Graphical Inference with Convolutional Neural Networks

Abstract

Understanding and recognizing trends in scat-
ter plots is a keep step in many statistical anal-
yses, but these trends are not always obviously
apparent. Unclear trends can be particularly
problematic during exploratory data analysis.
In this paper I present a way to use convolu-
tional neural networks to detect trends in scat-
ter plots, taking some inspiration from previ-
ous work done in quantifying scatter plots us-
ing scatter plot diagnostics or scagnostics.

1 Introduction

Over thirty years ago Paul Tukey introduced the
idea of scatter-plot diagnostics or scagnostics. Af-
ter their introduction Tukeys ideas on scagnostics
laid mostly dormant for nearly twenty years un-
til Wilkinson et al. revisited the idea, and intro-
duced a number of new graph-theoretic measures
that introduced high speed computing the scagnos-
tics. [8]

02 08 00 08 0 1o 00 04 08

EEE I EEEIE =]
;J—IWWWWWWW
LJLQILA\ H—Jl—JLQ% @
m-u@u-wuﬁ

TS Prw &

10 25

00 08

00 20

0w 185

Figure 1: Scatter Plot Matrix of the Abalone Data [7]

Humans are generally quite good at noticing and
categorizing trends present in scatter-plots, but

hand classification can be a tedious and time inten-
sive process. In scatter plot matrices like the one
seen in figure 1 individual trends can become in-
distinguishable requiring individual inspection of
individual plots. Even in a relatively small data
set like the one used to produce figure 1 we have
over 50 unique plots. While 50 plots can be in-
spected within a reasonable amount of time it is
not uncommon for data sets to have more than 15
features, and a corresponding set of unique scat-
ter plots that numbers more than 100. Wilkinson
tried to cut down on the amount of time required to
analyze these plots by extracting high level statis-
tics from the plots, and then categorizing them. I
similarly reduce the total time required to interpret
scatter plots by using a convolutional neural net-
work to classify the plots. These methods can also
be used to provide a second opinion on whether a
trend is present in a plot when a relationship ap-
pears uncertain.

Wilkinson used polygons fit to the point distribu-
tions found in scatter plots to develop several mea-
sures that can be used to evaluate said scatter plots.
These measures are intended to reflect the shape
of the fit polygon by considering factors like their
area, perimeter, and width.

In this paper I have take the ideas originally pre-
sented in the in Wilkinson paper in a slightly dif-
ferent direction by applying the convolutional neu-
ral networks to the the problem of scatter plot
diagnostics. Rather than attempting to develop
hand crafted measures I allow the network to di-
rectly optimize a set of weights used to catego-
rize the plots. I do this by using some of the
graph-theoretic ideas presented by Wilkinson to
reduce help reduce noisy scatter plots to recogniz-
able classes, and then applying techniques from
modern image recognition systems to train a con-



volutional neural network to detect those classes.

In section 2 I begin by quickly summarizing some
of the measures presented in the Wilkinson pa-
per. I then introduce the theory behind both stan-
dard feedforward neural networks, and convolu-
tional neural networks in sections 3 and 4 respec-
tively. Following the introduction of the convolu-
tional neural networks (or CNNs for short) in sec-
tion 5 I introduce the data used to train the model,
and lay out the specific CNN that I have used in
section 6 along with the training process behind
it. Finally, I will review the performance of the
CNN I use in this paper, its limitations, potential
improvements, and how it can applied to real data
in sections 7 and 8.

2 Graphs and Hulls

The Wilkinson paper focuses on how geometric
graphs G* = [f(V), g(E), S] (a graph that maps
vertices to points and edges to lines segments con-
necting pairs of those points) can be used to derive
measures of scatter-plots using three different ge-
ometric graphs: the Convex Hull, Alpha Hull, and
MST (Minimum Spanning Tree). [9]

Convex hulls, and minimum spanning trees can be
very effective in some contexts, but in this paper I
will focus on the Alpha Hull. The benefit of using
an Alpha Hull over graphs described in the Wilkin-
son paper is that their shape can tightly encompass
a mass of points. This allows for the fitting of a
shape that is much more representative of a trend
than say a convex hull. If fit properly (a valid
« value is chosen) an Alpha Hull can also avoid
including points that are extreme outliers, which
some shapes like minimum spanning trees will al-
ways include. [8]

An Alpha Hull is a non-convex shape where an
edge exists between any pair of points that can
be touched by an open disk D(«) containing no
points. Roughly speaking we can think of an Al-
pha Hull as a shape that could be created by rolling
a disk of radius o« around a mass of points. This
differs from Convex Hulls that must include all
points in the distribution, and appear as if a rub-
ber band were fit around the distribution. [8] The
exclusion of points that occurs during fitting of an
Alpha Hull provides a more granular detailed im-
age than the all inclusive Convex Hulls, and more

obviously identifiable trends.

The fit hulls are then used to categorize the
plots via a set of measures. A few examples of
these measures are the convex measure Ceonpver =
area(A)/area(H), and the skinny measure
1 — /4rarea(A)/perimeter(A)
(where A is an alpha hull and H is a convex hull).
[8] The other measures introduced in the original
paper are similarly dependent upon the fitting of
polygons to point distributions.

Cskinny =

3 Feedforward Neural Networks

To develop a model that can learn from these gen-
erated images, and eventually classify new images
I turned to neural networks due to their known ef-
ficacy in image recognition tasks. A basic neural
network consists of three layers: the input layer,
the hidden layer, and the output layer.

e The input layer of a basic neural network con-
sists of a number of nodes that simply pass
data to the hidden layers without preforming
any computation. [3]

o The hidden layer (or layers) are where the
bulk of the computation in a neural network
takes place. As data passes through the hid-
den layers computation is executed in order
to find weights that are transferred to the fol-
lowing layer. Each of these weights is a
weight that exists between two nodes n and
m resulting in a weight W, ,,. [3]

e The output layer maps the final weights pro-
duced by the hidden layer to an useful output.
These outputs are found using an activation
function. [3]

In a standard feed-forward neural network all data
move from layer to layer without any backward,
or cyclical motion occurring. In this feed forward
system all nodes in a given layer are directly con-
nected to all nodes in the following layer. [3]

More specifically, feedforward neural networks
approximate a function f(r) = y that maps an
input x to a category y. A feedforward network
maps an approximate function f*(x; 6) to y where
0 are a set of parameters learned by the function.
[3] This approximate function is called a network,

Page 2 of 8



because each layer in the network is just a func-
tion f™ within a larger composition of functions.
In an n layer feedforward network for example f*
can be rewritten as f*(z) = f*(f*!(...f (x))).
[3] These functions are vector to vector functions,
but are commonly thought of as layers of vector to
scalar nodes acting in parallel. The network learns
the parameters that best approximate f* =~ f by
taking a set of training examples paired with their
true categories, so the network can see what it
must due with a given input at each layer to pro-
duce the correct output.

Although, these networks are inherently obtuse
they can be loosely analogized to familiar linear
models. Simple linear models are incredibly use-
ful due to their efficiency, reliability, and general
efficacy, but these models can sometimes ineffec-
tive when the relationship between between the in-
put and output is highly non-linear in nature. One
common solution to this problem when working
with linear models is to apply some sort of trans-
formation to the data that better matches it to a lin-
ear model. This is particularly common in the use
of support vector machines when a kernel transfor-
mation ¢ is employed to avoid the problems pre-
sented by non-linearity. In feedforward networks
rather than applying some form of transformation
to the data we can think of the network as learning
the transformation ¢ needed to linearly model the
data. [3, 4]

To learn these non-linear relationships we need to
choose a valid set of functions to use in the hid-
den layers of the network. Given that we want
to learn potentially very complex non-linear rela-
tionships we cannot use linear functions, because
if f(z;01) and g(x;62) are both linear than any
composition of the two g(f(x;01);602) = h will
be linear as well. [3] A common way to get
around this problem is to have each hidden layer
be a combination of an affine transformation and
an activation function. The hidden layer can be
defined as h = g(WTx + b). The first portion
(the affine transformation) is W2z + b, W7 is
a set of weights, and b is a bias vector. g(z) is
the activation function, and is normally applied to
each element of the vector individually such that
hi = g(W.;xT +b;), and g(z) = max{0, z}. [3]

For classification tasks the activation function of

choice is most commonly a softmax function. The
softmax function acts much like an ordinary logit
function by mapping real valued inputs to outputs
on the range (0, 1). In binary cases the simple
logit function works well, because we only need
to output a single value. In multi-class classifica-
tion problems we need to output n numbers in the
form of a vector that sums to 1 so the output acts

as a probability distribution. To do this we turn to
ezp(zi)
5= can(=)
where z; = log P(y = i|z). [3, 4] The softmax
thus normalizes the exponentiated outputs of each
element by summing over all exponentiations.

the softmax function softmaz(z); =

4 Convolutional Neural Networks

The task of image classification is a particularly
difficult one for standard feed-forward neural net-
works rendering them fairly effective. So, for im-
age classifications we need to turn to a variation of
the classic neural network architecture known as a
convolutional neural network.

The standard convolution operation can be written
as s(t) = [x(a)w(t— a)da and is sometimes rep-
resented using an asterisk as s(t) = (x x w)(¢).
In many statistical learning settings we are pro-
vided with a distinct set of data points, so we
use the discrete version of the convolution s(t) =
(xxw)(t) = Y x(a)w(t — a). [3] Just as in the
functions used in the feedforward networks x rep-
resents an input, and w a set of weights. In con-
volutional networks, however, the weights w are
sometimes referred to as a kernel. [3] I will refers
to these weights as a kernel moving forward into
the 2d setting of this problem.

In cases where our input is not just a vector of val-
ues (as is the cases when we are working with im-
ages), but rather a matrix we move into the 2d set-
ting of the problem, and apply the two dimensional
convolution operation: S(i,7) = (I * K)(i,7) =
Yoo L(m,n)K (i — m,j —n) where I is an
input image, and K is the kernel. [3]

The nodes of convolutional neural networks op-
erate over portions of matrices known as percep-
tive fields. [3] This is particularly useful when
working with images, because images can easily
be reduced to matrices of pixels, and by working
over regions of matrices CNNs can better reflect
the spatial dependencies present in images. Al-

Page 3 of 8



though the images we are working with in this
problem are black and white CNN regions can eas-
ily be expanded to include channels (by essentially
stacking several regions atop one another), so each
color of the image has its own channel. [3]

Each layer of a CNN is to applies a kernel to the
input matrix to generate a kernel feature. These
kernel features are found by iterating over the en-
tire input matrix with an nxn region and adding
a single weight to an nan kernel for each region
checked. The goal of this kernel is to reduce the
size of the feature space present in the original im-
age, and extract high level features of greater im-
portance from each region.

After using a kernel in the convolutional layer we
can further reduce the number of features used
(computational power needed) by applying a pool-
ing layer. Like the convolution operation pooling
functions over a certain region of the an nzn ker-
nel with each step. But rather applying a some-
what complex function to reduce the region it sim-
ply applies either a max, or mean function. Mean
pooling reduces each region by taking its mean
value, but generally it is more effective to use max
pooling, which simply takes the max value of each
region. [3] Pooling also offers one other advantage
over a an architecture that consists of purely con-
volutional layers: noise reduction. Pooling layers
effectively filter out noise by discarding less im-
portant, and potentially noisy weights through the
application of the max function.

A combination of a convolutional layer, and a
pooling layer compose a single layer in a standard
CNN architecture used in image classification. [3]

Another additional layer used in this image clas-
sification model is a dropout layer. A dropout
layer is used to ignore some nodes in the net-
work. A each phase of training every node is ei-
ther keep or removed based on a probability p.
The point of dropout is to reduce the chance of
over-fitting to the training set. By directly ignor-
ing certain nodes at random through the addition
of dropout the network is less likely to over-fit,
because the dropout layer is effectively reducing
codependency between the nodes.

The application of dropout layers is quite compa-

rable to how bagging is used in ensemble meth-
ods. For most ensemble methods it is compu-
tationally possible to train and evaluate a large
number number of relatively simple models (like
decision trees) using a form of bagging. [3]
With neural networks, however, bagging is not
a practical method due to the computational cost
of training each individual network. To avoid
this we use a dropout layer to train an ensemble
on sub-networks found within a neural network.
There are of course a number of important dis-
tinctions between a dropout layer and an ensem-
ble method. Namely that a dropout layer works on
sub-networks of a single parent network, and as a
result all sub-networks share a single set of param-
eters are not independent. The non-independence
of these sub-networks lends itself to the reduction
of a single cost function that dictates which sub-
networks (nodes) to include following the dropout
layer. [3]

5 Data Overview

In order to train our CNN quickly and effectively
I turned to the 2D point distributions used in the
later Scagnostic Distributions to evaluate the con-
sistency and accuracy of the metric laid out in
the initial Wilkinson paper. Given that the accu-
racy of a CNN is largely depended on its train-
ing data, and a properly trained CNN requires a
fairly large number of examples from each class
we wish to identify I implemented a 2D point dis-
tribution generator that builds upon the 10 distri-
butions used in the Scagnostic Distributions in-
stead of scraping the web for the 100s of data-sets
that would be required to generate the number of
scatter plots needed to train the CNN.

5.1 Data Generation

Figure 2: A Point Distribution Generated with the Neg-
ative Binomial Process

In order to generate data to be used in the classifi-
cation system I generated data according to the 14

Page 4 of 8



classes laid out below:

e Uniform: two sets of uniform random points
combined together

e Spherical:  multivariate normal with a
[[1,0], [0, 1]] covariance matrix

e Binormal: multivariate normal with one of
the following covariance matrices

- [[2’ 2]7 [27 3]]
- [[57 5]’ [57 6“
- [[87 8]7 [87 9“

e Funnel: multivariate log normal with p = 0.6

e Negative Exponential:
with added noise

exponential decay

e Quadratic: —z? with added noise

o Clustered: a number of clusters generated us-
ing the scikit-learn make_blobs function

[6]

e Doughnut: two circles of varying di-
ameters created using the scikit-learn
make_circles function [6]

e Stripe: uniform random points multiplied by
random normal integers

e Sparse: random integers multiplied by ran-
dom integers

e Exponential: exponential growth
o Logarithmic: logarithmic growth

e Negative binormal: equivalent process to bi-
normal, but with negative p values

e Negative funnel: multivariate log normal
with p = 0.6 and negative x values

All of the images generated by these processes are
injected with a randomly chosen amount of added
noise, and number of points. Noise is added di-
rectly to generation functions to ensure that gener-
ated points do not perfectly match a known func-
tion. This additional noise allows us to get a
more representative training set that better repre-
sents both the messiness of real world data, and the
murkiness that sometimes occurs between classes.

The primary way noise is added to each and ev-
ery one of the generations is by choosing the num-
ber of points that are going to be drawn from a
given process. At the beginning of each generation
the number of points drawn is chosen at random
from the set {50, 150, 500}. Each of these differ-
ent points levels are intended to represent a differ-
ent level of scatter plot sparsity ranging from quite
sparse to quite dense. For the uniform and spheri-
cal distributions the only noise needed comes from
the number of points, but all other distributions in-
clude at least one other form of added noise.

These other forms of noise are then added to the
generation process based on which process is be-
ing used. In the case of the binormal distribu-
tions that noise simply comes from the set of p
values chosen. For the generation processes that
follow a function of some sort like the exponential
or quadratic distributions noise is directly injected
into the y values of each pair of points by choosing
a random number from a randomly chosen range
of values. For the generations that involve integer
values like the stripe process the range, and num-
ber of distinct integer values is chosen at random.
The clustered generation process follows a similar
pattern by choosing the number of clusters from a
set of integers at random.

5.2 Image Generation

Figure 3: An Alpha Hull Fit to the Point Distribution
in Figure 2

generating each data set using the methods out-
lined above the distributions are converted to clas-
sifiable 20 dpi images by fitting an Alpha Hull,
and outputting the outer edges of the fit alpha hull
as an image. The final image output into either a
training, or validation set is essentially a black and
white outline of the point distribution fit according
to the alpha hull specifications.

Page 5 of 8



Figure 4: An Alpha Hull With a Poor Fit Due to an
Improper Choice of «

Each hull is fit using a randomly chosen alpha
value. These values are chosen randomly to both
add extra noise to the image set, and simulate the
inconsistencies in hull fitting that may occur dur-
ing either a batch based hull fitting process, or an
untrained individual. The random choice of alpha
values also results in a few incredibly unhelpful
outlines due to a rare inconsistencies in the way
alpha hulls are fit. In addition to these (arguably
overly noisy) outcomes, the random choice of al-
pha also provides different levels of sharpness to
each image. This allows two images generated us-
ing equivalent processes will not necessarily look
exactly the same adding an extra layer of protec-
tion against potentially very similar images.

The one exception to this process has to do with
the generation of images related to sparse point
distributions. Sparse distributions are effectively
straight vertical lines separated by white space.
Due to this highly uneven distribution of points it
is impossible to fit a representative alpha hull, be-
cause any hull fit would essentially be a rectangle.
To avoid this sparse images are output directly as
a their point distributions.

6 Model Outline

The model I use to in this paper consists of the
following blocks:

e A convolutional input layer

e 4 convolutional layers combined with pool-
ing layers

e 3 dropout layers interspersed between the
main convolutional and pooling layers

e A softmax activation function

Each image is input into an initial convolutional
layer to begin. The output of that first convo-
lutional layer is then sent into a series of four

combined covolutional/pooling layers. After the
first, second, and fourth of those layers there is a
dropout layer. After the final dropout layer the out-
put is flattened into a dense layer, and feed through
a softmax layer that produces final class labels.

The model is compiled to use categorical cross en-
tropy as its loss function, and the commonly used
adam optimizer as its optimizer. The model was
implemented using the Keras library in python. [1]

7 Model Evaluation

Validation Set Scores

Class Precision | Recall F1-Score
Uniform 0.97 0.99 0.98
Spherical 0.70 0.61 0.65
Binormal 0.85 0.81 0.83
Funnel 0.96 0.90 0.93
Neg- 0.97 0.99 0.98
Exponential

Quadratic 0.96 0.97 0.96
Clustered 0.73 0.83 0.78
Doughnut 0.73 0.83 0.77
Stripe 0.89 0.98 0.93
Sparse 1.00 1.00 1.00
Exponential 0.97 0.97 0.97
Logarithmic 0.99 0.92 0.95
Neg-Binormal 0.96 0.87 0.91
Neg-Funnel 0.94 0.93 0.93
Average 0.90 0.90 0.90

Table 1: Validation Set Scores by Class

I decided upon the final architecture for the
model based on its performance on a valida-
tion set that consisted of 150 images per class
for a total size of 2100 images. In Table
2 we can see the performance of the final
model. For each class precision, recall, and
F1-Score were calculated using the scikit-learn
metrics.confusion matrix function. Pre-
cision, recall, and F1-Score are calculated in the
following manner:

true positives [5]

e Precision = true positives+ false positives

e Recall =

true positives [5]
true positives+ false negatives

o Fy= 7%;%}3 where 8 = 1[5]

Nearly all classes scored over 0.90 in terms of
F1-Score showing us that the CNN is effectively
learning to predict the classes of images produced

Page 6 of 8



by the process laid out in section 5. Despite this
high average F1-Score, however, there are a num-
ber of classes on which the model performs well
above, or below the mark. Spherical, doughnut,
and clustered distributions seem to be particularly
difficult for the model to interpret. This is likely
caused by the high potential for similar hulls to be
fit to these distributions due to their shared produc-
tion of circular shapes. The sparse class lies on the
opposite side of things being the most unique of
the classes, and the only class for which an Alpha
Hull is not fit. The lack of a hull in images from
the sparse class is likely what leads to its perfect
F1-Score of 1.00.

Evaluation of Model Output for Abalone Data
Accuracy 0.72
Table 2: Model Accuracy on the Abalone Data !

After training the CNN I turned to the Abalone
data-set shown in the original Wilkinson paper to
test the how effectively the CNN would predict the
class of each of the scatter plots yielded by the
Abalone data set. [9, 2, 7] The CNN was able to
correctly identify the majority of the plots without
issue, and only incorrectly identified a small mi-
nority of the plots. It should be noted that among
the incorrectly identified plots there was always a
clear error in the way the alpha hull had been fit to
the scatter plot, such that there was too much noise
present in the image to identify it correctly based
on the alpha hull alone.

Figure 5: An Ambiguous Alpha Hull from the Abalone
Data Set

There are, of course, no predetermined class labels
in for the scatter plots taken from the Abalone data
set, so I cannot report accuracy scores directly, but
I can report a rough accuracy score based on my
own hand created labels. According to my own
hand labeling of the plots the model had an ac-
curacy score of 0.72 on the Abalone data. As
was the case in the in class by class breakdown

!This accuracy value is based on my own hand labeling of
the Abalone Data

of the validation set accuracy the misclassifica-
tion of trends in the Abalone scatter plots was not
uniform. There were, for example, no plots that
were incorrectly classified as being random noise
(uniform or spherical). If there was some sort of
trend in the data the model always detected that
a trend existed even if it ultimately applied the
wrong class label. Aside from the < 10% of plots
that the model identified in a flatly incorrect man-
ner the primary source of inaccuracy came from
plots that were somewhat ambiguous in nature.
As an example, Stripe and exponential plots can
look very similar. Due to this grayness, however,
I would not say that the model is wrong outright.
Many of these plots (like the one in Figure 5) are
not obviously members of one class, but rather on
the boarder of two classes, so I would evaluate the
model as being correct so long as it outputs one of
two classes they boarder.

8 Future Improvements

As is always the case there are a number of possi-
ble ways to improve this model.

The first major source of potential improvement
comes from the classes I chose to use. During the
early stages of the model building process I tried
using a number of different sets of classes, and
corresponding generative methods. The number
of classes used produced some of the most signif-
icant changes in the model’s output. Having too
few classes leads to high class overlap, while too
many classes can lead to overly niche classes that
only crowd things out. I chose the set of classes
that I found most useful and produced the best re-
sults, but it is likely that the class list can be im-
proved. There may also be important trends that I
have failed to include in my class list, and should
moving forward.

A major source of error in the model came from
difficult to classify images due to poorly fit alpha
hulls. Although, the alpha hulls are fit well the vast
majority of the time the model (or more specifi-
cally the final class labels it produces) would be
improved by better hulls.

The model is another area of probable potential
improvement. Although, I do not expect to see
major improvements over the model I use in this
paper in terms of loss, or accuracy I believe there

Page 7 of 8



is room for optimization. I think it is conceivable
that a slightly stripped back model would yield
gains in efficiency without major losses in accu-
racy. In particular, it is possible that the hyperpa-
rameters could be tuned further.

Image generation could also be changed. There
is room for experimentation with different DPIs,
edge widths, whether the shapes are filled, and a
number of other factors. Any of these changes in
how the images are developed could very well dis-
entangle some of the ambiguity currently present
in the images.

Finally, it may be helpful to return to some of the
other graphs mentioned in the Wilkinson paper.
Here I focused on Alpha Hulls, but I may be that
MSTs or Convex hulls are also effective individu-
ally or in combination with the other hulls.

9 Conclusion

Overall, convolutional neural networks show great
promise in the identification of trends present in
scatter plots. Given their consistent results across
real data, and clear performance on the validation
set it seems as if this method has potential to suc-
ceed in a number of different real world tasks.
There is room for improvement in the model, but
as a prototype the model has exceeded my expec-
tations. Going forward if this model were to built
into a more easy to use package it could speed
up processes ranging from general trend identifi-
cation to lineup tasks.

Overall, I am confident that with slightly bet-
ter tuning the convolutional neural network used
in this paper can wide successfully applied to a
wide variety of problems. I also believe that by
slightly changing the way in which the CNN is
used that set of possible applications can be fur-
ther expanded. By simply reducing the classes
used to noise/not noise the same method could be
used to detect trends in a more general sense in-
stead to trying to return a specfic trend label. The
CNN could also be re-appropriated to other similar
graphs (like time series) to attempt to label trends
within a longer process.

This capacity is (at least personally) a source of
optimism for an unknown number of new meth-
ods that may soon be applied to visual inference

problems.

10 Acknowledgements

I would like to thank Professor Adam Loy for ad-
vising me throughout the course of this project,
and keeping things on track. Additional thanks
go to Jack Hessel for helping me through a cou-
ple of tricky implementation errors that popped
up along the way. I also want to thank the folks
who maintain the UCI Machine Learning reposi-
tory for helping to fuel this project. Finally I just
want to thank the authors of Keras, scikit-learn,
and all other packages I used during this project
for making your tools publicly available.

References

[1] Frangois Chollet et al. Keras. https://keras.
io, 2015.

[2] Dheeru Dua and Casey Graff. UCI machine learn-
ing repository, 2017.

[3] Ian Goodfellow, Yoshua Bengio, and Aaron
Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[4

—_—

Hastie, Trevor, Tibshirani, Robert, Friedman, J. H.
The Elements of Statistical Learning : Data Min-
ing, Inference, and Prediction. Springer, New York,
2009.

[5] Daniel Jurafsky and James H. Martin. Speech and
Language Processing: An Introduction to Natu-
ral Language Processing, Computational Linguis-
tics and Speech Recognition (Prentice Hall Series
in Artificial Intelligence). Prentice Hall, 1 edition,
2009.

[6] F. Pedregosa, G. Varoquaux, A. Gramfort,
V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning
Research, 12:2825-2830, 2011.

[7] Simon R Talbot Andrew J Cawthorn Warwick
J Nash, Tracy L Sellers and Wes B Ford. The pop-
ulation biology of abalone in tasmania. i. blacklip
abalone from the north coast and islands of bass
strait. Sea Fisheries Division, Technical Report, 48,

1994.

[8] Leland Wilkinson, A Anand, and Robert Grossman.
Graph-theoretic scagnostics. volume 5, pages 157—
164, 11 2005.

—

[9

—

Leland Wilkinson and Graham Wills. Scagnostics
distributions. Journal of Computational and Graph-
ical Statistics, 17(2):473-491, 2008.

Page 8 of 8


https://keras.io
https://keras.io
http://www.deeplearningbook.org

