
Predicting Pediatric Traumatic Brain Injury Mortalities

Abstract

Traumatic Brain Injury (TBI) is a widespread public health issue from which thousands of
individuals suffer each year. These injuries are especially problematic for children whose brains
are not yet fully developed, but despite concern there currently exist few TBI outcome prediction
and triage methods that can be used with this demographic. Using pediatric patients entered
into the National Trauma Data Bank with head injuries (n = 147,452), we construct a new TBI
mortality predictive model via multiple logistic regression built specifically for this demographic
with an emphasis on reducing high false negative rates brought on by an imbalanced dataset
without excessively introducing false positives. Model performance was evaluated with a variety
of measurements and results showed our proposed model to outperform the the gold standard
for trauma injury outcome prediction. We also present a computer application of the model in
an effort to increase accessibility.
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Introduction

Traumatic Brain Injury (TBI) is a widespread public health issue from which thousands of individu-
als in the United States (US) and around the globe suffer each year. A summary of the frequency
of these injuries over the course of 7 years in the US is presented in Table 1. Overall, TBI only
accounts for 1-2% of all injury-related ED visits. However, even with this relatively low occurrence
rate, these injuries has been previously measured as the cause of nearly 30% of all injury-related
deaths [1,2]. The severity of these injuries have broad range but are often categorized into one of
three groups based on a measure of consciousness known as the Glasgow Coma Score (GCS)
(a scale from 3-worst to 15-best) where mild injuries (GCS > 13) are associated with short-term
memory loss and severe (GCS < 9) with comatose individuals [3,4].

Table 1: Emergency department injury visits in the United States (2008–2015)

Number of injury-related visits Number of TBI-related visits
Year (in thousands) (in thousands) Percent of TBI-related visits
2015 38959 556 1.4
2014 40019 573 1.4
2013 37211 381 1.0
2012 37427 436 1.2
2011 40220 371 0.9
2010 37878 355 0.9
2009 45420 507 1.1
2008 42520 485 1.1

But even with an understanding of the possible long-term consequences that may arise with TBI,
standardized approaches towards the treatment of these injuries are still well unestablished and
it remains difficult to estimate outcomes [5]. Existing methods for such predictions are often criti-
cized as outdated or suffer from a lack of usability in the pediatric cohort. For example, the Trauma
and Injury Severity Score (TRISS) estimates an individual’s probability of mortality after suffering
any traumatic injury with a logistic regression model that originally formulated in the 1980s [6–12].
TRISS has been previously hailed as the gold standard for trauma injury outcome prediction (which
ultimately lead to its widespread adoption in many clinics), but more than 30 years after its recep-
tion it has been failed to be updated with modern patient data [13, 14]. In addition, two relatively
new models designed specifically for TBI, the Corticosteroid Randomization After Significant Head
Injury (CRASH) and International Mission for Prognosis and Analysis of Clinical Trials in TBI (IM-
PACT) [15] models, were among the first TBI specific models to be built on relatively large data
and externally validated by multiple countries, but both completely disregarded the pediatric co-
hort [16–19]. This is especially concerning for said younger individuals, as they can account for
upwards of 75% of all TBI cases in certain countries and whose brains are still undergoing sig-
nificant development [20]. But to worsen the situation, the rates of mortality due to TBI among
children are much lower [21] than those seen in adults (Table 2), so any hope of attempting to use
the adult models to accurately predict the future state of pediatric patients is unlikely. Furthermore,
the rates of TBI related ED visits have shown to be increasing with the Center for Disease Control
and Prevention (CDC) reporting a near doubling in the per 100,000 rate of TBI related ED visits
from the period of 2001–2008 to 2009–2010 in the US [22].

The low mortality rate of TBI related injuries in children does more than potentially disable the use
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Table 2: Rates (per 100,000) of TBI-related ED visits, 2001–2010

Age group (yrs) ED Visits Hospitalizations Deaths
0–4 1112.6–2193.8 57.7–78.7 4.3–5.2
5–14 498.8–888.7 23.1–54.5 1.9–3.2
15–24 576.9–981.9 81.2–126.6 15.6–23.4
25–44 320.3–470.0 65.3–76.4 14.6–17.6
45–64 164.8–328.2 60.1–83.9 17.5–18.1
65+ 293.3–603.3 191.5–294.0 41.2–45.2
all 420.6–715.7 82.7–98.7 17.1–18.6

of adult models as it also makes modeling such events with new models more difficult. As shown
in Table 2 children of age 0–14 suffered from a mortality rate of 1.9–5.2 per 100,000 during the
period of 2001–2010 in the US [21], and when there exist rare events in data (i.e., low mortality
rate) many statistical models do not perform well. King and Zeng discussed this issue for logistic
regression models in detail, and pointed out that the prevalence of rare outcomes can be severely
underestimated [24].

Consider Table 3 as an example to describe our concern. Table 3 was calculated based on the
values in St-Louis and colleagues in an evaluation of TRISS on their data [25]. In this result,
sensitivity and specificity were 0.5% and 99.9%, respectively. The error rate was 12.17% which
is acceptable in most studies. However, the low sensitivity indicates that this model severely un-
derestimates trauma mortality. Therefore, using sensitivity, specificity, or error rate as sole perfor-
mance measurements is not recommended when choosing the best prediction model. Optimizing
both sensitivity and specificity might not be feasible, since there is a trade-off between these two
measures, but in clinical situations and especially in the case of TBI where injuries are not always
clearly visible and whose impacts might not be immediately felt, it is crucially important to predict
non-survivors as non-survivors correctly when compared with survivors as survivors.

Table 3: TRISS performance

Truth
Non-survivor Survivor

Prediction Non-survivor 45 65
Survivor 8868 64441

To tackle the aforementioned problems with existing methods and the pediatric cohort, in this
paper, we construct the TBI Mortality Prediction model for Pediatric patients (TMPP) which is built
on the largest trauma data bank available in North America with the following contributions: (1)
TMPP is specifically designed to target pediatric patients with TBI, and (2) TMPP highlights the
importance of predicting true non-survivors correctly.

Furthermore, a Java application of the model is presented to help with clinical accessibility.
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Materials and methods

Software

All data analyses were performed with the statistical software platform R [26]. Java version 8
update 171 was used to build the user-friendly calculator application that will be described in the
result section.

Data

Head injury patients aged 14 or less were extracted from the 2010-2015 National Trauma Data
Bank Research Data Set (NTDB RDS). Head injuries were identified using a regional AIS (Abbre-
viated Injury Scale) score (e.g., severity score in the head region ≥ 1). Burn victims and those
with unspecified severity were excluded. A total number of 147,452 pediatric trauma patients with
head injuries were used for our study. The outcome of interest was the patient’s 14-day mor-
tality after the injury. Throughout the paper, we denoted patients who died within 14 days after
the injury as cases and the rest as non-cases. The following variables were also examined and
considered as potential predictor variables: patient demographics (age, race, gender), patient vi-
tals at time of emergency department visit (systolic blood pressure, pulse rate, respiratory rate,
oxygen saturation, body temperature), injury severity measurements (GCS, ISS, AIS severity rat-
ing), the presence of foreign substances in the body (narcotics/prescriptions, alcohol), the use of
supplemental oxygen, and the type of injury (blunt, penetrating).

Descriptive statistics

Patient demographics and clinical characteristics were summarized by groups (case vs. non-
cases) in Table 4. Counts and proportions were used as summary statistics for discrete variables.
Median and median absolute deviation (MAD) were used for continuous variables in considering
outliers [27,28]. The proportion of missing values for each variable was also calculated. Using sim-
ple logistic regressions, we measured and tested the associations between patients’ mortality and
their clinical/demographic characteristics. P-values and crude odds ratios with 95% confidence
intervals were also estimated.

Model construction

Prior to model construction, we imputed missing values of potential predictor variables using a
Random Forests based Chained Equation algorithm [29] (an approach previously shown to work
well in trauma data [30]). Specifically, we used the MICE (Multiple Imputation By Chained Equa-
tion) R package [31] to build one single complete data set. Missing data mechanisms were as-
sumed MAR (Missing At Random) [29] and single imputation was used in place of multiple to avoid
issues with pooling models.

Our proposed model was then built with multiple logistic regression using backwards elimination
variable selection and the Bayesian Information Criterion (BIC) to determine the final set of predic-
tors [32, 33]. To test the performance of our final model, we split the data into training and testing
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sets based on year of entry into the NTDB. 123,816 patients entered from years 2010-2014 were
placed into a training set to build TMPP, and the remaining 23,636 individuals entered in 2015
were used as a testing set to validate performance.

Model evaluation

Using a confusion matrix as in Table 5, we define some terminologies which will be used through-
out this paper. The ideal prediction model would maximize both True Positive (TP) and True Neg-
ative (TN) totals subsequently minimizing its False Positives (FP) and False Negatives (FN).

Table 5: Confusion matrices

Truth
Case Non-case

Prediction Case True Positive (TP) False Positive (FP)
Non-case False Negative (FN) True Negative (TN)

However, it is unfeasible to optimize all quantities in a model, so instead it is common to choose a
model minimizing the error rate, defined as FP+FN

TP+FP+FN+TN . However with a rare event outcome
(e.g., low mortality rate), the error rate can be misleading. For example, consider an extreme
situation where we predict all patients as non-cases. In Table 3, we would have TP = 0, FP = 0,
FN = 8913, TN = 64506. Based on these values, we would have a sensitivity of 0%, a specificity of
100%, and an error rate of 12.14%. Even in this situation where no prediction model was applied,
we are capable of achieving a low error rate (notably an error rate better than TRISS on this data).
This is due to the large number of non-cases in the data set mixed with few instances of cases i.e.
an imbalance across the outcome in our data. To avoid the imbalance entirely we could choose
to maximize sensitivity, the accuracy of cases, to reduce the quantity of false negatives. This
might be reasonable in some situations, however not in medical fields. Increases in sensitivity
lead to decreases in specificity, and constantly predicting non-cases as cases and would cause an
unnecessary and inappropriate spending of treatment costs. One of the most popular approaches
for imbalanced data is down-sampling which is to select only some of the non-cases so that the
total number of non-cases is nearly equal to the number of cases [34]. However, in this paper we
choose to add weights to our logistic regression model as well as optimize the decision threshold
used for classifying probabilities as cases or non-cases. This threshold was chosen by performing
5-fold cross validation on the training data and choosing the threshold which minimized a total cost
we defined as in Eq. 1 where W was the weight placed on the cases in the regression model (i.e.,
the cost associated with false negatives). Multiple values for W were analyzed and the W which
best classified the training data was chosen as the final weight.

Total Cost = FP +W ∗ FN (1)

All final performance evaluation was then done on the testing set. In addition to commonly used
measurements derived from the confusion matrix (discussed below) and Receiver Operating Char-
acteristic (ROC) curves, we also assessed the diagnostic odds ratio [35], Fβ measure [36], and
Youden’s J Index [37] as alternative indicators of performance.
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Finally, we also evaluated the performance of a naı̈ve logistic regression model constructed with-
out weights on our training data as well the aforementioned TRISS and compared both with
TMPP.

Confusion matrix metrics

Performance measurements obtained directly from the confusion matrices included:

• Accuracy (ACC)= TP+TN
TP+FP+FN+TN

• Sensitivity or True Positive Rate (TPR) = TP
TP+FN

• Specificity or True Negative Rate (TNR) = TN
TN+FP

• Positive predictive value (PPV) = TP
TP+FP

• Negative predictive value (NPV) = TN
TN+FN

• False positive rate (FPR) = FP
FP+TN

• False negative rate (FNR) = FN
TP+FN

where TP, TN, FP, and FN are defined in Table 5.

ROC curves

The ROC curve along with the area under its curve (AUC) were both evaluated for model perfor-
mance using the ROCR package in R. DeLong’s test for the comparison of AUCs was used to test
for significant differences in the AUC between each model [38].

Measures of effectiveness of the diagnostic test

The positive and negative likelihood ratios were used to measure how much the probability of suf-
fering mortality changed given the output of our model. As a general rule, positive likelihood ratios
greater than 10 suggest large increases in the probability of mortality after the model has eval-
uated a patient’s status while negative likelihood ratios less than 0.1 indicate large decreases in
said probability [39]. Both ratios can be computed directly from the confusion matrix (Eq. 2).

LR+ =
TPR

FPR
LR− =

FNR

TNR
(2)

In addition, the diagnostic odds ratio (DOR) which can be derived from both likelihood ratios (Eq.3)
was also used as an indicator of discriminatory ability for our predictive model. Not only is this
performance measurement independent of prevalence, but it can also be easily interpreted in a
clinical setting as the ratio of the odds of a positive output of a model in cases relative to the odds
of positive output in non-cases. [35].
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DOR =
LR+

LR− (3)

The DOR takes values from 0 to infinity with larger values indicating better performance. A test for
significant difference in odds ratio was used to compare the DOR between the models.

The Fβ score

The Fβ score was used to evaluate the tradeoff the models were making between sensitivity and
positive predictive value. This metric can also be weighted to emphasize the importance of false
negatives and in this study weights of β = 1, β = 2 (the most common weights) and β = W were
all used to analyze how the models perform as the importance of reducing the number of false
negatives increased.

The score takes on values from 0 (worst performance) to 1 (best performance) and can be com-
puted as below (Eq.4).

Fβ = (1 + β2) ∗ TPR ∗ PPV
(β2 ∗ PPV ) + TPR

(4)

Youden’s J Index

The final performance measurement used to evaluate all three models was Youden’s J Index [37].
This measurement is often used to optimize the decision threshold in conjunction with ROC curves,
but it also can be used to estimate the probability of a model giving an informed decision as
opposed to a random guess. It can be computed with the sensitivity and specificity derived
from the confusion matrix (Eq. 5) and takes values from 0 (worst performance) to 1 (best per-
formance).

J = TPR+ TNR− 1 (5)

Results

Naı̈ve model

Variables selected in the final naı̈ve model included the AIS severity rating, ISS, GCS, type of
injury, systolic blood pressure, pulse rate, blood oxygen saturation, and body temperature. A
summary of this model is presented in Table 6.

Table 6: Summary for Naı̈ve model

Variable Adj. OR 95% OR CI p-value
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Intercept 5.14 - -
Blunt Injury 1.00 (ref.) - -
Penetrating Injury 7.14 (5.66, 9.03) <0.001
Other Injury Type 2.71 (2.41, 3.05) <0.001
AIS Severity 1.78 (1.66, 1.91) <0.001
Injury Severity Score 1.05 (1.05, 1.06) <0.001
Glasgow Coma Score 0.65 (0.63, 0.66) <0.001
Systolic Blood Pressure 0.98 (0.97, 0.98) <0.001
Pulse Rate 0.99 (0.99, 0.99) <0.001
Body Temp. 0.86 (0.85, 0.88) <0.001

TMPP

Variables selected for the proposed model included the AIS severity rating, age, gender, drug use,
ISS, systolic blood pressure, pulse rate, blood oxygen saturation, body temperature, supplemental
oxygen use, GCS, race and type of injury. The weight which resulted in the best discrimination on
the training data was W = 100 and minimizing Eq. 1 during cross-validation resulted in a decision
threshold of 0.44. A summary of this model is presented in Table 7.

Table 7: Summary for TMPP

Variable Adjusted OR 95% CI p-value
Intercept 12.74 - -
Female 1.00 (ref.) - -
Male 1.20 (1.12, 1.28) <0.001
No Drug Use 1.00 (ref.) - -
Drug Use 1.74 (1.46, 2.09) <0.001
No Supplemental Oxygen 1.00 (ref.) - -
Supplemental Oxygen 1.62 (1.49, 1.75) <0.001
African American 1.00 (ref.) - -
American Indian 1.53 (1.15, 2.04) 0.003
Asian 0.72 (0.56, 0.94) 0.016
Caucasian 1.44 (1.32, 1.57) <0.001
Pacific Islander 1.22 (0.81, 1.89) 0.355
Other Race 1.21 (1.08, 1.36) <0.001
Blunt Injury 1.00 (ref.) - -
Penetrating Injury 10.99 (8.87, 13.72) <0.001
Other Injury 2.91 (2.68, 3.15) <0.001
AIS Severity 1.49 (1.44, 1.54) <0.001
Injury Severity Score 1.10 (1.10, 1.11) <0.001
Glasgow Coma Score 0.69 (0.68, 0.69) <0.001
Age 0.95 (0.95, 0.96) <0.001
Systolic Blood Pressure 0.98 (0.98, 0.98) <0.001
Pulse Rate 0.99 (0.99, 0.99) <0.001
Oxygen Saturation 0.97 (0.96, 0.97) <0.001
Body Temperature 0.77 (0.75, 0.79) <0.001
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Comparison between models

The naı̈ve model showed better accuracy (0.983 vs 0.920), specificity (0.995 vs 0.918), positive
predictive value (0.722 vs 0.222), false positive rate (0.004 vs 0.081), positive likelihood ratio
(111.344 vs 12.203), and F1 score (0.567 vs 0.362) when compared with TMPP. However, TMPP
had improved sensitivity (0.990 vs 0.467), false negative rate (0.009 vs 0.532), negative predictive
value (0.999 vs 0.987), negative likelihood ratio (0.010 vs 0.534), diagnostic odds ratio (1213.218
vs 208.279), F2 score (0.585 vs 0.502), F100 score (0.989 vs 0.467) and Youden’s J Index (0.908 vs
0.462). The performance of TRISS was comparable with the naı̈ve model in nearly every metric
with the exception of the positive predictive value, positive likelihood ratio, and diagnostic odds
ratio each of which were better in the naı̈ve model. A summary of all measurements is given in
Table 8. The best value for each measure is given in bold.

Table 8: Performance measurements

Performance Measurement Naı̈ve TMPP TRISS
Accuracy 0.983 0.920 0.979
Sensitivity 0.467 0.990 0.491
Specificity 0.995 0.918 0.991
False Positive Rate 0.004 0.081 0.008
False Negative Rate 0.532 0.009 0.508
Positive Predictive Value 0.722 0.222 0.563
Negative Predictive Value 0.987 0.999 0.988
Area Under ROC Curve 0.987 0.987 0.983
Positive Likelihood Ratio 111.344 12.203 55.123
Negative Likelihood Ratio 0.534 0.010 0.512
Diagnostic Odds Ratio 208.279 1213.218 107.475
F1 Score 0.567 0.362 0.524
F2 Score 0.502 0.585 0.503
F100 Score 0.467 0.989 0.491
Youden’s Index 0.462 0.908 0.482

The difference in AUC between TMPP and the naı̈ve model was not significant according to De-
Long’s test (p > 0.5). However, the difference in AUC was significant between TMPP and TRISS
(p < 0.001) (this was also true of the difference in the AUC between the naı̈ve model and TRISS
(p < 0.001)). A comparison of the DORs showed a significant difference of DOR between TMPP
and TRISS (p < 0.001), and TMPP and the naı̈ve model (p < 0.001). This was not true for the
difference of DOR between the naı̈ve model and TRISS (p > 0.4).

Java application

A java application was created to help with the accessibility of TMPP. It works offline and has
been successfully tested on Mac, Windows, and Linux machines supporting an appropriate Java
version. An overview of the Graphical User Interface (GUI) is presented in Figure 1.

To ensure the validity of an input, the application will throw error messages to the user if any of the
conditions are violated:

10



Figure 1: Calulator GUI

• Invalid AIS severity. Value should be integer between 1 and 6.

• Invalid ISS. Value should be integer between 1 and 75.

• Invalid GCS. Value should be integer between 3 and 15.

• Invalid blood oxygen saturation %. Value should be between 0 and 100.

• Invalid age. Value should be between 0 and 14

• Negative vital measurements.

• Empty field. Every field should be filled.

• Incorrect input type. All values should be integers or doubles (depending on the variable).

Discussion

Results from the performance measurements suggest TMPP to be an effective diagnostic tool for
evaluating incoming pediatric patients’ risks of TBI mortality. Nearly every variable was included
in this model after backwards elimination, but the Java application allows the model to be used by
anyone running the appropriate software with ease. Furthermore all variables considered are rou-
tinely measured and do not require any advanced medical instrumentation. The simplicity of these
variables opens the possibility for the application of this model to see use in low-middle income
countries (LMIC) where more advanced diagnostic methods such as brain imaging methods may
be less frequently available.

While the naı̈ve model outperformed TMPP in several measurements, TMPP still demonstrated
excellent performance in many of these areas. TMPP’s accuracy, specificity, positive likelihood
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ratio, and false positive rate were all still indicative of a good diagnostic tool. In contrast, in the
instances where TMPP was suggested to perform better than the naı̈ve model, the difference
in performance was much more dramatic. The false negative rate and negative likelihood ratio
decreased by more than 0.50 in TMPP. And a similar gain was seen in Youden’s J index where
the estimated probability of an informed decision increased from 0.462 to 0.908 as well as the
Fβ scores as more cost was associated with false negative errors. Furthermore, the median
prediction on cases made by the naı̈ve model was only 0.47 as opposed to TMPP’s 0.99 and
when looking at the density plot of the predictions made by all three models (Fig. 2) it is clear that
both the naı̈ve model and TRISS have difficulty classifying cases as opposed to TMPP’s strong
discrimination.

Figure 2: Density plot of model predictions
A–Naı̈ve , B–TMPP, C–TRISS

The greatest drop in performance observed in TMPP was the loss of positive predictive value. This
metric has been regarded as one of the most important performance measurements for clinical
diagnostic tools, however emphasis in this study was placed on ensuring that those predicted to
survive were actual survivors. To accomplish this, the model needed to be less conservative with
its mortality predictions which ultimately increased its false positive rate and lowered its positive
predictive value. Surveys have shown that, depending on the type of injury/illness, patients and
medical personnel have been willing to accept more than 2000 false positives in exchange for a
single reduction in the number of false negatives [40, 41] given by a diagnostic test, and so when
looking at the confusion matrices of each model (Table 9) we do not believe this drop in positive
predictive value to be particularly concerning. As when compared with the naı̈ve model or TRISS,
TMPP exchanges roughly 2000 false positives for a drop of more than 200 false negatives.
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Table 9: Confusion matrices

Naı̈ve TMPP TRISS
Cond. Pos. Cond. Neg. Cond. Pos. Cond. Neg. Cond. Pos. Cond. Neg.

Pred. Pos. 253 97 536 1875 266 206
Pred. Neg. 288 22998 5 21220 275 22889

An interesting result of this study was the lack of use of the ROC curve in determining the model
with the best performance. The difference between the AUC of the naı̈ve model and TMPP was
insignificant, and despite TRISS’ AUC having a significant difference from both naı̈ve and TMPP
models, visually all three ROC curves were identical (Fig 3). Several other machine learning mod-
els were also constructed, including rule-based learners (OneR, RIPPER algorithms [42,43]) and
tree methods (decision trees, random forests) and compared with TMPP, but their AUC still indi-
cated similar performance across models despite the information given by their confusion matrices
(data not shown). Thus as machine learning methods continue to gain more popularity [44], we
feel this highlights the necessity for a thorough use of multiple performance measurements during
model evaluation for those models with intentions of real-world use.

Figure 3: Receiver operating characteristic curves
A–Naı̈ve , B–TMPP, C–TRISS

We acknowledge that there were limitations to this study. Between 2010 and 2015, several com-
monly known predictors of TBI outcome were not recorded into the NTDB and therefore could
not be included in model construction. This also meant that we could not compare our proposed
model’s performance with existing adult TBI models such as CRASH and IMPACT. In addition, dur-
ing this time period, drug and alcohol indicator variables were defined vaguely and only specified
the presence of foreign substances as opposed to specific drugs or blood alcohol contents thus
limiting the information gained from these variables. Injury specification was yet another limitation
imposed on this study by the NTDB. Head injuries were specified with the AIS predot code, but this
code only asserts injury to the appropriate region and does not guarantee TBI. Other studies have
used specific definitions given by the CDC derived from International Classification of Diseases,
9th Revision, Clinical Modification (ICD-9-CM) codes to specify TBI when working with similar data
sets, but even these definitions have shown to be inaccurate for TBI specification [45]. TBI is a
broad classification of injuries and until a formal definition can be accurately used to specify these
injuries from general trauma databases, this issue will continue to be present. Though it may have
introduced multiple limitations, we still feel that the NTDB remains and invaluable resource for
trauma data. New variables are continuously added (including those well-suited for TBI prediction)
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and existing variables are redefined to increase the information gained from analyzing them.

Lastly, while it should be expected that a model built on a specific injury type will outperform a
general trauma outcome prediction tool such as TRISS when evaluated on data based around said
injury type, the degree that our proposed model outperforms TRISS in several key measurements
that may have significant clinical interpretation is alarming and serves, as a minimum, as additional
evidence for the need to retire or update TRISS. Especially in the context of predictive modeling for
medical applications, data is bound to change overtime and predictive models built on 30-year-old
data can’t be expected to have the same performance they would’ve had 30 years prior without
any modifications to account for any sort of medical advances.

Conclusion

TMPP has shown to be a powerful diagnostic tool in predicting pediatric mortality in TBI. In situ
validation is needed to verify the performance observed, but if successful our model fills a void
created from outdated and ill-applicable existing methods and has the potential save many young
lives.
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