
An Unbiased Variance Estimator of a K-sample U-statistic with
Application to AUC in Binary Classification

Abstract: Many questions in research can be rephrased as binary classification tasks, to find simple

yes-or-no answers. For classifiers trained to answer these queries, area under the ROC (receiver

operating characteristic) curve (AUC) is a popular metric for assessing the performance of a binary

classification method. However, due to sampling variation, the model with the largest AUC score

for a given data set is not necessarily the optimal model. Thus, it is important to evaluate the

variance of AUC. We first recognize that AUC can be estimated unbiasedly in the form of a two-

sample U-statistic. We then propose a new method, an unbiased variance estimator of a general

K-sample U-statistic, and apply it to evaluating the variance of AUC. To realize the proposed

unbiased variance estimator of AUC, we propose to use a partition resampling scheme that yields

high computational e�ciency. We conduct simulation studies to investigate the performance of the

developed method in comparison to bootstrap and jackknife variance estimators. The simulations

suggest that the proposal yields comparable or even better results in terms of bias and mean

squared error. In addition, it has significantly improved computational e�ciency compared to its

resampling-based counterparts. Moreover, we also discuss the generalization of the devised method

to estimating the variance of a general K-sample U-statistic (K � 2), which has broad applications

in practice.
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1. Introduction

Classification is one of the pattern recognition problems in statistics, where the larger task of

pattern recognition uses algorithms to identify regularities in the data and creates a mapping from

a given set of input values to an output space (Bishop, 2006). More specifically, classification maps

input values to a class ci from a set of a finite number of classes {c1, · · · , ck}. In this case the

output variable, say Y , is categorical with k di↵erent levels, c1, · · · , ck. Binary classification is the

specific case where there are only two possible classes, k = 2, and each instance is associated with

one and only one label.

In practice, the binary labels are encoded as ones and zeros and can each be interpreted as a

“yes” or “no,” or positive or negative response, to a yes-or-no question. Research questions in many

fields, such as biological applications, can be phrased in terms of a binary classification problem.

For example, Figure 1 visualizes a binary classifier trained on the well-known and open-source Heart

Disease data set that we explore more deeply in Section 7. In this medical context, each data point

is a patient undergoing angiography, who may (colored blue) or may not (colored red) be diagnosed

with heart disease. Using the data of observed characteristics for all the patients along these two

features visualized along the axes, a binary classifier was trained to try and predict the health of

the patients in the data set, and possibly that of other patients (Detrano et al., 1989).

Fig. 1: Example of binary classification for the Heart Disease data set.

In general, binary classification can be used to answer the question of whether or not an observed

data point falls into a certain set or under a particular label. In medical research, we can consider

whether or not a patient expresses a certain phenotype or has a particular disease, based on

available data such as health records (Hammond et al., 2018; Gupta et al., 2019; Brisimi et al.,

2018). Alternatively, on the microscopic level, it can be used to characterize molecules like proteins

and whether or not a label such as “intrinsically disordered” is accurate (Fukuchi et al., 2011).

Binary classification also has applications in any other field of research asking similarly structured
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questions such as computer science, as statistical and machine learning models are applied to

identify sockpuppets (i.e. fake accounts) or spam email (Kumari & Srivastava, 2017; Carreras &

Marquez, 2001).

In recent research, classification has expanded from binary classification into multi-class as well

as multi-label problems. In multi-class classification, there are k > 2 mutually exclusive possible

classes, while in multi-label classification, a data point might be assigned more than one label.

However, binary classifications remain an important piece to constructing classifiers for multi-class

and multi-label problems, as proposed techniques to solve these questions often involve either

layering binary classifiers or converting the data set into multiple binary data sets (Herrera et al.,

2016).

The rest of the paper is organized as follows: in Section 2, we review logistic regression as a

commonly used binary classification method, which provides solutions to the problem of binary

classification introduced above. In Section 3, we discuss evaluation metrics of the performance of

a binary classifier. In particular, we focus on the popular graphical tool called the ROC (receiver

operating characteristic) curve and the area under the ROC curve (AUC). We also show that AUC

has a probabilistic interpretation, which leads to an unbiased estimator of AUC in the form of a

two-sample U-statistic. In later discussions we consider using AUC as the criterion to select the

best binary classifier and choose the model with the highest AUC score. We note that AUC score,

a sample statistic, su↵ers from sampling variation. Therefore, a model with the highest AUC for

a given data set may not be optimal when one changes to a di↵erent data set. To account for the

variability of AUC and potentially select a more parsimonious model, we consider implementing the

one-standard-error (1-SE) rule (Hastie, Tibshirani, & Friedman, 2009), which is explained in detail

in Section 4. In Section 5, we propose an unbiased U-statistic variance estimator, and compare its

performance to the existing variance estimators using simulation studies in Section 6. In Section 7,

we demonstrate the use of our proposed unbiased estimator on a real data set, and discuss future

work and applications in Section 8.

2. Binary Classification

In this paper, we focus on binary classification to demonstrate our two-sample U-statistic variance

estimator for a binary classification performance metric called AUC (area under receiver operating

characteristic curve), that can be written in the form of a U-statistic. In the simulations realized

in this paper, we focus on logistic regression, but the metric and our proposed estimator can be

applied to all binary classifiers that assign a probability to input data points. In this Section, we

review the formulations of logistic regression (Neter et al., 2005).

2.1. Definitions

Given multivariate data of n observations described along k features, we represent the data set as

an n by k matrix D, where D = [X1, · · · , Xi, · · · , Xk] and each column Xi = [x1i, · · · , xji · · · , xni].
xji denotes an observed value, while Xi denotes the ith feature or x variable. Y denotes a response

variable, which in binary classification takes values from {0, 1}.
2.2. Logistic Regression

For a simple linear regression, we can write a simple linear regression model as follows:

Yi = �0 + �1Xi + ✏i (1)
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where ✏i are often assumed to be independent, identically distributed normal random variables with

a mean of 0 and constant variance. However, when the response variable of interest is discrete, a

number of these assumptions in linear regression are violated. In the context of binary classification,

the response variable has only two possible outcomes. In this case, Yi follows a Bernoulli distribution

Yi ⇠ Bern(⇡i) with probability mass function defined as

p(yi) =

(
⇡i if yi = 1

1� ⇡i if yi = 0

Under a Bernoulli distribution, it is easy to show that in this case E(Yi) = ⇡i and Var(Yi) =

⇡i(1� ⇡i). Given Equation (1) and E(✏i) = 0, the expected value of Yi is:

E(Yi) = �0 + �1Xi = ⇡i

where ⇡i is the probability of Yi = 1 when the predictor variable is Xi. From the axioms of

probability, ⇡i is restricted to the range of 0 to 1. Thus, we have three major violations of the

usual regression assumptions: 1) non-normal error terms, 2) non-constant error variance, and 3)

constraints on response function (Neter et al., 2005). A simple linear regression model, like in

Equation (1), could not satisfy all the listed constraints.

One common model to analyze binary outcome data is the logistic regression model. Assume the

binary response variable Yi arises from dichotomizing a continuous response Y
c
i . The formulation

of logistic regression is motivated by fitting a linear regression model on Y
c
i by assuming that the

random errors ✏i’s follow a logistic distribution. For a logistic random variable "L with a mean of

0 and standard deviation of ⇡p
3
, the cumulative density formula is:

FL("L) =
exp("L)

1 + exp("L)

A binary variable Yi can be created from a continuous variable Y
c
i = �

c
0 + �

c
1Xi + ✏

c
i compared to

a threshold value of z. We can then rewrite P (Yi = 1) using the continuous variable, formulating

a standardized expression for the continuous response:

P (Yi = 1) = ⇡i = P (Y c
i  z)

= P (�c
0 + �

c
1Xi + "

c
i  z)

= P (
"
c
i

�c
 z � �

c
0

�c
� �

c
1

�c
Xi)

= P (Z  �
⇤
0 + �

⇤
1Xi)

For a logistic random error with standard deviation �c, we can use the above equation to arrive at

the form of a logistic regression.

P (Yi = 1) = P (
"
c
i

�c
 �

⇤
0 + �

⇤
1Xi)

= P (�c
"
c
i

�c
 �c�

⇤
0 + �c�

⇤
1Xi)

= P ("L  �0 + �1Xi)

= FL(�0 + �1Xi)

=
exp(�0 + �1Xi)

1 + exp(�0 + �1Xi)
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The final form of the logistic mean response function and its inverse, the logit link transformation,

are:

E(Yi) = ⇡i = FL(�0 + �1Xi) =
exp(�0 + �1Xi)

1 + exp(�0 + �1Xi)
=

1

1 + exp(��0 � �1Xi)

F
�1
L (⇡i) = ⇡

0
i = �0 + �1Xi = ln(

⇡i

1� ⇡i
)

As �⇤
1 increases, the shape of the curve becomes more S-like, and reversing its sign causes the curve

to monotonically decrease rather than increase. Changing �
⇤
0 shifts the curve along the horizontal

axis, with the direction of the shift depending on both beta coe�cients. The logistic curve also

possesses the symmetry property, which means that if all 0s are reversed to 1s and vice versa, and

Y
0
i = 1�Yi, the curve would be symmetric across the vertical axis, due to the signs of all coe�cients

being switched.

In general, a logistic regression model with k predictor variables and a binary response Yi is

defined in the following form:

log(
⇡i

1� ⇡i
) = �0 + �1Xi,1 + · · ·+ �kXi,k

3. Evaluation of a Binary Classifier

In this Section, we first define a series of performance metrics in Section 3.1, and focus on defining

the receiver operating characteristic curve (ROC) and its area under the curve (AUC) in Section 3.2.

In Section 3.3, we demonstrate the probabilistic interpretation of AUC, which allows us in Section

3.4, when reviewing methods of calculating AUC, to highlight the Mann-Whitney U-statistic. The

Mann-Whitney test statistic can be equivalently written in a two-sample U-statistic form.

3.1. Performance Metrics

Table 1: General confusion matrix for two classes, positive and negative.

Actual Label

+ -

Predicted

Label

+

True

Positives

(TP)

False

Positives

(FP)

-

False

Negatives

(FN)

True

Negatives

(TN)

We can create a 2 by 2 confusion matrix to name the 4 possible combinations of correct and incorrect

predictions by a binary classifier, and use these quantities to construct the following metrics.

Definition 3.1 Accuracy is the proportion of correctly labeled data overall, and is defined as

Accuracy =
TP + TN

TP + FP + FN + TN

Accuracy is a popular overall metric, but can be misleading in particular applications and when

the classes are imbalanced. For instance, in medical contexts, a specific disease may be rare and
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occur in 1% of the population. A classifier that contains no information from the data at all and

naively diagnoses every patient as healthy, or negative for the disease, will have an accuracy of 99%.

However, this classifier would not have been able to identify any of the diseased people, which is

often the critical piece in medical applications to ensure those patients would undergo treatment.

Definition 3.2 Precision is the proportion of correctly labeled positive data points out of all the

data points labeled as positive. It is defined as

Precision =
TP

TP + FP

Definition 3.3 Also known as recall and the true positive rate (TPR), sensitivity is the proportion

of correctly labeled positive data points out of all the actual positive data points. It is defined as

Sensitivity =
TP

TP + FN

In the above example in medical diagnostics, the same classifier that scored a 99% for accuracy

would have also scored a 0% for precision and sensitivity.

Definition 3.4 Also known as the true negative rate (TNR), specificity is the proportion of cor-

rectly labeled negative data points out of all the actual negative data points. It is defined as

Specificity =
TN

TN + FP

All the above metrics take values in [0, 1], and the closer to 1 the value, then generally the better

the performance of the binary classifier. Often times, precision and recall are paired together either

as a precision-recall curve or a F-measure metric.

Definition 3.5 The F-measure or F1-Score is the harmonic average of precision and recall, and is

defined as

F-measure = 2⇥ precision · recall
precision+ recall

Sensitivity and specificity are also frequently paired together, as displayed in an ROC curve.

3.2. ROC Curve

A receiver operating characteristic (ROC) curve is a plot of the true positive rates against false

positive rates (i.e. 1 - specificity) of a binary classifier, across di↵erent threshold values. Overall,

this diagram captures the compromise made between sensitivity to detect all positive labels, and

specificity to avoid false alarms. The axes of the plot can also be described as sensitivity vs. 1

specificity. A sample ROC curve is displayed in Figure 2, which was created from the popular,

open-source data set Pima Indians diabetes1 (Smith et al., 1988).

1The Pima Indians diabetes data set was obtained from the package mlbench in R
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Fig. 2: Example ROC curve for the Pima Indians diabetes data set.

In addition to the curve itself, an ROC plot will often also include the y = x line for reference. Any

point along this line reflects a classifier that is performing as well as random guessing. The further

left and above the y = x line a curve is, the better the respective classifier is. Performing worse

than random chance presents the interesting case of capturing useful information for prediction,

but implementing it incorrectly. By flipping the signs of the coe�cients of the regression, the curve

should be able to flip across the y = x line.

If we consider all n data points, each with a true class of positive or negative, we assign each

data point a probability p̂(y) 2 [0, 1] of belonging to the positive class, based on a statistical model

such as the logistic regression model. We then can rank them from least to greatest in magnitude

as p̂1, · · · , p̂i, · · · , p̂n. For a given binary classifier (e.g. logistic regression, probit regression, etc.),

we then choose a discrimination threshold t to assign the i
th data point with p̂i  t to the negative

class or p̂i > t to the positive class. After obtaining the classifier predictions, we can generate a

confusion matrix from which we calculate TPR and FPR per t. The domain of possible values for

t is [0, 1]. On the curve, the point on the bottom left always represents t = 1 and the point on

the top right represents t = 0. Note that although this interval has infinite possible discrimination

thresholds, there are, at most, only n + 1 unique pairs of TPR and FPR values, assuming there

are no ties in the probabilities (of di↵erent true classes). As n is finite, the ROC curve is a step

function.

3.3. AUC and the Probabilistic Interpretation of AUC

An associated metric with ROC curves is total area under the curve. In addition to the primary

geometric definition, AUC also has a probabilistic interpretation. To derive this, we think about

binary classification in terms of conditional probabilities. For a binary classifier, each data point y

is associated with a predicted probability p̂(y) 2 [0, 1] of y being in the positive class, ultimately

assigning a label based upon a decision threshold t 2 [0, 1], where 0 represents the negative class
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and 1 represents the positive class. The ROC curve plots TPR vs. FPR, two values which can be

rewritten as:

T (t) = P [p̂(y+) > t | class(y+) = 1]

F (t) = P [p̂(y� > t | class(y�) = 0]

Using the notation denoting that y
+ is from the positive class and that y

� is from the negative

class, AUC can be re-expressed as a definite integral across the x�axis, where T (t) is a function of

F (t) and F0 is some specific value for FPR along the x�axis:

AUC =

Z 1

0
T (F0)dF0

=

Z 1

0
P [p̂(y+) > F

�1(F0) | class(y+) = 1] dF0

=

Z 1

0
P [p̂(y+) > F

�1(F (t)) | class(y+) = 1] · dF (t)

dt
dt

=

Z 1

0
P [p̂(y+) > t | class(y+) = 1] · P [p̂(y�) = t | class(y�) = 0] dt

=

Z 1

0
P [p̂(y+) > p̂(y�) & p̂(y�) = t | class(y+) = 1 & class(y�) = 0] dt

= P [p̂(y+) > p̂(y�) | class(y+) = 1 & class(y�) = 0]

where in the partial derivative above, we use the fact that the cumulative distribution function

1 � F (t) = P [p̂(y�)  t | class(y�) = 0] has a derivative with respect to t of f(t) = P [p̂(y�) =

t | class(y�) = 0].

The final line in the above derivation of AUC’s probabilistic interpretation demonstrates that

AUC is equivalent to the chance that probabilities calculated by the binary classifier will be higher

for y+ than for y�, given y
+ is from the positive class and y

� is from the negative class.

3.4. Estimations of AUC

AUC is usually numerically estimated, given that ROC curves generally are not expressible as

closed-form functions. Three common methods for estimating AUC are:

1. Geometric estimation

Because the ROC curve is a step function, it is often easy to break up the area under the curve

into simple shapes, such as rectangles. The trapezoidal method is one of the more accurate

and popular methodologies, and is implemented by the R package pROC. The height of each

trapezoid piece is the interval along the x�axis (number of points of estimation�1), and the

base lengths are the TPR values corresponding to xi and xi+1.

2. Mann-Whitney U-Statistic

The non-parametric Mann-Whitney U-statistic represents the empirical probability that y+ is

assigned a rank higher than y
�. Thus, due to AUC’s probabilistic interpretation, this statistic

returns a result very similar to the geometric estimation of AUC. The R package ROCR uses

the equivalence of the Mann-Whitney test and AUC in its function to calculate the latter, and

a more detailed proof of this equivalence is given by Yan et al. (2003). The Mann-Whitney
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U-statistic is calculated using:

UMW =
1

mn

mX

i=1

nX

j=1

�
p̂(y+i ), p̂(y

�
j )
�

(2)

where
�
p̂(y+i ), p̂(y

�
j )
�
=

(
1 if p̂(y+i ) > p̂(y+j )

0 otherwise

and m and n are the number of observations in the positive and negative classes respectively.

3. Smoothing

Smoothing is another parametric AUC estimation method, and is given as an option in the

fitting of the ROC curve for the R package pROC. A smooth ROC curve is fit using kernel smooth-

ing, and then integration is used to estimate the AUC (Faraggi & Reiser 2002). There are var-

ious methods of curve smoothing, using some density function. However, if semi-parametric

binomial smoothing is used, we assume that both populations of p̂(y+) and p̂(y�) follow Gaus-

sian distributions p̂(y+) ⇠ N(ȳ+,�+) and p̂(y�) ⇠ N(ȳ�,��), where ȳ
+ and ȳ

� represent the

means of p̂(y+) and p̂(y�) respectively. We can then derive the formula:

AUC = �(
ȳ
+ � ȳ

�
p

�+2 + ��2
) = �(

ap
1 + b2

)

where a = ȳ+�ȳ�

��2 , b = ��2

�+2 , and � is the cumulative normal distribution function (Promji-

raprawat & Wongseree, 2016).

4. Our Proposal: An Unbiased Variance Estimator

AUC can be written as a two-sample U-statistic, as shown in Equation (2). This allows us to extend

the previous work in Wang and Lindsay (2014), who devised an unbiased variance estimator of a

general one-sample U-statistic, to K samples so that one can estimate the variance of AUC (i.e.

a two-sample U-statistic) unbiasedly. In this Section, we review basic concepts and properties

of a one-sample U-statistic (Lee, 1990) in Sections 5.1 and 5.2, as well as the unbiased variance

estimator proposed in Wang and Lindsay (2014) in Section 5.3. Then, we formulate the two- and

K-sample U-statistic variance estimator in Sections 5.4 and 5.5, which are the main contributions

of this paper.

4.1. One-sample U-statistic

Proposed by Halmos and Hoe↵ding (1948), unbiased statistics or U-statistics are a subset of the

group of all unbiased estimators, restricted to those with the minimum possible variance. An

statistic is unbiased if its expected value, or mean of its sampling distribution, is equal to the

target parameter. A foundational theorem states that a functional ✓, defined for a distribution

function F of random variables X1, · · · , Xn, admits an unbiased estimator if and only if it can be

written in the form of a function � of k variables such that:

✓(F ) =

Z 1

�1
· · ·

Z 1

�1
�(x1, · · · , xk)dF (x1) · · · dF (xk) (3)
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Here, we call ✓ a regular statistical functional of degree k, and � as the kernel of the functional.

We use the property of unbiasedness to conclude that:

✓(F ) = E[�(X1, · · · , Xk)]

Note that � is a symmetric function, which means given a set of input parameters, any permutation

of those k components will yield the same output. However, in the case that � is not symmetric,

we can average over all the possible permutations of the inputs to obtain a symmetric function �
⇤:

�
⇤(X1, · · · , Xk) =

1

k!

X

(n,k)

�(Xi1 , · · · , Xik)

where (n, k) refers to the set of all possible permutations of a subset of size k from x. This is all

permutations of {i1, · · · , ik}, where each i was chosen from {1, · · · , n} of x.

However, note that Equation (3) only uses k sampling parameters instead of all n samples from F .

Given that x1, · · · , xn are independent and identically distributed random variables, we intuitively

would want to use all available information to best estimate a parameter. In order to do this, we

want to consider all the possible k subsets we could choose from n, and average over the calculated

values. Thus, given n � k:

Un =
1�n
k

�
X

(n,k)

�(Xi1 , · · · , Xik) = N�1
NX

i=1

�(Si) (4)

where N is the number of samples of size k denoted Si, taken from X1, · · · , Xn. The above is the

definition for a one-sample U-statistic. It is simple to show that Un is an unbiased estimator, i.e.

E(Un) = ✓. Examples of common statistics with one-sample U-statistics forms, such as sample

mean and sample variance, follow.

Example: Sample mean

When constructing the U-statistic for sample mean, we define the kernel of the form defined in

Equation (1), which is the general continuous definition for mean:

✓(F ) =

Z 1

�1
}f(x1)dx1

This functional is of degree 1. Using Equation (4), the U-statistic is the sample mean X̄ =
1
n

Pn
i=1Xi.

Example: Sample variance

The kernel for the U-statistic sample variance is of degree 2, and is defined as:

✓(F ) =
1

2

Z 1

�1

Z 1

�1
(x1 � x2)

2
df(x1)df(x2)

The U-statistic for calculating sample mean is s2n = 1
2(n2)

P
1i<jn(Xi �Xj)2.

4.2. Asymptotic Normality for U-statistics

In general, U-statistics are often written in terms of dependent variables and not suitable for the

application of the central limit theorem (CLT) or law of large numbers (LLN). Instead, we create

a projection, denoted by Ûn, that is often the sum of i.i.d. random variables to approximate the

U-statistic of interest asymptotically.
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4.2.1. One-sample U-statistics

For a one-sample U-statistic of degree k:

Un =
1�n
k

�
X

(n,k)

�(Xi1 , · · · , Xik)

the projection is Ûn:

Ûn =
nX

i=1

E(Un|Xi)� (n� 1)✓

where ✓ = E[�(Xi1 , · · · , Xik)] is the parameter of interest and Ûn is an i.i.d. sum because of the

first term E(Un|Xi), which is a function of ✓, and the second term that acts as a normalizing factor.

Thus, we can interpret Ûn as projecting Un onto each of the n i.i.d. drawn samples of X. It can be

proven using standard asymptotic methods that Un and Ûn have the same asymptotic distribution,

but the proof (applying the Central Limit Theorem, Slutsky Theorem, etc.) is not included here.

4.2.2. Two-sample and K-sample U-statistics

We can generalize to the two-sample case by considering two independent sets of i.i.d. random

variables of sizes n1 and n2. Consider a kernel function � of degree k = k1 + k2, where k1 of its

components come from the first set of random variables and k2 components come from the other

set. For a two-sample U-statistic:

Un = [
1�n1

k1

��n2
k2

� ]
2X

l=1

X

(nl,kl)

�(X1,i1 , · · · , X1,ik1
;X2,i1 , · · · , X2,ik2

) (5)

their associated projection Ûn is:

Ûn =
2X

l=1

nlX

i=1

E(Un|Xli)� [(n1 + n2)� 1]✓

where ✓ = E[�(X1,i1 , · · · , X1,ik1
;X2,i1 , · · · , X2,ik2

)].

Analogously, a K-sample U-statistic (K � 2) is defined by

Un = [
KY

l=1

✓
nl

kl

◆
]�1

KX

l=1

X

(nl,kl)

�(X1,i1 , . . . , X1,ik1
; . . . ;XK,i1 , . . . , XK,ikK

)) (6)

where the degree of k = k1 + · · ·+ kK . Its associated projection Ûn is:

Ûn =
KX

l=1

nlX

i=1

E(Un|Xli)� [
KX

l=1

nl � 1]✓

where ✓ = E[�(X1,i1 , . . . , X1,ik1
; . . . ;XK,i1 , . . . , XK,ikK

)].

Remark 1 Recall that one commonly used estimator for AUC is of a two-sample U-statistic form

with degree k = 2, where k1 = k2 = 1, as discussed in Section 3.4. In practice, the AUC estimate is

data dependent, and so is subject to sampling variation. In later discussions, we focus on variance

estimation of a general K-sample U-statistic, which can be applied to assessing the variability of

AUC in binary classification.
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4.3. One-sample U-statistic Variance Estimator

In Wang and Lindsay (2014), an unbiased variance estimator V̂u for a one-sample U-statistic is

proposed, provided k  n
2 . Recall the complete one-sample U-statistic, as defined in Equation (4).

Definition 4.1 The unbiased variance estimator of a general one-sample U-statistic, denoted by

V̂u, is defined for a kernel function � of degree k in the following form:

V̂u = Q(k)�Q(0) (7)

where Q(c) is defined as:

Q(c) = N
�1
c

X

Pc

�(Si)�(Sj)

Denote the overlaps of two samples of size k as O(Si, Sj), from which Wang and Lindsay define

Pc = {(Si, Sj)|O(Si, Sj)  c}, where 0  c  k, to consider all possible pairs of samples that have c

or fewer elements in common. Let Nc be the number of pairs in Pc. It is easy to see that Q(k) = U
2
n,

so V̂u can be equivalently written as V̂u = U
2
n �Q(0).

Remark 2 One weakness of the unbiased variance estimator (7) is that V̂u = Q(k) � Q(0) occa-

sionally yields negative values, which do not make sense for variance. In Wang and Lindsay, a

fix-up is as follows:

Definition 4.2 A strictly positive variance estimator V̂
+
u is:

V̂
+
u = max{V̂u, S

2
U}

where

S
2
U =

1

N(N� 1)

NX

i=1

{�(Si)� Un}2, N =

✓
n

k

◆

Remark 3 In practice, the calculation of Q(k) and Q(0) each can be computationally expensive,

especially for large sample size n and kernel size k. To overcome this drawback, Wang and Lindsay

(2014) proposed an equivalent expression of V̂u based on partition resampling.

Definition 4.3 The complete variance estimator based on partitions V̂partition is:

V̂partition =
1

B

BX

a=1

h 1

m

mX

j=1

� 1

m� 1
(�(Sa,j)� �̄a)

2 � (�̄a � �̄)2
 i

where

�̄a =
mX

j=1

�(Sa,j)

m
and �̄ =

BX

a=1

�̄a

B = Un

To realize the partition resampling, the data is partitioned into a maximal number of subsamples of

size k, say S1, · · · , Sm, where mk  n. We let B be the number of di↵erent ways one can partition

the data set, and for a = 1, · · · ,B, let the a
th partition be a unique sequence of non-overlapping

size-k samples Sa,1, · · · , Sa,m.
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4.4. Two-sample U-statistic variance estimator

In this paper, we aim to generalize the proposal in Wang and Lindsay (2014) to the K-sample

scenario. The extension of the above estimator to two samples does not involve a manipulation of

the above equations, but a redefinition of how the subsamples are selected with two independent

samples of sizes n1 and n2, where n = n1+n2. Given a two-sample U-statistic defined in Equation

(5), the unbiased variance estimator of a general two-sample U-statistic, denoted by V̂u, is defined

for a kernel function �(xi1 , · · · , xik1 ; yj1 , · · · , yjk2 ) with k1 observations from sample 1 (k1 < n1)

and k2 observations from sample 2 (k2 < n2), in the following form:

V̂u = Q(k)�Q(0) (8)

where Q(c) is defined as:

Q(c) = N
�1
c

X

Pc

�(xi1 , · · · , xik1 ; yj1 , · · · , yjk2 )�(xs1 , · · · , xsk1 ; yt1 , · · · , ytk2 )

Compared to Equation (7), both Si and Sj are now size k = k1+k2 drawing k1 from the first sample

and k2 from the second sample. The Nc of the new, larger Pc is now calculated considering these

two samples; for example, for c = 0 in Q(0), the two samples may not overlap at all. Thus N0 =�n1
k1

��n1�k1
k1

��n2
k2

��n2�k2
k2

�
. For c = k in Q(k), the two samples have no restrictions, as the number

of overlapping elements can be the total number of set elements k or less, and Nk =
�n1
k1

�2�n2
k2

�2
.

Thus, for V̂u of the two-sample U-statistic, the equations in Definition 4.1 still apply but with the

new definitions for the above variables.

Remark 4 For the two-sample U-statistic, the strictly positive variance estimator is still V̂ +
u =

max{V̂u, S
2
U}. S

2
U is slightly modified from Definition 4.2 to be:

S
2
U =

1

N(N� 1)

n1X

i=1

n2X

j=1

{�(S1i;S2j)� Un}2, N = n1n2

Remark 5 Consider a two-sample U-statistic of degree k = k1 + k2, and two independent samples

of size n1 and n2 respectively. Let m1 = n1/k1 and m2 = n2/k2 (here we assume m1 is divisible

by k1, and m2 is divisible by k2). Without loss of generality, assume m1 = m2, so we denote it as

m. Otherwise, take m = min{m1,m2}. Given a two-sample data set of size n, one could partition

it into m blocks of data subsets, each of size k = k1 + k2, denoted by S1, . . . , Sm. Then, one could

compute the corresponding incomplete U-statistic

U
inc
n =

1

m

mX

i=1

�(Si)

which approximates the exact two-sample U-statistic Un. We use it as a building block to construct

a partition-resampling-based realization of the unbiased variance estimator for a two-sample U-

statistic.

Let B be the total number of partitions of the size n data set such that the data set is divided

into m blocks of subsets of size k, of which k1 observations are from sample 1 and k2 observations

are from sample 2. When m1 = m2, B =
�n1
k1

��n1�k1
k1

�
· · ·

�k1
k1

��n2
k2

��n2�k2
k2

�
· · ·

�k2
k2

�
. Given partition
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a (1  a  B), denote the m data subsets of size k as Sa,1, . . . , Sa,m. The kernel function � takes

values of �(Sa,1), . . . ,�(Sa,m). We define the partition variance estimator as

V̂partition =
1

B
X

all partitions

(
1

m(m� 1)

mX

i=1

(�(Sa,i)� �̄a)
2 � (�̄a � �̄)2

)
(9)

In the case of AUC estimation, the two-sample U-statistic estimator is of degree k = 2 (k1 =

k2 = 1), and the kernel function �(p̂1, p̂2) = I{p̂1 > p̂2} is an indicator function. Thus, the

partition variance estimator in Equation (9) can be defined accordingly. It can be shown that with

the exhaustive number of partitions B, the V̂partition is equivalent to the V̂u, the proposed unbiased

variance estimator.

In practice, the total number of partitions B is enormous. Thus, there is no computational

advantage of calculating the partition variance estimator as defined in Equation (9). However,

one could draw B (B << B) random partitions with replacement from the exhaustive set, and

approximate the unbiased variance estimator e�ciently.

V̂partition,B =
1

B

X

B random partitions

(
1

m(m� 1)

mX

i=1

(�(Sa,i)� �̄a)
2 � (�̄a � �̄)2

)

In our simulation studies we notice that when n = 100 or 500 with B = 102 or 103, the partition-

resampling realization of the proposed variance estimator yields comparable performance to boot-

strap, and it is at least 20 times faster to compute than bootstrap and jackknife variance estimators.

4.5.K-sample U-statistic Variance Estimator

In the most general case, the K-sample U-statistic is provided in Equation (6). The unbiased

variance estimator of a general K-sample U-statistic, denoted by V̂u, is defined for a kernel func-

tion �(X1,s1 , . . . , X1,sk1
; . . . ;XK,s1 , . . . , XK,skK

) with kj observations from the jth sample, in the

following form:

V̂u = Q(k)�Q(0) (10)

where Q(c) is defined as:

Q(c) = N
�1
c

X

Pc

�(X1,s1 , . . . , X1,sk1
; . . . ;XK,s1 , . . . , XK,skK

)�(X1,t1 , . . . , X1,tk1
; . . . ;XK,t1 , . . . , XK,tkK

)

As for the two-sample variance estimator, we must redefine Si, Sj , Nc, Pc, and Q(c) for theK-sample

case. Any Si are of size k =
PK

j=1 kj drawing kj from the j
th sample. The Nc of Pc is now much

larger, such that N0 =
QK

j=1

�nj

kj

��nj�kj
kj

�
and Nk =

QK
j=1

�nj

kj

�2
. V̂u can then be formulated in the

K-sample case based on Definition 4.1.

5. Simulation Studies

In this Section, we present simulation studies that evaluate the performance of the proposed variance

estimator in comparison to bootstrap and jackknife variance estimators.

To simulate binary-outcome data in the context of binary classification, we started with generat-

ing a continuous outcome for Y c through a linear relationship with a set of x-variables. Then, we

converted the continuous response Y
c to binary outcome Y via dichotomization. More specifically,

13



we simulated R = 1000 independent data sets, each of size n (n = 100, 500). The continuous

response variable was obtained based on the following multiple linear regression model:

Y
c
i = 1 +Xi,1 +Xi,2 +Xi,3 +Xi,4 + 0.1Xi,5 + 0X6 + ✏i

where ✏i ⇠ logistic(location = 0, scale = 5). Thus, the true model was only composed of 5 of

the 6 total available predictors. Each set of n x-variables was independently simulated from the

uniform distribution to obtain values between 0 and 1, inclusive. The binary response Y in each

data set was determined by comparison of Y c to a threshold fixed across simulations of the same

sample size n, calculated to yield approximately a 50-50, 60-40, 70-30, or 80-20 split between the

negative and positive classes. For each simulated data set of a given size, we fitted the following

six logistic regression models, each of a di↵erent number of predictors, as shown in Table 2. Then,

we computed the U-statistic estimate of AUC based on the fitted logistic regression model, and

estimated the variance of the AUC score by di↵erent methods. In total, we implemented four

variance estimators for AUC, including the bootstrap (B=103), the jackknife (B=103), and our

proposed variance estimator based on partition resampling with B=102 or B=103. The bootstrap

and jackknife variance estimators were realized based on 103 bootstrap or jackknife samples for

each given data set. The specific form of jackknife used was delete-d (d = 10, 25), as AUC comes

from the ROC curve step function and thus does not satisfy the delete-one jackknife requirement of

smoothness. Additionally, the proposed estimator implemented in this simulation used the positive

fix-up as well as the partition resampling scheme — note that this is not the exact unbiased variance

estimator, as the total number of partitions is much larger than B = 102 or B = 103.

Table 2: Models under comparison in the simulation studies.

p X1 X2 X3 X4 X5 X6

1 X
2 X X
3 X X X
4 X X X X
5 X X X X X
6 X X X X X X

The true variance of AUC was simulated based on 106 AUC scores obtained by 106 independently

generated data sets. The simulations were realized using the statistical language R, and the code

was parallelized over 4 cores using the computational machine “poweredge,” composed of Intel

Xeon E5-2680 v3 processors, in order to speed up the computational process.
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5.1. Results

Table 3: Summary statistics of estimated variance of AUC at a 50-50 class split, model size k = 5.

Mean StDev MSE

n = 100

Truth 2.32e-03 NA NA

Bootstrap 2.61e-03 2.98e-04 1.75e-07

Jackknife 3.55e-03 1.49e-03 3.73e-06

Unbiased (B=102) 2.87e-03 7.45e-04 8.62e-07

Unbiased (B=103) 2.87e-03 6.93e-04 7.84e-07

n = 500

Truth 5.60e-04 NA NA

Bootstrap 5.79e-04 3.70e-05 1.74e-09

Jackknife 6.45e-04 1.53e-04 3.06e-08

Unbiased (B=102) 6.15e-04 5.92e-05 6.59e-09

Unbiased (B=103) 6.18e-04 3.27e-05 4.41e-09

Table 4: Runtimes (in seconds) of each variance estimator, real elapsed time per job.

50-50 60-40 70-30 80-20

n = 100

Bootstrap (B=103) 77.47 79.65 81.47 77.12
Jackknife (B=103) 85.01 80.90 66.32 78.70
Unbiased (B=102) 0.43 0.82 0.41 0.58
Unbiased (B=103) 3.56 6.84 3.63 4.54

n = 500

Bootstrap (B=103) 116.03 113.26 112.68 110.63
Jackknife (B=103) 126.68 121.98 124.65 122.53
Unbiased (B=102) 3.08 2.76 1.90 1.60
Unbiased (B=103) 17.76 25.03 9.61 13.58

In Table 3 (full results with Tables 7, 8, 9, and 10 included in Appendix), we show the mean,

standard deviation, and mean squared error (MSE) of the estimated variances over allR simulations.

From this Table, we can see that bootstrap often performs the best in terms of the MSE. Jackknife

can be significantly biased upwards compared to the simulated truth, especially at smaller sample

sizes such as n = 100. As its variance is also generally higher than both the bootstrap and unbiased

methods, it is unable to compete with either, even as its performance improves with increased n.

Although bootstrap performs the best in most of the simulations, the B = 103 unbiased estimator

often achieves MSEs close to those achieved by bootstrap. In general, it seems that in cases with

more evenly split classes, the unbiased estimator is more likely to even outperform bootstrap — this

may be due to the fact that the partition form of the unbiased U-statistic estimator is dependent on

the size of the smaller class n1 and thus makes the estimator less powerful in these cases. Overall,

we note that the performance of the proposed variance estimator improves with a larger value of

B in achieving a smaller bias, smaller sd, and smaller MSE, as the estimator implemented was

not the exact unbiased variance estimator. Theoretically, as B goes to infinity, the partition-based

realization would be equivalent to the exact unbiased variance estimator and show a smaller bias

than the bootstrap method.

Additionally, we can also see from Table 4 that with the help of the partition resampling scheme,
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one can realize the unbiased variance estimator of a two-sample U-statistic quite e�ciently. With

B = 102, the performance of the proposal is already fairly good and has very comparable means,

standard deviations, and MSEs compared to bootstrap, but with much improved e�ciency. With

B = 103, which is the same number of replications as used in bootstrap and jackknife, the compu-

tational cost of the proposed method is about 15 to 20 times faster at n = 100, and about 10 times

faster at n = 500, compared to its counterparts.

6. Real Data Analysis

In this chapter, we illustrate the practical application of our proposed variance estimator (10), in

comparison to bootstrap and jackknife methods, using a real data set called Heart Disease. Because

AUC is estimated based on the given data and is subject to sampling error, in the context of model

comparison it is questionable whether the model with the largest AUC score is truly optimal or

not. To account for variability of AUC and select a possibly more parsimonious model, we consider

implementing the one-standard-error rule in choosing the optimal model (Hastie et al., 2009).

Our results show that with our proposed variance estimator, the one-standard error rule selects

a model that is comparable to the ones selected using bootstrap or jackknife variance estimators.

However, the realization of our method is much more e�cient than bootstrap and jackknife, using

the partition resampling scheme.

The rest of this chapter is structured as follows. In Section 7.1, we briefly introduce the Heart

Disease data set. In Section 7.2, we then discuss the results and our findings.

6.1. Data

The full Heart Disease2 data set was first assembled by Detrano et al. (1989), and contains

76 attributes to predict up to 4 classes of heart disease from patients in hospitals in Hungary,

Switzerland, California, and Ohio. However, most published papers using this data have used a

cleaned subset of the initial data, collected from patients undergoing angiography at a Cleveland,

Ohio hospital. Additionally, the 4 classes of heart disease are often reduced to a binary prediction

problem of whether or not the patient has heart disease. After removing missing data entries,

297 data entries remained of the original 303, with 13 possible predictor variables. There are 160

patients without heart disease and 137 patients with heart disease, resulting in an approximate

54-46 ratio between the negative and positive classes.

In Wang and Lindsay (2017), the same data set was used to illustrate model selection based

on various variance estimators using the one-standard error rule. Out of the 213 total possible

models, we consider a total of 13 models, each being the optimal one of a given size p (1  p 
13), where p represents the number of predictors in the model. The BIC criterion was used to

determine which model is optimal for each p, and the models are shown in Table 6. The 13

variables represent the results from submitted patient history and a series of tests administered by

the research team (exercise electrocardiogram, thallium scintigraphy, and cardiac fluoroscopy). A

more detailed explanation of the variable meanings and data types are given in Table 5.

We fit each of the 13 models (Table 6) on the trimmed full data set and compute their corre-

sponding AUC scores. Model 12 turns out to be the one with the largest AUC. If one were to

choose a model based on maximization of AUC, one would select model 12. However, it is highly

2The Heart Disease data set was downloaded from the University of California, Irvine (UCI) Machine Learning

Repository at https://archive.ics.uci.edu/ml/datasets/heart+Disease
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Table 5: Variable meanings in the Heart Disease data set.

variable description type (# of levels)
thal exercise thallium scintigraphic defects categorical (3)

exang if the patient su↵ered an exercise-induced angina categorical (2)
ca the number of major vessels containing calcium categorical (4)

slope slope of the peak exercise ST segment categorical (3)
cp chest pain type categorical (3)
sex sex categorical (2)

trestbps resting blood pressure (mmHg) quantitative
thalach maximum heart rate (bpm) quantitative

chol serum cholesterol (mg/dl) quantitative
fbs if fasting blood sugar > 120 mg/dl categorical (2)

restecg resting electrocardiographic results categorical (3)
oldpeak exercise-induced ST depression quantitative

age age (years) quantitative

Table 6: Models under comparison in the Heart Disease data set.

p thal exang ca slope cp sex trestbps thalach chol fbs restecg oldpeak age

1 X
2 X X
3 X X X
4 X X X X
5 X X X X X
6 X X X X X X
7 X X X X X X X
8 X X X X X X X X
9 X X X X X X X X X
10 X X X X X X X X X X
11 X X X X X X X X X X X
12 X X X X X X X X X X X X
13 X X X X X X X X X X X X X

likely that Model 12 is too complicated and overfits the current data set. In addition, many smaller

models, such as Model 3 to Model 11, have AUC scores that are comparable to that of Model 12.

Following the rule of parsimony, we would like to select the most parsimonious model whose AUC

score is similar to that of Model 12. Here, we implement the one-standard error rule and choose the

model whose AUC score is within one standard error of Model 12’s AUC. We then apply bootstrap,

jackknife, and our proposed method to compute the standard error of AUC for Model 12.

6.2. Results

From Figure 3, we see a standard error bar highlighted in red for each estimator, subtracted from the

AUC of the maximum AUC model, which is model size 12. Using the one-standard error rule, the

smallest model with an AUC score within that one standard error range is the optimal model. For

the Heart Disease data set, we see that both unbiased estimators (B=102 and B=103) agree with

the bootstrap method to suggest that model 7 best balances complexity and model performance.

The jackknife method recommends a slightly more parsimonious model of size 6; however, as we

saw from the previous chapter, jackknife tends to overestimate the variance, which would result in
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Fig. 3: 1-SE model selection rule applied to the Heart Disease data set.

choosing a model that may be too small. Furthermore, from our simulation studies we also know

that the calculation of our proposed variance estimator is much more e�cient than the bootstrap

and jackknife methods. Therefore, we believe that our developed method o↵ers significant practical

value given its computational e�ciency and comparable results to existing methods.

7. Discussion and Future Work

In this thesis, we reviewed existing variance estimation methods and proposed an unbiased variance

estimator for a two-sample U-statistic (with a general K-sample extension). We focused our atten-

tion on binary classification and the widely used performance metric for binary classifiers, AUC,

that has a two-sample U-statistic representation with degree k = 2. We formulated the proposed

unbiased variance estimator in the context of AUC, and designed simulation studies to compare

our estimator with the bootstrap and jackknife resampling-based variance estimators. Our results

showed that our unbiased estimator not only performs significantly better than jackknife, and is

comparable to bootstrap method in terms of mean squared error, but also achieves computational

speeds of up 10 to 20 times faster than its competitors (exact speed-up depends on the data set

size). We also illustrated the practical performance of our developed variance estimator on a real

data set.

Given that our unbiased estimator is competitive with bootstrap and jackknife and less computa-
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tionally expensive, we recommend its usage in cases where the statistic of interest has a K-sample

U-statistic form. Thus, for future work, we would find two- or K-sample U-statistic formulations

for other widespread metrics and demonstrate the performance of our U-statistic for those cases.

Additionally, we would like to further investigate the use of variance estimation in model selection

— in our simulation, although bootstrap, jackknife, and our unbiased estimator all achieved low

MSEs with regard to the simulated truth, using these estimated variances in combination with the

one-standard error rule resulted in models that were too parsimonious, given that the true model

we constructed was of size 5. Thus, another interesting future question would be investigating

alternate applications for the proposed variance estimator, possibly using the asymptotic normality

of U-statistics to construct confidence intervals or hypothesis tests to compare models of di↵erent

sizes.
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8. Appendix

Table 7: Summary statistics of estimated variance of AUC at a 50-50 split.

n = 100 n = 500
Mean StDev MSE Mean StDev MSE

k = 1

Truth 2.98e-03 NA NA 6.59e-04 NA NA
Bootstrap 3.26e-03 8.92e-04 8.73e-07 7.12e-04 1.84e-04 3.67e-08
Jackknife 4.70e-03 5.08e-03 2.88e-05 7.58e-04 9.31e-04 8.76e-07

Unbiased (B=102) 3.09e-03 1.50e-03 2.26e-06 6.50e-04 1.89e-04 3.58e-08
Unbiased (B=103) 3.08e-03 1.46e-03 2.15e-06 6.50e-04 1.73e-04 3.00e-08

k = 2

Truth 2.79e-03 NA NA 6.03e-04 NA NA
Bootstrap 3.24e-03 5.30e-04 4.82e-07 6.69e-04 9.44e-05 1.33e-08
Jackknife 4.41e-03 3.89e-03 1.78e-05 7.27e-04 8.19e-04 6.87e-07

Unbiased (B=102) 3.03e-03 1.63e-03 2.72e-06 6.43e-04 7.75e-05 7.64e-09
Unbiased (B=103) 3.02e-03 1.63e-03 2.71e-06 6.45e-04 5.62e-05 4.91e-09

k = 3

Truth 2.59e-03 NA NA 5.82e-04 NA NA
Bootstrap 3.02e-03 4.13e-04 3.53e-07 6.13e-04 5.10e-05 3.59e-09
Jackknife 3.95e-03 2.46e-03 7.94e-06 6.54e-04 1.54e-04 2.88e-08

Unbiased (B=102) 3.02e-03 6.11e-04 5.58e-07 6.32e-04 6.16e-05 6.31e-09
Unbiased (B=103) 3.02e-03 5.59e-04 4.98e-07 6.33e-04 3.14e-05 3.57e-09

k = 4

Truth 2.45e-03 NA NA 5.71e-04 NA NA
Bootstrap 2.78e-03 3.57e-04 2.34e-07 5.88e-04 3.89e-05 1.82e-09

Jackknife 3.61e-03 1.59e-03 3.87e-06 6.38e-04 4.54e-05 6.63e-09
Unbiased (B=102) 2.94e-03 4.19e-04 4.18e-07 6.21e-04 5.94e-05 6.05e-09
Unbiased (B=103) 2.95e-03 3.21e-04 3.50e-07 6.19e-04 3.24e-05 3.45e-09

k = 5

Truth 2.32e-03 NA NA 5.60e-04 NA NA
Bootstrap 2.61e-03 2.98e-04 1.75e-07 5.79e-04 3.70e-05 1.74e-09

Jackknife 3.55e-03 1.49e-03 3.73e-06 6.45e-04 1.53e-04 3.06e-08
Unbiased (B=102) 2.87e-03 7.45e-04 8.62e-07 6.15e-04 5.92e-05 6.59e-09
Unbiased (B=103) 2.87e-03 6.93e-04 7.84e-07 6.18e-04 3.27e-05 4.41e-09

k = 6

Truth 2.22e-03 NA NA 5.50e-04 NA NA
Bootstrap 2.48e-03 2.61e-04 1.32e-07 5.70e-04 3.44e-05 1.60e-09

Jackknife 3.45e-03 9.39e-04 2.39e-06 6.46e-04 7.37e-05 1.46e-08
Unbiased (B=102) 2.84e-03 4.31e-04 5.66e-07 6.12e-04 5.97e-05 7.37e-09
Unbiased (B=103) 2.84e-03 3.35e-04 4.86e-07 6.15e-04 3.20e-05 5.33e-09
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Table 8: Summary statistics of estimated variance of AUC at a 60-40 split.

n = 100 n = 500
Mean StDev MSE Mean StDev MSE

k = 1

Truth 3.07e-03 NA NA 6.74e-04 NA NA
Bootstrap 3.33e-03 9.27e-04 9.24e-07 7.25e-04 1.89e-04 3.84e-08
Jackknife 4.76e-03 4.99e-03 2.77e-05 8.25e-04 1.40e-03 1.98e-06

Unbiased (B=102) 3.19e-03 1.27e-03 1.63e-06 6.67e-04 1.73e-04 3.00e-08
Unbiased (B=103) 3.20e-03 1.20e-03 1.46e-06 6.67e-04 1.47e-04 2.16e-08

k = 2

Truth 2.87e-03 NA NA 6.21e-04 NA NA
Bootstrap 3.33e-03 5.32e-04 4.93e-07 6.90e-04 1.00e-04 1.47e-08
Jackknife 4.52e-03 3.53e-03 1.52e-05 7.54e-04 7.47e-04 5.76e-07

Unbiased (B=102) 3.19e-03 1.15e-03 1.42e-06 6.67e-04 7.79e-05 8.15e-09
Unbiased (B=103) 3.18e-03 1.14e-03 1.39e-06 6.65e-04 3.63e-05 3.22e-09

k = 3

Truth 2.67e-03 NA NA 5.99e-04 NA NA
Bootstrap 3.09e-03 4.48e-04 3.74e-07 6.30e-04 5.46e-05 3.96e-09

Jackknife 4.16e-03 3.22e-03 1.26e-05 6.66e-04 6.32e-05 8.46e-09
Unbiased (B=102) 3.09e-03 1.15e-03 1.49e-06 6.51e-04 7.70e-05 8.68e-09
Unbiased (B=103) 3.09e-03 1.12e-03 1.42e-06 6.50e-04 3.85e-05 4.10e-09

k = 4

Truth 2.53e-03 NA NA 5.86e-04 NA NA
Bootstrap 2.85e-03 3.93e-04 2.60e-07 6.03e-04 3.95e-05 1.85e-09

Jackknife 3.81e-03 1.94e-03 5.44e-06 6.55e-04 4.73e-05 7.08e-09
Unbiased (B=102) 3.02e-03 6.54e-04 6.74e-07 6.37e-04 7.69e-05 8.54e-09
Unbiased (B=103) 3.02e-03 5.55e-04 5.51e-07 6.37e-04 3.88e-05 4.15e-09

k = 5

Truth 2.39e-03 NA NA 5.74e-04 NA NA
Bootstrap 2.67e-03 3.30e-04 1.86e-07 5.93e-04 3.76e-05 1.74e-09

Jackknife 3.67e-03 1.45e-03 3.76e-06 6.59e-04 4.86e-05 9.45e-09
Unbiased (B=102) 2.97e-03 5.24e-04 6.09e-07 6.36e-04 7.64e-05 9.58e-09
Unbiased (B=103) 2.97e-03 4.02e-04 4.97e-07 6.35e-04 3.83e-05 5.08e-09

k = 6

Truth 2.29e-03 NA NA 5.64e-04 NA NA
Bootstrap 2.54e-03 2.95e-04 1.48e-07 5.82e-04 3.60e-05 1.62e-09

Jackknife 3.60e-03 1.23e-03 3.21e-06 6.62e-04 5.00e-05 1.20e-08
Unbiased (B=102) 2.93e-03 5.09e-04 6.69e-07 6.36e-04 7.58e-05 1.10e-08
Unbiased (B=103) 2.91e-03 4.08e-04 5.47e-07 6.33e-04 3.79e-05 6.19e-09
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Table 9: Summary statistics of estimated variance of AUC at a 70-30 split.

n = 100 n = 500
Mean StDev MSE Mean StDev MSE

k = 1

Truth 3.46e-03 NA NA 7.69e-04 NA NA
Bootstrap 3.72e-03 1.05e-03 1.17e-06 8.20e-04 2.10e-04 4.68e-08

Jackknife 5.65e-03 6.92e-03 5.26e-05 1.01e-03 2.20e-03 4.88e-06
Unbiased (B=102) 3.60e-03 2.28e-03 5.23e-06 7.39e-04 4.36e-04 1.91e-07
Unbiased (B=103) 3.60e-03 2.26e-03 5.14e-06 7.41e-04 4.22e-04 1.79e-07

k = 2

Truth 3.26e-03 NA NA 7.12e-04 NA NA
Bootstrap 3.79e-03 6.95e-04 7.63e-07 7.88e-04 1.23e-04 2.09e-08

Jackknife 5.60e-03 5.32e-03 3.38e-05 9.07e-04 1.24e-03 1.57e-06
Unbiased (B=102) 3.58e-03 1.91e-03 3.74e-06 7.45e-04 3.22e-04 1.05e-07
Unbiased (B=103) 3.58e-03 1.67e-03 2.88e-06 7.48e-04 2.83e-04 8.14e-08

k = 3

Truth 3.03e-03 NA NA 6.82e-04 NA NA
Bootstrap 3.48e-03 6.02e-04 5.63e-07 7.21e-04 7.39e-05 6.96e-09

Jackknife 5.01e-03 4.29e-03 2.24e-05 7.76e-04 2.70e-04 8.18e-08
Unbiased (B=102) 3.49e-03 1.90e-03 3.81e-06 7.46e-04 1.19e-04 1.84e-08
Unbiased (B=103) 3.49e-03 1.78e-03 3.37e-06 7.45e-04 6.15e-05 7.82e-09

k = 4

Truth 2.85e-03 NA NA 6.64e-04 NA NA
Bootstrap 3.19e-03 5.46e-04 4.12e-07 6.85e-04 5.67e-05 3.65e-09

Jackknife 4.57e-03 3.01e-03 1.20e-05 7.55e-04 7.75e-05 1.42e-08
Unbiased (B=102) 3.42e-03 1.51e-03 2.59e-06 7.30e-04 1.25e-04 1.99e-08
Unbiased (B=103) 3.41e-03 1.41e-03 2.29e-06 7.29e-04 6.15e-05 7.96e-09

k = 5

Truth 2.69e-03 NA NA 6.50e-04 NA NA
Bootstrap 2.98e-03 4.74e-04 3.06e-07 6.70e-04 5.35e-05 3.28e-09

Jackknife 4.26e-03 1.83e-03 5.81e-06 7.58e-04 7.11e-05 1.67e-08
Unbiased (B=102) 3.41e-03 8.48e-04 1.23e-06 7.24e-04 1.24e-04 2.08e-08
Unbiased (B=103) 3.39e-03 6.59e-04 9.23e-07 7.26e-04 6.22e-05 9.64e-09

k = 6

Truth 2.58e-03 NA NA 6.36e-04 NA NA
Bootstrap 2.81e-03 4.36e-04 2.42e-07 6.57e-04 4.98e-05 2.92e-09

Jackknife 4.15e-03 1.72e-03 5.42e-06 7.62e-04 8.56e-05 2.32e-08
Unbiased (B=102) 3.23e-03 1.69e-03 3.27e-06 7.19e-04 1.23e-04 2.20e-08
Unbiased (B=103) 3.23e-03 1.57e-03 2.88e-06 7.23e-04 6.19e-05 1.14e-08
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Table 10: Summary statistics of estimated variance of AUC at a 80-20 split.

n = 100 n = 500
Mean StDev MSE Mean StDev MSE

k = 1

Truth 4.39e-03 NA NA 1.01e-03 NA NA
Bootstrap 4.76e-03 1.48e-03 2.33e-06 1.06e-03 3.07e-04 9.71e-08

Jackknife 7.40e-03 7.89e-03 7.12e-05 1.35e-03 1.98e-03 4.04e-06
Unbiased (B=102) 4.92e-03 2.95e-03 8.98e-06 1.00e-03 3.87e-04 1.50e-07
Unbiased (B=103) 4.90e-03 2.60e-03 7.01e-06 9.93e-04 3.17e-04 1.01e-07

k = 2

Truth 4.21e-03 NA NA 9.49e-04 NA NA
Bootstrap 4.85e-03 1.22e-03 1.89e-06 1.05e-03 1.89e-04 4.62e-08

Jackknife 7.46e-03 6.30e-03 5.02e-05 1.39e-03 1.93e-03 3.90e-06
Unbiased (B=102) 4.83e-03 2.38e-03 6.05e-06 9.95e-04 3.43e-04 1.20e-07
Unbiased (B=103) 4.81e-03 2.12e-03 4.87e-06 9.94e-04 2.78e-04 7.94e-08

k = 3

Truth 3.92e-03 NA NA 8.96e-04 NA NA
Bootstrap 4.41e-03 1.07e-03 1.40e-06 9.62e-04 1.32e-04 2.18e-08

Jackknife 6.81e-03 5.21e-03 3.55e-05 1.12e-03 1.07e-03 1.20e-06
Unbiased (B=102) 4.68e-03 2.05e-03 4.78e-06 9.80e-04 2.20e-04 5.55e-08
Unbiased (B=103) 4.68e-03 1.84e-03 3.98e-06 9.87e-04 1.22e-04 2.32e-08

k = 4

Truth 3.68e-03 NA NA 8.65e-04 NA NA
Bootstrap 4.01e-03 1.01e-03 1.14e-06 9.02e-04 1.06e-04 1.26e-08

Jackknife 6.25e-03 4.26e-03 2.47e-05 1.07e-03 8.77e-04 8.09e-07
Unbiased (B=102) 4.52e-03 1.73e-03 3.71e-06 9.69e-04 2.30e-04 6.34e-08
Unbiased (B=103) 4.52e-03 1.50e-03 2.96e-06 9.65e-04 1.21e-04 2.47e-08

k = 5

Truth 3.45e-03 NA NA 8.41e-04 NA NA
Bootstrap 3.69e-03 9.11e-04 8.84e-07 8.77e-04 9.83e-05 1.09e-08

Jackknife 5.86e-03 3.14e-03 1.56e-05 1.05e-03 6.28e-04 4.37e-07
Unbiased (B=102) 4.39e-03 1.63e-03 3.53e-06 9.63e-04 2.23e-04 6.47e-08
Unbiased (B=103) 4.36e-03 1.40e-03 2.80e-06 9.59e-04 1.22e-04 2.86e-08

k = 6

Truth 3.30e-03 NA NA 8.20e-04 NA NA
Bootstrap 3.46e-03 8.58e-04 7.60e-07 8.52e-04 9.10e-05 9.33e-09

Jackknife 5.76e-03 3.35e-03 1.73e-05 1.05e-03 7.31e-04 5.87e-07
Unbiased (B=102) 4.24e-03 1.71e-03 3.80e-06 9.61e-04 2.25e-04 7.06e-08
Unbiased (B=103) 4.23e-03 1.51e-03 3.15e-06 9.54e-04 1.21e-04 3.26e-08
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