrubs method proposed in the current work aims to capitalize on both the decision
tree and ANN with the goals of increased accuracy while maintaining interpretability. The advantage
of our proposed neural shrub approach is that the data set is still pre-partitioned by a decision tree,
so that most of the interpretatbility is maintained while the overall accuracy of either classification
and/or regression is generally improved.

In addition, the level of interpretability is completely controllable in that the user can decide
how deep to grow the tree prior to pruning and applying the ANN architecture. The neural shrub
approach has the additional advantage of being tune-able so as to allow the user to trade-off
accuracy for interpretability.

Indeed, for applications where accuracy is more important than interpretability the user should
build a more shallow tree which increases the contribution of the ANN. Whereas, for applications
where interpretation is paramount, the user should increase the overall depth of the tree thereby
decreasing the contribution of the ANN. One can envision that as the tree gets smaller and smaller,
both the accuracy and interpretability approach that of an ANN. However, as the tree gets larger
the accuracy and interpretability approach that of a decision tree.

8

5 Experiments

5.1 Datasets

To compare neural shrubs to ANNs and decision trees, we use an ensemble of notable benchmark
data sets commonly used for testing. These test sets vary in size (i.e. number of instances) and
number of predictor variables (i.e. attributes). Table 2 summarizes these data sets. For the
experiments, we chose three classification datasets and one regression dataset.

Table 1: Testing Data

Data Set Training Testing Attributes Type
Connect 4 67,557 NA 126 Classification
MNIST 60,000 10,000 780 Classification
SensIT 78,823 19,705 50 Classification
YearPredictionMSD 463,715 51,630 90 Regression

Each of the classification sets aim to separate the data in to several distinct classes. For the
Connect-4 data, the goal is to classify an intermediate board condition that will eventually lead
to either a win, a loss or a draw (three classes). For the MNIST dataset, the goal is to classify
handwritten digits (0-9). The SensIT data uses 50 attributes to classify three different types of
military vehicles. The only regression dataset (YearPredictionMSD) tries to determine the year a
song was released based on 90 different attributes. For additional details regarding these data
sets, the reader is referred to [34].

5.2 Models

For each dataset, we build four separate models: decision tree, neural network, neural shrub on
leaves described in [33], and neural shrub on classes using the training dataset. We then use the
performance metrics outlined in Section 5.3 on each model to evaluate either the classification
accuracy (for classification problems) or the mean absolute error (for regression problems).

Table 2: Decision tree depths for testing data

Data Set Depth
Connect 4 12
MNIST 10
SensIT 5
YearPredictionMSD 13

9

Table 3: Neural Network Architecture

Dataset Layer Number of Neurons Activation Function

Connect-4
Input Layer 42 -
Hidden Layer 1 8 relu
Ouput Layer 3 softmax

MNIST

Input Layer 784 -
Hidden Layer 1 512 relu
Hidden Layer 2 512 relu
Ouput Layer 10 softmax

SensIT
Input Layer 49 -
Hidden Layer 1 30 relu
Hidden Layer 2 10 relu
Ouput Layer 3 softmax

YearPredictionMSD

Input Layer 90 -
Hidden Layer 1 90 relu
Hidden Layer 2 90 relu
Hidden Layer 3 90 relu
Hidden Layer 4 90 relu
Ouput Layer 1 linear

The decision tree is built using the CART methodology described in Section 2.1. The optimal
depths calculated for the selected datasets are shown in Table 2. Feed-forward neural networks
were made for each dataset as shown in Table 3. For a fair comparison, the same architectures are
used to train the decision tree and neural networks for the neural shrubs on leaves and classes.
Neural shrubs on leaves are built by attaching the architecturally similar neural network on each
leaf node, while neural shrubs on classes are built by combining the leaf nodes of the decision
tree which are topologically similar, and training architecturally similar neural network on the new
groups of data.

Since regression models do not have classes, we use only one neural shrubs method (leaves).
Separate ANNs are affixed to every leaf node since there is not a reasonable way to combine leaf
nodes in the regression setting.

5.3 Performance Evaluation

After training the models, we pass the test dataset through each model and analyse the performance
of neural shrubs against other models. If the goal is classification, we use the model and the test
data to build a confusion matrix which groups the data into four categories as shown in Figure 5.
Some popular confusion matrix terminologies are described below:

• Positive: the observation belongs to the selected class.

• Negative: the observation does not belong to the selected class.

10

• True Positive: the number of observations that are positive, and predicted as positive.

• False Negative: the number of observations that are positive, but predicted as negative.

• True Negative: the number of observations that are negative, and predicted as negative.

• False Positive: the number of observations that are negative, but predicted as positive.

ac
tu

al
va

lu
e

Prediction outcome

p n total

p′
True
Positive
(TP)

False
Negative
(FN)

P′

n′
False
Positive
(FP)

True
Negative
(TN)

N′

total P N

Figure 5: A Confusion matrix groups the predictions for a classification problem into four groups: true positions, false
negative, false positive, and true negative. These values are used to calculate performance metrics such as accuracy,
precision, recall, and f-measure.

The confusion matrix is used to calculate performance metrics for a classification dataset.
Classification accuracy is the ratio of correct predictions among all predictions.

Accuracy =
TP + TN

TP + TN + FP + FN

Accuracy alone can be misleading if you have an unequal number of observations in each
class or if you have more than two classes in your dataset. Therefore, apart from accuracy, we
calculate the Precision, Recall, and F-Measure from the confusion matrix.

Precision is the ratio of predictions correctly classified out of all the predicted values.

Precision =
TP

TP + FP

Recall represents the ratio of the correctly classified values out of all the actual values.

Recall =
TP

TP + FN

As discussed previously, accuracy will not always be the metrics to select the best model.
As you can see from the formula, accuracy can be largely contributed by a large number of true
negatives. In most circumstances, we do not focus much on false negatives and false positives. F-
measure (F1 Score) might be a better measure to use if there is an imbalance between Precision
and Recall and there is an uneven class distribution.

11

F-Measure (F1) = 2

(
Precision×Recall

Precision+Recall

)

Thus, in situations where the number of false positives and false negatives are about the same,
accuracy is generally the best measure of performance. If this is not the case, than F-measure is
more informative than accuracy [35].

Since all 3 classifications sets have multiple classes, the Precision, recall and F-Measure
values are averaged over all classes. The accuracy values are for the entire test set.

For regression datasets, we measure the performance using the Mean Absolute Error (MAE)
which is the average of the absolute differences. We use MAE instead of Mean Squared Error
(MSE) which is the average of the square of difference, because we do not want to penalties the
large errors more than the small errors. MAE will ensure that all errors are treated the same.

MAE =
1

n

n∑
i=1

|yi − ŷi|

For each model, we also look at the training time. We assume that building the neural network
for a neural shrub (leaves or classes) can be done in parallel. Thus, the time for the neural shrub
method equals the time to create the decision tree plus the time to train the largest ANN.

5.4 Results

The classification results are shown in Tables 4-6. We present the results for both shrubs methods
(classes/leaves). With the exception of Connect-4 (Leaves), we see that the neural shrub method
improves the decision tree and comes close to the accuracy of the ANN. In the case of MNIST,
the improvement is fairly substantial. The slight reduction in the Connect-4 leaves accuracy is a
result of not having enough data in the leaf nodes to produce an accurate ANN. This obstacle is
overcome by combining topologically similar nodes (neural shrubs on classes).

Table 4: Connect4 Results

Method Precision Recall F1 Accuracy Time (sec)
Decision Tree 0.56 0.49 0.48 0.73 0.23
Neural Network 0.64 0.54 0.52 0.78 192.61
Neural Shrub-C 0.64 0.55 0.54 0.78 84.82
Neural Shrub-L 0.48 0.48 0.47 0.69 15.55

For Connect-4 the results are slightly unbalanced, as the percentage of false positives to false
negatives can differ by as much as 10%. Here there are no dire consequences of false positives
and negatives unless you are gambling. In which case, we argue you might want to consider false
positives and negatives equally. Thus, F-measure might be the best choice when determining

12

which model to use. Here we see that in terms of F-measure, the neural shrub-C is the best
performer of the methods.

Table 5: MNIST Results

Method Precision Recall F1 Accuracy Time (sec)
Decision Tree 0.84 0.85 0.85 0.78 10.52
Neural Network 0.98 0.98 0.98 0.98 147.73
Neural Shrub-C 0.96 0.96 0.96 0.97 38.74
Neural Shrub-L 0.96 0.96 0.96 0.95 23.32

For MNIST, the number of false positives and false negatives are rather low (< 1%). Thus, we
probably want to focus on accuracy. Here we see that both neural shrubs methods substantially
increase the accuracy over a standard decision tree and are very close to the accuracy of the
neural network.

Table 6: SensIT Results

Method Precision Recall F1 Accuracy Time (sec)
Decision Tree 0.66 0.67 0.66 0.68 2.92
Neural Network 0.68 0.69 0.68 0.71 12.66
Neural Shrub-C 0.68 0.68 0.68 0.71 12.57
Neural Shrub-L 0.66 0.67 0.66 0.68 5.76

The SensIT dataset is also fairly balanced so again we focus on accuracy. Here we see more
of the same. The neural shrub method on classes increase the accuracy of the decision tree and
provides an accuracy equal to the ANN.

From Tables 4-6 we see that training a neural shrub less than training a full ANN. The neural
shrub-C method takes longer to train than the leaves method because the data is aggregated,
thus more data to train on.

Table 7: YearPredictionMSD Results

Method MAE Time (sec)
Decision Tree 7.09 32.77
Neural Network 6.08 209.6
Neural Shrub 6.80 47.96

For the regression dataset, we are predicting a continuous target value. The goal is to see on
average how much we are off. To asses this, we determine how far the the actual target (yi) is
from the predicted target (ŷi) using Mean Absolute Error. Models with lower MAE is more accurate.
Table 7 shows results that are comparable to the classification sets in that the ANN is the most
accurate closely followed by the neural shrub with the decision tree being the worst performer.

13

6 Conclusions

The current paper presented a new approach to advanced decision making by capitalizing on the
interpretability of decision trees and the accuracy of ANNs. The approach, deemed neural shrubs,
proceeded by using a decision tree architecture to pre-partition the data space, and grouping
topologically similar data through a feedforward ANN. Experimental results were presented for
classification and regression using several standard benchmark data sets and it was shown that
the accuracy of the neural shrub was slightly less than that of a ANN and higher than a standard
decision tree, while maintaining much of the interpretability of the decision tree.

Furthermore, the time required for training the neural shrubs was minimal as compared to
training times associated with ANNs. The reduction in training time will help in rapid evaluation
of different neural network architectures which will result in a more thorough hyper-parameter
optimization.

Comparing neural shrubs on leaves and neural shrubs on classes, we found that neural shrubs
on classes outperform in accuracy neural shrubs on leaves. However, the time taken to train a
neural shrub on class was more. This is because there are more data to train the neural networks
in the neural shrubs on classes.

We found that the level of interpretability is completely controlled by the depth of the tree which
can be controlled by the user. When the depth of the tree increases, the neural shrubs behave
more like a decision tree. Similarly, when the depth of the tree is reduced, the neural shrub
behaves like a neural network. The challenge is to find the right depth of the tree which makes the
neural shrub interpretable, without loosing accuracy of the neural network.

Future work will focus on further examination of the leaf node topology to determine bounds
on total data needed for accurate training of the ANN in the leaf nodes of the neural shrubs.
In addition, we aim to focus future work on investigating automatic pruning of the tree depth
based on cross-validation of the overall neural shrub architecture as opposed to the traditional
cross-validation using CART alone. Another interesting study will be to look at different neural
network architecture for each topological similar points instead of using the same neural network
architecture.

14

References

[1] M. Sazli, “A brief review of feed-forward neural networks,” Communications, Faculty Of
Science, University of Ankara, vol. 50, pp. 11–17, 01 2006.

[2] P. Norvig, “On chomsky and the two cultures of statistical learning,” in Berechenbarkeit der
Welt? Springer, 2017, pp. 61–83.

[3] M. Brundage, S. Avin, J. Clark, H. Toner, P. Eckersley, B. Garfinkel, A. Dafoe, P. Scharre,
T. Zeitzoff, B. Filar et al., “The malicious use of artificial intelligence: Forecasting, prevention,
and mitigation,” arXiv preprint arXiv:1802.07228, 2018.

[4] P. Hall and N. Gill, Introduction to Machine Learning Interpretability. O’Reilly Media,
Incorporated, 2018.

[5] E. B. Hunt, “Concept learning: An information processing problem.” 1962.

[6] J. A. Sonquist, “Finding variables that work,” Public Opinion Quarterly, vol. 33, no. 1, pp.
83–95, 1969.

[7] L. Brieman, J. Friedman, R. Olshen, and C. Stone, “Classification and regression trees.
belmont (ca): Wadsworth,” Google Scholar, 1984.

[8] C.-C. Tsai, M.-C. Lu, and C.-C. Wei, “Decision tree–based classifier combined with neural-
based predictor for water-stage forecasts in a river basin during typhoons: a case study in
taiwan,” Environmental engineering science, vol. 29, no. 2, pp. 108–116, 2012.

[9] M. A. Whitley, “Using statistical learning to predict survival of passengers on the rms titanic,”
2015.

[10] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,”
The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–133, Dec 1943.

[11] M. Minsky and S. A. Papert, An Introduction to Computational Geometry. MIT Press, 1969.

[12] D. F. Specht, “Probabilistic neural networks for classification, mapping, or associative
memory,” in IEEE International Conference on Neural Networks, July 1988, pp. 525–532
vol.1.

[13] G. P. Zhang, “Neural networks for classification: a survey,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), vol. 30, no. 4, pp. 451–462, Nov
2000.

[14] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the recent architectures of
deep convolutional neural networks,” ArXiv, vol. abs/1901.06032, 2019.

[15] M. A. Kramer, “Nonlinear principal component analysis using autoassociative neural
networks,” AIChE Journal, vol. 37, no. 2, pp. 233–243, 1991.

[16] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural
networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[17] J. T. Connor, R. D. Martin, and L. E. Atlas, “Recurrent neural networks and robust time series
prediction,” IEEE Transactions on Neural Networks, vol. 5, no. 2, pp. 240–254, March 1994.

15

[18] K. Chakraborty, K. Mehrotra, C. K. Mohan, and S. Ranka, “Forecasting the behavior of
multivariate time series using neural networks,” Neural Networks, vol. 5, no. 6, pp. 961 –
970, 1992.

[19] G. Dorffner, “Neural networks for time series processing,” Neural Network World, vol. 6, pp.
447–468, 1996.

[20] H. Yu, J. Wang, Z. Huang, Y. Yang, and W. Xu, “Video paragraph captioning using hierarchical
recurrent neural networks,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[21] L. Yao, A. Torabi, K. Cho, N. Ballas, C. Pal, H. Larochelle, and A. Courville, “Describing videos
by exploiting temporal structure,” in The IEEE International Conference on Computer Vision
(ICCV), December 2015.

[22] Y. Jiang, Z. Wu, J. Wang, X. Xue, and S. Chang, “Exploiting feature and class relationships
in video categorization with regularized deep neural networks,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 40, no. 2, pp. 352–364, Feb 2018.

[23] P. Pan, Z. Xu, Y. Yang, F. Wu, and Y. Zhuang, “Hierarchical recurrent neural encoder for video
representation with application to captioning,” in The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2016.

[24] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio, “Generative adversarial nets,” in Advances in Neural Information Processing
Systems 27, 2014, pp. 2672–2680.

[25] J. M. Jerez-Aragonés, J. A. Gómez-Ruiz, G. Ramos-Jiménez, J. Muñoz-Pérez, and E. Alba-
Conejo, “A combined neural network and decision trees model for prognosis of breast cancer
relapse,” Artificial intelligence in medicine, vol. 27, no. 1, pp. 45–63, 2003.

[26] Y. Yang, I. G. Morillo, and T. M. Hospedales, “Deep neural decision trees,” arXiv preprint
arXiv:1806.06988, 2018.

[27] J. Sirat and J. Nadal, “Neural trees: a new tool for classification,” Network: computation in
neural systems, vol. 1, no. 4, pp. 423–438, 1990.

[28] I. K. Sethi, “Entropy nets: from decision trees to neural networks,” Proceedings of the IEEE,
vol. 78, no. 10, pp. 1605–1613, 1990.

[29] N. Frosst and G. Hinton, “Distilling a neural network into a soft decision tree,” arXiv preprint
arXiv:1711.09784, 2017.

[30] S. Rota Bulo and P. Kontschieder, “Neural decision forests for semantic image labelling,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp.
81–88.

[31] P. Kontschieder, M. Fiterau, A. Criminisi, and S. Rota Bulo, “Deep neural decision forests,” in
Proceedings of the IEEE international conference on computer vision, 2015, pp. 1467–1475.

[32] T. Chakraborty, S. Chattopadhyay, and A. K. Chakraborty, “A novel hybridization of
classification trees and artificial neural networks for selection of students in a business
school,” Opsearch, vol. 55, no. 2, pp. 434–446, 2018.

16

[33] C.-C. Tsai, M.-C. Lu, and C.-C. Wei, “Decision tree–based classifier combined with neural-
based predictor for water-stage forecasts in a river basin during typhoons: a case study in
taiwan,” Environmental engineering science, vol. 29, no. 2, pp. 108–116, 2012.

[34] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector machines," 2001. software
available at http://www. csie. ntu. edu. tw/˜ cjlin/libsvm,” 2012.

[35] J. Davis and M. Goadrich, “The relationship between precision-recall and roc curves,” in
Proceedings of the 23rd international conference on Machine learning. ACM, 2006, pp.
233–240.

17

