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Abstract  

 

Statistics are an almost unavoidable component of modern psychology and probability (or p) 

values are ubiquitous in published work. Despite this, many students hold misconceptions 

about what p values represent, some of which suggest a fundamental misunderstanding of the 

underlying theory. This study investigated whether it was possible to correct a specific 

misconception by showing participants a video that provided a detailed explanation of the 

correct interpretation of a p value. Scores on two measures of statistical knowledge suggested 

that the correction was ineffective. This study also found that repeating the misconception 

during correction had no effect on the efficacy of a correction. Challenges in correcting p value 

misconceptions are highlighted, including the key issue potentially being either an 

insufficiently detailed statistical education, or the complexity of the underlying theory. 

Implications for statistical education are discussed and Bayesian methods are proposed as a 

simpler alternative in psychological research and undergraduate education. 
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“The unity of all science consists alone in 

its method, not in its material” 

(Pearson 1900/1892, p. 12) 

 

Broadly speaking, scientific investigation 

can be split into theoretical ideas and 

practical research. The latter includes how 

experiments are planned and conducted, 

and how the resulting data are analysed. 

Despite their importance, many 

undergraduate students do not enjoy 

learning these practical elements 

(Murtonen, 2005; Murtonen & Lehtinen, 

2003), preferring instead to learn the 

theoretical ideas that underpin experiments 

(Vittengl et al., 2004). 

Learning statistical methods is often 

regarded as the least enjoyable component 

of undergraduate psychology programmes 

(Addison, Stowell, & Reab, 2015), and 

students even report statistics courses to be 

anxiety-inducing (Hanna, Shevlin, & 

Dempster, 2008; Macher, Papousek, 

Ruggeri, & Paechter, 2015). 

Unsurprisingly, this leaves students with a 

weak grasp of statistical concepts (Macher 

et al., 2015). This a major concern given 

that the majority of modern psychological 

investigations include statistics. It is 

therefore essential that students graduate 

with a solid understanding of how to 

interpret them.  

 

A starter in statistics  

By far the most prevalent school of 

statistical analysis in psychology is 

frequentist, taught in almost all universities 

and reported in almost all published papers 

(Hubbard & Ryan, 2000). Frequentist 

methods were developed in the early 20th 

century by notable mathematicians such as 

Egon Pearson, Jerzy Neyman and Ronald 

Fisher, in an attempt to provide previously 

anecdotal sciences with methodological 

rigour (Perezgonzalez, 2015). 

The majority of statistical tests in 

psychology are null hypothesis significance 

tests. The result of which is a probability (or 

p) value, representing the probability of 

observing a result given that the null 

hypothesis is true (Hubbard & Armstrong, 

2006). P values are the most prevalent 

statistic in published work, with 94% of 

published psychological papers reporting at 

least one (Hubbard & Ryan, 2000). 

The inferential utility of p values is 

dependent on many factors including 

sample size and effect size (Ziliak & 

McCloskey, 2008). However, results are 

often judged to have merit solely on the 

statistical significance of a p value, and 

many authors fail to report other crucial 

results (Fritz, Scherndl, & Kuhberger, 

2013; Kühberger, Fritz, Lermer, & 

Scherndl, 2015). This is dangerous 

practice, as p values by themselves are a 

relatively uninformative measure 

(Armstrong, 2007; Kline, 2013). 

Despite their prevalence, p values have 

always been marked by issues, both 

theoretical and practical (Benjamin et al., 

2018; Wagenmakers, Lee, Lodewyckx, & 

Iverson, 2008; Wagenmakers, Marsman, et 

al., 2018). One of these practical issues is 

the prevalence of misconceptions (false 

ideas or beliefs) regarding what p values 

represent and how they should be 

interpreted (Cohen, 1994; Kirk, 2001). 

 

Misconception prevalence  

Replicated findings show that 90% of 

psychologists hold at least one 

misconception regarding what p values 

represent (Haller & Krauss, 2002). Even 

statistics textbooks and 80% of statistics 

teachers have been found to hold 

misconceptions, making it likely that they 

will be passed on to students (Badenes-

Ribera & Navarro, 2017; Gigerenzer, 

Krauss, & Vitouch, 2004; Gliner, Morgan, 

Leech, & Harmon, 2001; Haller & Krauss, 

2002; Lecoutre, Poitevineau, & Lecoutre, 

2003). Misconceptions are even more 

problematic when they make it into 

published work. Findings suggest that up to 

18% of reputable journal articles contain 

incorrectly reported statistics (Bakker & 

Wicherts, 2011). Incorrect statistics lead to 

inappropriate conclusions which seriously 

damage the integrity of the literature and 
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are a key contributor to the field’s current 

replication crisis (Aarts et al., 2015). 

Misconceptions are most prevalent in 

undergraduate students. One study found 

that all 44 students tested held at least one 

of six misconceptions, with some students 

holding multiple incorrect views as to what 

a p value represents (Haller & Krauss, 

2002). P values are by no means the only 

component of hypothesis testing subject to 

misconceptions (Chance, del Mas, & 

Garfield, 2004; Lipson, 2002; Sotos, 

Vanhoof, Van den Noortgate, & Onghena, 

2007). However, given the prevalence and 

influence of p values, this is an issue which 

warrants attention.  

 

Misconception content 

Many different misconceptions 

regarding p values exist (Goodman, 2008). 

The following two are understood to be 

among the most common (Kline, 2013), 

with p values being (incorrectly) 

interpreted as the probability that: 

 

1) The results are due to chance; 

2) The research hypothesis is true.  

 

Both of these interpretations are 

incorrect. A p value represents the 

probability of observing the data given the 

null hypothesis is true. The first of these 

misconceptions is regarded as being the 

most prevalent (Carver, 1978; Kline, 2013), 

however the second misconception is likely 

to be the most damaging.  

Paradoxically, frequentist hypothesis 

tests tell us nothing about the probability of 

hypotheses. Instead, they report the 

probability of observing the data given the 

hypothesis, a subtle but important 

difference (Wagenmakers et al., 2008). 

Thinking that a p value represents the 

probability of a hypothesis being true (or 

false) is a fundamental misunderstanding of 

the theory that underlies the method.  

Up to 59% of undergraduate students 

believe this misconception (Haller & 

Krauss, 2002). Given the prevalence of p 

values in psychological research, it is 

concerning that so many students 

demonstrate such a profound 

misunderstanding of what they represent. 

To date, relatively few studies have 

attempted to correct p value 

misconceptions (Khazanov & Prado, 2010; 

Krauss & Wassner, 2002). Fortunately, a 

wealth of literature on correcting 

misconceptions already exists. 

 

Correcting misconceptions 

Part of the challenge in communicating 

a correct interpretation of a p value is its 

complexity, with understanding requiring 

the integration of many abstract ideas 

(Sotos et al., 2007). Humans have a bias 

towards believing simple explanations, 

increasing the risk of misconceptions when 

communicating complicated ideas (Chater 

& Vitanyi, 2003; Lombrozo, 2007; Pacer & 

Lombrozo, 2017). However, it is possible 

to overcome this bias by providing 

participants with a detailed understanding 

of why misconceptions are incorrect 

(Kowalski & Taylor, 2009; Weisman & 

Markman, 2017). 

Much of the existing literature on 

correcting misconceptions looks to change 

only a single fact or an incorrect headline, 

limiting its use in the current context (Chan, 

Jones, Jamieson, & Albarracin, 2017). The 

literature does, however, highlight three 

important considerations in devising and 

delivering an effective correction: narrative 

coherence, backfire effects, and repetition. 

 

Narrative coherence 

Participants likely hold internal 

narratives which structure their knowledge 

and therefore contain any misconceptions 

(Johnson & Seifert, 1994). To enable a 

complex idea to replace a misconception, 

the information needs to fit into a coherent 

narrative (Johnson & Seifert, 1994; 

Johnson-Laird, 2012; Schwarz, Sanna, 

Skurnik, & Yoon, 2007). If a correction 

changes facts but does not provide a 

coherent narrative, participants are more 

likely to rely on their previous 

misconception, even if they know it to be 
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false (Gerrie, Belcher, & Garry, 2006; 

Johnson & Seifert, 1994).  

Providing an alternate narrative is more 

effective than disputing facts (Tenney, 

Cleary, & Spellman, 2009), and allowing 

participants to reason through cognitive 

conflicts and see why a misconception 

cannot be correct is also beneficial 

(Khazanov & Prado, 2010; Rapp & 

Kendeou, 2007; Seifert, 2002). Given that 

the correct interpretation of a p value is the 

only true interpretation, there is a coherent 

narrative behind it. The challenge is 

communicating this simply and with 

sufficient detail. 

 

Backfire effects 

Backfire effects arise when an attempted 

correction paradoxically increases the 

strength of a misconception in a 

participant’s mind (Lewandowsky, Ecker, 

Seifert, Schwarz, & Cook, 2012; Peter & 

Koch, 2016). Backfire effects would mark 

an attempted correction as a grievous 

failure and it is therefore essential that they 

are avoided.  

Theories as to why backfire effects exist 

suggest that entrenched ideological beliefs 

cause participants to think that views that 

require challenging must be credible 

(Nyhan & Reifler, 2010). Such concerns are 

unlikely to affect the issue at hand as 

students – whilst not liking statistics – 

probably do not have strong ideological 

beliefs about what p values represent. Of 

more relevance, backfire effects can arise 

when corrections are too complicated for 

participants to understand. This highlights 

the need for a coherent correction (Chan et 

al., 2017). Indeed, there is evidence to show 

that corrections can be effective – and 

backfire effects minimal – when 

information is presented clearly (Wood & 

Porter, 2019).  

With these two issues in mind, the 

correction used in this study is based on 

providing a detailed and coherent narrative 

of what a p value represents. This is similar 

to how statistics are taught in the first 

instance, meaning that if the correction is 

successful, implementation in education is 

realistic.  

 

Repetition 

A final consideration is whether or not 

the misconception is repeated during the 

correction. Many studies find that repeating 

the misconception (even whilst correcting 

it) strengthens belief in it, as the 

information seems more familiar (Eakin, 

Schreiber, & Sergent-Marshall, 2003; 

Ecker, Lewandowsky, Swire, & Chang, 

2011; Lewandowsky et al., 2012).  

However, avoiding repetition of the 

misconception may lead participants to 

become confused as to what the correction 

relates to (Chan et al., 2017). Therefore, it 

may be necessary to repeat the 

misconception when providing a detailed 

correction. There is also evidence to show 

that the negative effects of repetition can be 

avoided if the misconception is refuted as it 

is mentioned (Cook & Lewandowsky, 

2011). 

The present study investigates the effect 

of repetition by using two experimental 

conditions: one which repeats and 

immediately refutes the misconception, and 

one that does not repeat the misconception 

at all.   

 

The present study 

This study investigated whether it was 

possible to correct a misconception by 

showing participants a detailed video 

explanation of the correct interpretation of 

a p value. The video showed a statistics 

teacher and accompanying slides and was 

chosen to be analogous to classroom 

learning, therefore more representative of 

how students learn statistics. In addition, 

video supplements are increasingly popular 

in education (Gedera & Zalipour, 2018; 

McGarr, 2009), and there is evidence to 

suggest that video is a more effective 

medium for communicating information 

than writing (Wilson et al., 2012; Wilson et 

al., 2010). 

The present study aims to correct the 

misconception that a p value represents the 



 5 

probability of the research hypothesis being 

true. This misconception is especially 

prevalent in students and demonstrates a 

crucial misunderstanding of the underlying 

statistical theory. The correction aims to 

provide a detailed explanation of what a p 

value represents and why, enabling 

participants to understand why the 

misconception is incorrect.  

 

H1 – Participants shown a corrective 

video will score higher on tests of statistical 

knowledge than those not shown a 

corrective video. 

 

I also investigated the effect of repeating 

the misconception on the efficacy of a 

correction. Given that the correction is 

detailed, I did not expect backfire effects to 

be present. However, in line with the 

literature, I expected that the correction 

with repetition would be less effective than 

the correction without repetition.  

  

H2 – Participants shown a corrective 

video that repeats the misconception will 

score lower on tests of statistical knowledge 

than participants shown a corrective video 

that does not repeat the misconception.   

 

Method  

Design 

This is a between-subjects design with one 

independent variable (condition: Control, 

No repetition, Repetition), and two 

dependent variables that measure statistical 

knowledge. This study was implemented as 

part of a larger study which included two 

additional conditions and two additional 

dependent variables. Each participant 

completed one condition and all four 

dependent measures. 

 

Participants 

A frequentist a priori power analysis 

was conducted using G*Power (Faul, 

Erdfelder, Lang, & Buchner, 2007), based 

on the results of a meta-analysis which 

reported an effect size of between d = 1.14 

– 1.33 for the correction of misinformation 

(Chan et al., 2017). Given the sheer 

magnitude of this effect and the tendency 

for reported effects to be inflated (Aarts et 

al., 2015; Bakker, van Dijk, & Wicherts, 

2012), a more conservative estimate of 

effect size (d = 0.6) was used. With alpha 

level .05 and power of .8, a target sample 

size of 36 participants per condition was 

obtained, for a total of 108.  

Due to time limitations and in 

accordance with the stopping rules 

specified in the pre-registration 

(https://osf.io/7gex9/), a total of 88 

participants completed the study, all of 

whom were psychology students at The 

University of Bristol. Due to the lower 

participant numbers, a sensitivity power 

analysis was conducted using G*Power to 

determine the minimum detectable effect 

(MDE) that could be observed for each of 

the comparisons. This yielded an MDE of d 

= 0.56 for the comparison between control 

and experimental conditions, and d = 0.67 

for the comparison between the two 

experimental conditions. 

Those in the first and second year of 

their undergraduate degree completed the 

experiment in exchange for course credit. 

Others were not reimbursed for their time. 

Full demographic information can be seen 

in Table 1.  

 

  

   Age Degree Year (% breakdown) 

Condition N % Female M SD First Second Third Masters 

Control 31 77 20.23 1.77 35.48 45.16 16.13 3.23 

No repetition 28 92 20.43 2.22 35.71 35.71 21.43 7.14 

Repetition 29 82 21.34 6.37 27.59 44.83 27.59 0.00 

Total 88 85 20.70 3.99 32.95 42.05 21.59 3.41 

Table 1.  

Demographic information for each condition 

 

https://osf.io/7gex9/
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Materials and Measures  

The experiment centred around a 

fictional news report which described a 

fictional study conducted in the 

Netherlands. This tested the effect of 

reintroducing wild animal species on the 

number of flood days per year in 24 rural 

areas. The full article can be seen in the 

online supplement (https://osf.io/7gex9/). 

The report was designed to simply outline 

the structure of a frequentist independent 

samples t-test. The report highlights that the 

researchers’ investigation yields a result 

significant at the p<.05 level. Crucially, the 

researchers (incorrectly) conclude that a p 

value corresponds to the probability of the 

research hypothesis being true. 

 

Independent variable 

In order to correct the misconception,  

 

two short videos were produced. These 

involved a well-known statistics teacher at 

The University delivering a script whilst a 

simple graphic beside him illustrated how a 

statistical result derived from a sample 

corresponds to the distribution of 

differences in a population (see Figure 1). 

The statistics teacher was used in order to 

provide the correction with credibility. 

The script for these videos was written 

to correct the misinterpretation of the p 

value presented in the text. The two scripts 

differed only in whether or not they 

repeated the misconception from the text 

whilst correcting it. The No repetition script 

did not repeat the misconception whilst the 

Repetition script repeated it four times (see 

online supplement). 

 

 

  

 

Figure 1. Screenshots from the corrective videos. 

https://osf.io/7gex9/
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Dependent variables 

The first dependent variable was a single 

open question, asking ‘How should a p 

value be interpreted?’. This was designed to 

test participants’ knowledge of p values 

outside of the strict context encountered in 

the experiment. There was no minimum or 

maximum word count.  

The answers to this question were 

analysed by three raters (including the 

author) and scored from 0 – 3. To make the 

analysis as transparent and objective as 

possible, a keyword marking system was 

used whereby answers were awarded one 

mark for including each of the following 

three phrases (or variations of them): ‘the 

probability of’, ‘observing these results’, 

‘given the null hypothesis is true’. The three 

raters independently rated answers and then 

discussed any inconsistencies to reach a 

single set.  

 

As a separate analysis, answers were 

also classified by the raters into three open 

question groups depending on whether 

answers were 1) unambiguously correct, 2) 

repeated the misconception from the article, 

or 3) either evidenced a different 

misconception or were incorrect.  

The second dependent variable was 

participants’ score on six closed ended 

sentence completion questions. Participants 

saw the sentence stem from the initial 

article and clicked to select whether each 

presented ending represented a correct (2/6) 

or incorrect (4/6) interpretation of the 

researchers’ results. These were adapted 

from a previous study, and designed to 

specifically test four misconceptions (see 

Table 2) (Haller & Krauss, 2002). Each 

participant received a score out of six 

corresponding to how many questions they 

answered correctly. 

 

  

Sentence ending Misconception tested 

There is a less than 5% likelihood that rewilding had no 

effect on flood days. 

P is the probability of the 

null hypothesis being true. 

These results were at least 95% likely to have occurred due 

to the rewilding project. 

P is the probability of the 

alternative hypothesis being 

true. 

There is a less than 5% likelihood that accepting the effects 

of the rewilding project as true is the wrong decision. 

P is the probability of 

making a type I error. 

If the rewilding experiment could be repeated 100 times, 

the result would be significant at the p<.05 level 95 out of 

the 100 times. 

P is the probability of the 

same result being obtained 

through replication.  

There was a less than 5% likelihood of these results having 

occurred even if the rewilding project had no effect. 

Correct interpretation. 

There was a less than 5% likelihood that something other 

than the rewilding project caused the reduction in the 

number of flood days.  

Correct interpretation.  

Table 2.  

The closed questions that formed the second dependent variable and the misconception 

each was designed to test 

 

Note. Sentence prompt: ‘The researchers found that the rewilded areas experienced fewer 

flood days, a finding that was significant at the p<.05 level. This means that _______.’  

 

(Adapted from Haller & Krauss, 2002). 
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Procedure  

The experiment was delivered through 

the Qualtrics online platform (Qualtrics, 

2019). Of the 88 participants, 79 came into 

the lab to do the experiment and 9 (three 

from each condition) took the experiment 

remotely on either a desktop or laptop in a 

push to increase sample size. Participants 

were instructed to wear the supplied 

headphones even though they may not need 

them. Participants were randomised into a 

condition by Qualtrics and instructions 

were provided through the software. 

After proving demographic information 

and consent, participants read the article 

which contained the misconception. 

Participants in the two experimental 

conditions then saw a screen introducing 

the video and watched the video. The 

videos were 2:25 and 2:46 minutes long, for 

the No repetition and Repetition conditions 

respectively. Participants were free to 

rewind and skip through the video as they 

desired and the page auto-advanced after 

4:00 minutes. All participants then 

answered several arithmetic questions as a 

short distractor task before the questions. 

These were not assessed and the page 

ensured participants spent between 1:30 

and 2:00 minutes on the task.  

Participants responded to four sets of 

questions: two open questions, and two 

banks of six closed questions. The open 

questions were shown first. The first asked 

them to complete the final sentence of the 

article so it represented a correct 

interpretation of the researchers’ results. 

The second question, as outlined in the 

dependent variables section, asked how a p 

value should be interpreted.  

Within the two banks of closed 

questions, each of the six possible answers 

appeared on screen one at a time and in a 

randomised order. The first bank is shown 

in Table 2. The second bank of questions 

presented sentences and asked if each was 

a correct or incorrect interpretation of what 

a p value represents. Only the data from the 

second of the open questions and the first 

bank of the closed questions are reported 

here. The data from the other questions are 

reported in a separate study. The order of 

the question sets was not counterbalanced 

as this would have given some participants 

an advantage. Participants were then 

debriefed. The experiment took between 

7.5 and 25 minutes, depending on 

condition. The study was approved by The 

University’s Research Ethics Committee 

(code: 80902).  

 

Data analysis plan  

As part of the effort to avoid 

misconceptions, the data here are analysed 

using Bayesian methods. A parallel, 

frequentist analysis is presented in the 

online supplement for comparison. The two 

analyses suggest similar conclusions.  

The key hypothesis tests require a 

comparison of independent participant 

groups on two dependent measures. This is 

split into four Bayesian independent 

samples comparisons (analogous to 

independent samples t-tests), two for each 

dependent variable. The comparisons are 

the same for both dependent variables. The 

first compares the scores of the control 

condition to the average scores of both 

experimental conditions to test whether 

there is an effect of correction. The second 

compares the scores of the two 

experimental conditions to test whether 

there is an effect of repetition. For all four 

of these comparisons, a Bayes factor is 

presented. In addition, effect sizes and 95% 

credible intervals are provided. A Bayesian 

contingency table was also created as an 

exploratory measure to investigate how 

each condition affected the prevalence of 

the original misconception after correction.   

It is worth noting that Bayesian 

comparisons do not need to correct for 

inflated error rates arising from multiple 

comparisons in the same way that 

frequentist methods do as Type I error does 

not exist in Bayesian analysis (Gelman, 

Hill, & Yajima, 2012). 
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Analysis 

Two comparisons were conducted on 

open question score. The first was between 

the scores for the Control condition and the 

average of the two experimental conditions; 

the second comparison was between the 

two experimental conditions. The same 

comparisons were also conducted on closed 

question score, the second dependent 

variable.  

All Bayesian comparisons used the 

default Cauchy prior width (r = .707), a 

conservative prior that slightly favours the 

null hypothesis (Rouder, Speckman, Sun, 

Morey, & Iverson, 2009; Wagenmakers, 

Love, et al., 2018). As tests were 

confirmatory, a directional hypothesis was 

used in all tests. It was hypothesised that on 

both dependent variables, the average score 

for the experimental conditions would be 

higher than the average for the Control 

condition, and that the average for the No 

repetition condition would be higher than 

that of the Repetition condition.  

The result of a Bayesian analysis is a 

Bayes factor (BF) which represents the 

likelihood of a hypothesis given the 

observed data. All Bayes factors are 

reported as BF10s, representing the 

strength of evidence in favour of the 

research hypothesis. In line with the 

classification scale developed by 

Wagenmakers and colleagues (2018), BFs 

between .33 and 3 are seen as non-

diagnostic and those between 3 and 10 

represent moderate evidence in favour of 

the research hypothesis. BFs 10 to 30, 30 to 

100, and >100 represent strong, very 

strong, and extreme evidence in favour of 

the research hypothesis respectively. In 

contrast, BFs .33 to .10, .10 to .03, .03 to 

.01, and <.01 represent moderate, strong, 

very strong, and extreme evidence in favour 

of the null hypothesis respectively. The 

Bayesian analysis was conducted using 

JASP 0.9.2 (JASP Team, 2019). 

 

 

  

 Descriptive statistics  Comparisons 

Condition N M SD Mean difference BF ∂ [95% Credible Interval] 

 Open Question Scores 

Control 31 0.71 0.86    
Experimental  57 1.11 1.15 0.40 1.47 0.33 [-0.07, 0.76] 

No repetition 28 0.96 1.07 -0.28 .016 -0.20 [-0.69, 0.27] 

Repetition 29 1.24 1.22    

 Closed Question Scores 

Control 31 2.71 1.22    
Experimental  57 3.11 1.26 0.40 1.05 0.27 [-0.14, 0.71] 

No repetition 28 2.96 1.32 -0.28 0.16 -0.18 [-0.67, 0.30] 

Repetition 29 3.24 1.22    

Table 3. 

Means, Bayes factors (BF), effect sizes, and credible intervals for the four comparisons  

 

Note. The BFs are placed in the row of the condition hypothesised to have the higher score. 

 

Note. The mean differences for the two dependent variables are exactly the same. I am 

aware that this is more likely due to researcher error than chance (Abelson, 1995), and I 

have checked the data entry and analysis to ensure its legitimacy. Satisfied with the integrity 

of the outcome, I have made the raw data available at https://osf.io/7gex9/ for inspection 

should the reader wish to do the same. 

 

https://osf.io/7gex9/


 10 

Effect size ∂ is the standardised 

difference between two independent means 

(Cohen’s d for the population) and the 95% 

credible interval represents a range we can 

be 95% confident that the true value of ∂ 

falls within. In calculating these, a non-

directional hypothesis was used in order to 

allow the credible interval to span both 

sides of 0.  

Bayes factors, effect sizes and credible  

intervals for each of the four pairwise 

comparisons are reported in full in Table 3. 

Mean scores on both dependent variables 

across the three conditions are presented in 

Figure 2. The prior and posterior 

distributions for all four comparisons can 

be seen in Figure 3, showing how estimates 

of the true population effect size were 

informed by both the default prior 

distribution used and the observed data. 

  

Closed questions, Control vs Experimental 

Open question, Control vs Experimental Open question, No repetition vs Repetition 

Closed questions, No repetition vs Repetition 
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Mean score on open question Mean score on closed questions

Figure 2. Mean scores and credible intervals for open and closed questions across 

conditions. 

Figure 3. Showing the prior and posterior distributions for each of the four pairwise 

comparisons, where effect size ∂ is shown on the X-axis and density is shown on the Y-axis. 
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Results 

In sum, the comparisons between the 

control condition and the mean of both 

experimental conditions were non-

diagnostic for both dependent variables. 

This suggests insufficient evidence to 

conclude that watching a corrective video 

does or does not improve participants’ 

performance on tests of p value knowledge.  

For both dependent variables, there was 

moderate evidence in favour of the null 

hypothesis for the comparisons between the 

No repetition and Repetition conditions. A 

consultation of mean scores in Figure 2 

suggests that the hypothesised effect may 

exist in the opposite direction, however the 

choice of directional hypotheses in this 

study prevents further comment. This 

suggests that repetition did not have an 

effect on the efficacy of misconception 

correction. For all comparisons, effect sizes 

were small and credible intervals were 

wide, supporting the non-diagnostic nature 

of the observed Bayes factors.  

To assess the impact of condition on 

open question group, a Bayesian 

contingency table was constructed 

(equivalent to a frequentist chi-squared 

test). Overwhelmingly, participants in all 

conditions provided incorrect answers to 

the open question (see Figure 4). 

The analysis yielded a Bayes factor of 

BF01 = 12.03, meaning the null hypothesis 

(that there is no difference between groups) 

was 12 times more likely than the 

alternative hypothesis.  

 

Discussion 

This study aimed to investigate the effect of 

corrective videos on the prevalence of a 

misconception about what a p value 

represents. This study found no diagnostic 

evidence to suggest that participants shown 

a corrective video demonstrated fewer 

misconceptions than those not shown a 

corrective video. This study also 

investigated the effect of repeating the 

misconception and found moderate 

evidence to suggest that the efficacy of a 

corrective video was not affected by 

repetition of the misconception.  

 

The correction 

Perhaps the most likely explanation for 

the failure to correct the misconception is 

the quality of the correction itself. Narrative 

coherence was the key objective in devising 

the correction and one which I believe to 

have been met. However, embedding the 

correction into a narrative makes it longer 

and it would be interesting to investigate 

whether the length of a correction affects 

efficacy.   
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The correction was devised over a 

period of several weeks and involved 

lengthy discussion between six psychology 

students and a statistics teacher. The online 

supplement (https://osf.io/7gex9/) contains 

the correction in full and I welcome any 

comments on how it can be improved, 

without detracting from its statistical 

accuracy or brevity. Interestingly, trying to 

communicate this idea in a simple way was 

a real challenge, and may suggest that the 

inherent complexity of the subject matter is 

why misconceptions are so prevalent in 

textbooks (Gliner et al., 2001). 

Another point to note is the number of 

participants who showed some form of 

misconception other than the one explicitly 

tested for (34.04%) (see Figure 4). This was 

relatively stable across conditions and may 

suggest that any correction needs to be 

tailored to the specific misconception held 

by students. 

One potential limitation of this study is 

the use of a video correction. Recent results 

tentatively suggest that a written correction 

may be more effective (Peachey, 2019), and 

future work comparing the efficacy of 

different correction methods could better 

inform interventions. It is also worth noting 

that there was a difference between how the 

misconception and the correction were 

presented, in writing and as a video 

respectively. Future work could 

investigation whether the efficacy of 

corrections is higher when they are 

presented in the same medium as the 

misconception.  

A definite limitation is the study’s low 

statistical power. The observed effect sizes 

were smaller than the minimum detectable 

effect gained from the sensitivity power 

analysis. This means that whilst the true 

population effect could be of the magnitude 

reported, the study is insufficiently 

powered to detect an effect this small. This 

could be remedied by testing more 

participants. If future work used Bayesian 

methods, the present results could be 

incorporated as a prior belief, providing a 

closer estimate of the true population effect 

(Wagenmakers, Marsman, et al., 2018). 

 

Repetition  

The repetition of the misconception 

during correction was hypothesised to 

make the correction less effective. The 

results of this study did not support this 

hypothesis, with the relationship appearing 

to exist in the opposite direction (see Figure 

2). This suggests that repetition may not be 

a concern for detailed corrections. Such a 

finding is useful in informing interventions 

and is in line with existing evidence (Cook 

& Lewandowsky, 2011). However, it is 

possible that the effects of repetition were 

too small to be observed in this study 

simply because the correction worked on so 

few participants. It is therefore difficult to 

conclude on whether the efficacy of a 

correction is affected by repetition. 

To my knowledge, this is the first study 

that seeks to correct misconceptions 

students hold about p values. Given the 

novelty of the research question and the low 

power of this study, these findings should 

not be taken to conclude that p value 

misconceptions cannot be corrected. 

Instead, this study can offer tentative 

suggestions about the nature of the issue 

and raise interesting points for future 

research. 

 

Correction vs education 

One important question is whether we 

should consider this an issue of 

misconception correction, or one of 

statistical education. As noted in the 

introduction, many important factors in 

correcting misconceptions are not relevant 

in the current context. Students don’t hold 

strong ideological beliefs surrounding p 

values nor are they under any obvious 

social pressure to continue believing 

misconceptions. In addition, 

undergraduates tend to have a weak grasp 

of statistics and scientific research methods 

in general, with most students seeing 

statistical analysis as process-driven 

(Rothman, 2014). In contrast, statistically 

https://osf.io/7gex9/
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adept scientists need detailed knowledge of 

a range of useable methods, and good 

judgement concerning when to apply them 

(Krueger & Heck, 2019). 

Therefore the issue may be that 

scientific education does not teach enough 

of the statistical theory underlying the 

interpretation of p values, leaving students 

susceptible to fill their knowledge gaps 

with misconceptions. If p value 

misconceptions are stubborn through 

students’ ignorance of the relevant theory, 

the challenge becomes teaching statistics 

simply and in enough detail that 

misconceptions cannot take root.   

 

Education as antidote  

Students need to be able to recognise and 

employ good scientific practices from an 

early stage. This is enabled through making 

scientifically rigorous methodologies 

accessible and easily understandable. This 

study, and the literature on statistical 

education contain several suggestions for 

how this can be achieved. 

One of the most well supported findings 

is to teach statistics grounded in real 

research, enabling students to feel the 

subject is tangible rather than theoretical 

(Williams, McCutcheon, Fava, & 

Aruguete, 2017). Such a method was used 

in the present study, with both the theory 

and the misconception tied to a practical 

example. Making the subject more easily 

understandable can also counter students’ 

dislike of statistics, which may encourage 

students to spend more time grappling with 

difficult concepts (Huynh & Baglin, 2017). 

Another important consideration is the 

number of statistics teachers who hold 

misconceptions (Haller & Krauss, 2002). 

Training teachers to spot and correct their 

own misconceptions could prevent them 

being passed to students, and so is an 

important step in addressing the issue 

(Khazanov & Prado, 2010). However, it is 

not immediately clear how this could be 

achieved as correcting misconceptions is 

the very challenge this study attempts to 

address.   

Problematically, p value misconceptions 

currently persist despite many statistics 

courses already being grounded in research, 

and the plethora of resources which offer in 

depth explanations of topics (Earley, 2014; 

Greenland et al., 2016). It is therefore worth 

considering that the main issue may not be 

a lack of education, but the complexity of p 

values themselves.  

 

A broken paradigm 

P values are complicated to understand. 

The fact that this and similar papers exist is 

testament to that. When misconceptions 

persist into published work, the issue is far 

more serious and threatens to undermine 

the content and reputation of psychology 

(Armstrong, 2007; Hubbard & Armstrong, 

2006; Meehl, 1967). Researchers and 

journal editors should not be making such 

errors, but some fault may lie with the 

methods themselves. Even Fisher struggled 

to explain the inferential meaning of p 

values despite having practically created 

them (Goodman, 2008).  

There are many ways to reach a p value, 

and researchers have to make many 

decisions throughout an analysis (Gelman 

& Loken, 2013). This means that analyses 

quickly lose transparency and become 

difficult for authors to communicate and for 

readers to understand (Simmons, Nelson, & 

Simonsohn, 2011). Some of these issues 

can be avoided by calculating effect sizes 

and confidence intervals instead of p 

values, or altering the language and 

processes we use in analyses (Cumming, 

2008, 2014; Hurlbert & Lombardi, 2009). 

But such solutions do not address the root 

cause of the problem, namely the 

complexity of frequentist statistics.  

Simplifying statistics could increase the 

transparency of research, reduce the 

number of incorrectly reported findings, 

and reduce the susceptibility of 

psychologists to misconceptions. As this 

paper has already alluded to, another school 

of statistics exists, one that seems to fill all 

of these criteria: Bayesian statistics.  
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Moving forwards 

Although not known to most, Bayesian 

statistics have a longer history in scientific 

investigation than frequentist methods 

(McGrayne, 2011). Where frequentist 

statistics consider each analysis as one of an 

infinite number of notional (i.e. imaginary) 

replications, Bayesian methods update the 

probabilities of hypotheses as more data 

becomes available, making them more 

dynamic and useable. The underlying 

theory is simple: ‘given the data observed, 

how likely is this hypothesis to be true?’ 

The theoretical benefits of Bayesian 

statistics are numerous (Wagenmakers, 

Marsman, et al., 2018), but perhaps the 

most relevant advantage is their simplicity.  

This study considers the misconception 

that a p value is the probability of the 

research hypothesis being true, which is 

precisely the correct way to interpret a 

Bayes factor (Kline, 2013). Bayes factors 

are intuitive and represent what many 

researchers want p values to be (Kruschke 

& Liddell, 2018). This intuitiveness is 

advantageous in avoiding misconceptions 

and fits well with the cognitive biases 

humans have towards simple explanations 

(Chater & Vitanyi, 2003; Lombrozo, 2007). 

It is difficult to see why so much time 

should be devoted to frequentist statistics, 

especially when learning so often comes at 

the expense of a basic awareness of 

Bayesian methods (Kline, 2013).  

Relatively little research investigates 

misconceptions held about Bayesian 

statistics. Although I would expect them to 

be far less prevalent, such misconceptions 

could be easily investigated by applying the 

methods used in this and related papers. 

This would be a helpful step in informing 

reforms to statistical education.  

Frequentist and Bayesian methods can 

also be successfully taught in concert, 

emphasising the differences between them 

(Greenland & Poole, 2013). Indeed, this has 

recently been incorporated into the British 

Psychological Society’s teaching guidance 

on undergraduate research methods courses 

(British Psychological Society, 2017). This 

enables students to see that there are 

options in statistical analysis, creating well-

informed scientists.  

Bayesian methods are already becoming 

more popular in published work (van de 

Schoot, Winter, Ryan, Zondervan-

Zwijnenburg, & Depaoli, 2017; 

Wagenmakers, 2007). As this shift occurs, 

it makes sense for undergraduate education 

to do the same, so that students can 

understand and eventually contribute to the 

literature.  

 

Conclusion  

Misconceptions regarding p values have 

been shown to be prevalent in psychologists 

of all levels, which is concerning given 

their prevalence in published work. This 

study found that corrective videos did not 

reduce students’ misconceptions about 

what p values represent, and that repeating 

the misconception had no effect on the 

efficacy of the correction.  

It is not immediately apparent how a 

more effective correction could be devised. 

Instead, the issue may lie with a scientific 

education that leaves students without 

sufficient statistical knowledge to dispute 

misconceptions. Reforming education is a 

drastic but necessary step to address these 

misconceptions. The literature provides 

some suggestions as to how this could be 

done, however the main obstacle may be 

the complexity of frequentist statistics 

themselves.  

An alternative statistical method both 

for general use and undergraduate 

education is Bayesian; the result of a 

Bayesian analysis being what the majority 

of students think a p value is. This 

intuitiveness combined with the theoretical 

benefits and the ease of communicating 

such methods makes it difficult to argue 

against their use. Their inclusion in 

statistics classrooms has the potential to 

benefit students, teachers, and the 

discipline more broadly. Such a prospect is 

exciting to any true scientists – those who 

prize the rigorous methods of their 

investigations above the rewards that come 
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from the content of their findings. To 

paraphrase Dickens (1932/1859, p. 384), it 

is a far, far better test that I go to than I have 

ever been shown.  
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