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Abstract: Semiparametric mixture regression models are often used in clustering and
survival analysis problems. However, as of now there have been no provably efficient
estimators for them. In this paper, we propose a special case of a semiparametric mix-
ture location-shift family mixture model. For model identifiability, each error subdistribu-
tion is assumed to be symmetric, unimodal and same up to a shift. The semiparametric
maximum likelihood estimator is shown to be strongly consistent, its parametric compo-
nent to be asymptotically efficient and its nonparametric component to have, pointwise
and after being multiplied by the cube root of the sample size, a weak limit of a Chernoff
random variable times a constant. Simulation studies support the proposed estimation
method.
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1 Introduction
Themixture regressionmodel is commonly used in clustering, classification, personalized precision
medicine, subgroup analysis, and survival analysis. In this paper, we propose and study a mixture
linear regression model, in which the error sub-distribution is assumed unimodal.

LetDn = {(yi,xi) : i = 1, . . . , n} be the observed data from n individuals, where the yi’s are the
responses and xi’s are the covariates, independent and identically distributed as (y,x) ∈ R×Rd.
Let the data be generated from k subgroups, and consider the corresponding linear regression
mixture model

y = βT
0 x+αT

0 γ + e, E(e | x) = 0,

where γ = (γ1, . . . , γk)
T is unobserved and is a groupmembership indicator: one of its components

equals to 1 and the other components equal to 0. We wish to estimate α0 = (α10, . . . , αk0)
T , a

group effects vector, and β0 ∈ Rd, the regression coefficients vector which explains the linear
relationship between the response y and covariates x. The error term unexplained by the linear
relationship is represented by e.

Let θ = (βT ,αT )T . The commonly used method for inferring θ, then, is to specify some para-
metric model for the conditional density of the data given the covariates,

g(y − βTx−αTγ | x, η) =
k∑

j=1

δj(x)gj(y − βTx− αj | η),

where the δj(·)’s are given functions, the gj(· | η)’s are some parametric density functions and η
is the model parameter. Then θ could be estimated by the maximum likelihood estimator under
this model. However, when the underlying error distribution is deviated far from the subjectively
specified model, the performance of the estimates can be questionable or even inconsistent. To
address this issue, numerous researchers proposed various semiparametric methods, the most
general method being to replace the parametric gj(· | η)’s by nonparametric densities fj(· −αj) to
get

g(y − βTx−αTγ | x) =
k∑

j=1

δj(x)fj(y − βTx− αj).

Recently, semiparametric mixture models of the above form have been used extensively, such as
in Mallapragada et al. (2010), Huang and Yao (2012), Zhu and Hunter (2015) and the references in
Zhu and Hunter (2015). Butucea et al. (2017) and Huang et al. (2013) considered similar models.

However, it is known that a semiparametricmixturemodel in this general form is non-identifiable.
Identifiability of finite-component semiparametric mixture models is a basic problem and has gener-
ated lots of literature, for example, Titterington et al. (1985), Hennig (2000) and Frühwirth-Schnatter
(2006). For the location-shift family mixture model

g(y) =
k∑

j=1

δjf(y − αj), (0)

which satisfies fj(·) = f(· − αj) for all j, the identifiability condition is relatively easy to meet. For
the case k = 2, if f(·) is symmetric and δj /∈ {0, 1/2, 1}, then model (0) is identifiable (Bordes et al.,
2006, Theorem 2.1). For k = 3, if δj ̸= 0 and (α2 − α1)/(α3 − α2) /∈ {1/3, 1/2, 1, 2, 3}, then model
(0) is identifiable (Hunter et al., 2007, Corollary 1). Since for k = 2, 3, the parameter set in which
the k-component mixture is non-identifiable has Lebesgue measure zero, Hunter et al. (2007)
conjectured that for any finite k, the k-component mixture model (0) is almost surely identifiable.
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For the special class of Pólya frequency functions (of infinite order) (Schoenberg, 1951), which
are log-concave and hence unimodal, if E(f(Y )) = 0 then model (0) is identifiable (Balabdaoui
and Butucea, 2014), even (surprisingly) if the number of components k is treated as a parameter.
Bordes et al. (2006) and Hunter et al. (2007) proposed distance-based estimators for (θ, f), but
their estimators are not semiparametric efficient, in the sense that they do not converge to a normal
distribution with asymptotic variance equal to the semiparametric information lower bound.

In Section 2 we introduce our model and use isotonic regression techniques to derive an ex-
pression for the infinite-dimensional component of the estimator, in terms of the finite-dimensional
component. In Section 3 we present our main results on the asymptotic behavior of the estimator,
including strong consistency of both the infinite-dimensional and finite-dimensional components
of the estimator, semiparametric efficiency of the finite-dimensional component, and a weak limit
theorem for the infinite-dimensional component. In Section 4 we describe a simulation study and
its results. In Section 5 we summarize our results and make a few concluding remarks. In the
Appendix we provide proofs of the identifiability of the model, of the form of the infinite-dimensional
component, and of the asymptotic results, as well as the table and the two figures.

2 The method
Let us now turn to our problem and method. Define a density function on R to be unimodal atM if
it is non-decreasing on (−∞,M ] and non-increasing on [M,∞). Let

U =
{
f(·) : f is a density function on R, unimodal at and symmetric around 0

}
.

Let
U ⊇ F ⊇ U ∩

{
f : f is a step function

}
.

Conditioning on the covariates x, we consider the more general setup of a k-component regression
mixture

y = βTx+ e, g(e | x) =
k∑

j=1

δj(x)f(e− αj), (θ, f) ∈ Θ×F , (1)

where δj(x) is the mixing proportion for f(· − αj), and satisfies

δj(x) > 0 and δj(x) = E(γj | x), for each 1 ≤ j ≤ k.

This implies
∑k

j=1 δj(x) = 1 for all x. Also, E(Y | x) = µ(x,β0), where µ(x,β) = βTx +∑k
j=1 αjδj(x).
Here we have assumed that the δj(·)’s depend on x because in applications, such as per-

sonalized precision medicine studies and subgroup analysis, the membership proportions are de-
termined by the subject’s profile. Though the δj(·)’s can be estimated (for example, via logistic
regression), to allow us to focus our attention on our goal of estimating θ and f , we also assume
these to be known.

Proposition 1. Under the identifiability condition for model (0), model (1) is identifiable.

2.1 The complete-data likelihood
Since estimation under model (1) is difficult due to the additive mixture, a convenient way is to for-
mulate (1) as a multiplicative mixture. Under the independent and identically distributed complete
dataDc

n = {(yi,xi,γi) : i = 1, . . . , n}, conditioning on the xi’s, the likelihood can be formulated as

L(θ, f | Dc
n) =

n∏
i=1

k∏
j=1

(
δj(xi)f(yi − βTxi − αj)

)γij
3



with corresponding log-likelihood, ignoring a term without the parameters of interest,

l(θ, f | Dc
n) =

n∑
i=1

k∑
j=1

γij log f(yi − βTxi − αj).

Let l(θ, f | Dn) be the log-likelihood function for the original data. Denote (θ0, f0) to be the true
parameters generating the observed data. We estimate (θ0, f0) by the semiparametric maximum
likelihood estimator (θ̂n, f̂n),

(θ̂n, f̂n) = argmax
(θ,f)∈Θ×F

l(θ, f | Dn). (2)

Let θ(0) and f (0) be values which make the Expectation-Maximization algorithm converge to the
maximum likelihood estimate. Their existence is a difficult problem and may not be guaranteed.
Nevertheless, we shall assume that they exist. Then let

Q(θ, f | Dn,θ
(r), f (r)) = E(l(θ, f | Dc

n) | Dn,θ
(r), f (r)), r = 0, 1, . . . .

Thus,

Q(θ, f | Dn,θ
(r), f (r)) =

n∑
i=1

k∑
j=1

γ
(r)
ij log f(yi − βTxi − αj),

where

γ
(r)
ij =

δj(xi)f
(r)(yi − β(r)Txi − α

(r)
j )∑k

j=1 δj(xi)f (r)(yi − β(r)Txi − α
(r)
j )

.

Let
(θ(r+1), f (r+1)) = argmax

(θ,f)∈Θ×F
Q(θ, f | Dn,θ

(r), f (r)). (3)

Let h(x) be the density function of x, and define the joint probability distribution of y and x by

p(y,x | θ, f) = g(y | x,θ, f)h(x).

Let P be the probability measure corresponding to p(y,x | θ0, f0). Let the semimetric onΘ×F be

d((θ1, f1), (θ2, f2)) = ∥θ1 − θ2∥+ ∥f1 − f2∥2,

where | · | is the Euclidean norm. Also, assume that Θ is closed and F is closed in L2(P ).
(F ⊆ L2(P ) since every function in F is bounded.) Under some certain conditions, the pair (θ̂n, f̂n)
defined in equation (2) is equivalent to

(θ̂n, f̂n) = lim
r→∞

(θ(r), f (r)).

Maximization with respect to the infinite-dimensional component f(·) is much harder than max-
imization with respect to the finite-dimensional component θ. Conceptually, when θ(r) is given, for
each i and j, let

e
(r)
ji = yi − β(r)Txi − α

(r)
j

and let e(r)j0 = 0. Reindex the e
(r)
ji ’s as e

(r)
i (i = 1, . . . , nk) and rearrange indices so that the absolute

values of e(r)i are in nondecreasing order over i. Then, let e(r)0 = 0. For each i = 1, . . . , nk, let γ(r)i
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be the γ
(r)
j that corresponds to e

(r)
ji . Then, as in Robertson et al. (1988, p. 326), the nonparametric

maximum likelihood estimator of a unimodal density onR is a step function that is càdlàg onR− and
càglàd on R+, where here and hereafter we follow the convention R− = (−∞, 0) and R+ = (0,∞).
(Here, càdlàg means “right-continuous with left limits” and càglàd means “left-continuous with right
limits”.) For each i = 0, . . . , nk, let fi = f (r)(e

(r)
i ). Let {fi} be the density function obtained from

the fi’s. That is,

{fi}(t) =
nk∑
i=0

I(−|e(r−1)
i | < |t| ≤ |e(r)i |)fi.

Let fji = f(e
(r)
ji ). Let {fji} be the density function obtained from the fji’s. Then (3) can be rewritten

as

f (r+1)(·) = argmax
{fji}∈F

n∑
i=1

k∑
j=1

γ
(r)
ij log fji. (4)

As shown in the Appendix, an explicit form for the maximization in (4) can be derived by using
isotonic regression methods and taking a limit.

Let I(·) be the indicator function. Let

γ̂ij = lim
r→∞

γ
(r)
ij ,

êji = yi − β̂
T

nxi − α̂nj

and

Fn(t) =

n∑
i=1

k∑
j=1

γ̂ij
n

I(êji ≤ t) + I(êji > −t)

2
. (5)

Let F̂−
n (·) be the greatest convex minorant of Fn(·) onR−, and F̂+

n (·) be the least concave majorant
of Fn(·) on R+.

Lemma 1. With probability 1, (i). f̂n(t) is the right derivative of F̂−
n (t), for each t ∈ R−; and (ii).

f̂n(t) is the left derivative of F̂+
n (t), for each t ∈ R+.

This lemma gives an expression for f̂n in terms of θ̂n.

3 Theoretical results
Rewrite the density function g(e | x) as g(y | x,θ, f). Since h(x) is constant with respect to θ and
f , we can define our log-likelihood function to be

l(θ, f | y,x) = log g(y | x,θ, f).

We need the following regularity conditions:

Condition 1. The support of g(y | x,θ, f) is R, for all θ, f and x such that h(x) > 0.

Condition 2. For P -almost every y and x, l(θ, f | y,x) is Lipschitz in (θ, f).

Condition 3. Θ is bounded.

Condition 4. F is uniformly bounded.

We show the convergence of the estimators based on the following theorems:
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Theorem 1. If Conditions 1 – 4 hold, then

∥θ̂n − θ0∥ → 0 almost surely, and ∥f̂n − f0∥2 → 0 almost surely.

Let ḟ0(·) be the derivative of f0(·). Let L0
2(P ) be the subspace of L2(P ) consisting of functions

from R× Rd to R with zero mean and finite variance. Let

lθ(θ, f | y,x) = ∂l(θ, f | y,x)/∂θ.

For any function h from Rd+1 to R and any functional j, define the operator ∂/∂f by

(∂/∂f)j(f)[h] = (∂j((1 + λh)f)/∂λ)
∣∣
λ=0

,

and define

lf (θ0, f0 | y,x)[h] = ∂l(θ0, f0 | y,x)/(∂f)[h] = ∂l(θ0, (1 + λh)f0 | y,x)/∂λ
∣∣
λ=0

.

Let
lθ,f (θ, f | y,x)[g] = ∂lθ(θ, f + λg | y,x)/∂λ∥λ=0,

and
lf,θ(θ, f | y,x) = ∂lf (θ, f | y,x)/∂θ.

Let
lθ,θ(θ, f | y,x) = ∂2l(θ, f | y,x)/∂θT∂θ

and
lf,f (θ, f | y,x)[g1, g2] = ∂lf (θ, f + λg2 | y,x)[g1]/∂λ|λ=0.

For any measure µ and function h, define µ(h) =
∫
hdµ. Since this is a linear functional, we can

(and will) abbreviate this as µh.
Let l̃(θ0, f0 | y,x) be the efficient score function for θ at (θ0, f0), and let

Ĩ(θ0 | f0) = E((l̃(θ0, f0 | y,x))⊗2).

Let B(·) be the two-sided Brownian motion originating from zero: a mean zero Gaussian process
on R with B(0) = 0, and

E
(
B(s)− B(h)

)2
= |s− h|

for all s, h ∈ R. Let γ̃j = limn→∞ γ̂j .

Condition 5. For every θ in a neighborhood of θ0, d2((θ, f), (θ0, f0)) ≲ P (l(θ0, f0)− l(θ, f)).

Condition 6. Ĩ(θ0 | f0) is positive definite.

Condition 7. lθ(θ0, f0 | y,x) exists.

Condition 8. For all h ∈ L0
2(P ), Plf (θ0, f0)[h] = ∂P l(θ0, f0)[h]/∂f .

Condition 9. For all h in the inverse image lf (θ0, f0 | y,x)−1(L0
2(P ))d+k, | lf (θ0, f0 | y,x)[h] |2< ∞.

Condition 10. ∂P l(θ0, f0)/∂θ = Plθ(θ0, f0).

Condition 11. For P -almost every y and x, lθ(θ, f | y,x) is Lipschitz in (θ, f).
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Condition 12. (Plθ,f )(θ0, f0)[g] = (∂2Pl(θ0, f0)/∂θ∂f)[g], for each function g from Rd+1 to R.

Condition 13. (Plf,f )(θ0, f0)[g1, g2] = (∂2Pl(θ0, f0)/∂f
2)[g1, g2], for all functions g1 and g2 from

Rd+1 to R.

Condition 14. (Plθ,θ)(θ0, f0) = ∂2Pl(θ0, f0)/∂θ∂θ
T .

Condition 15. (Plf,θ)(θ0, f0)[g] = (∂2Pl(θ0, f0)/∂f∂θ
T )[g], for each function g from Rd+1 to R.

Condition 16. ḟ0(t) exists and ḟ0(t) ̸= 0.

Condition 17. The support of x is bounded.

Condition 18. For all y and x, lθ,θ(θ, f0 | y,x) exists in a neighborhood about θ0.

To prove Theorem 2, we first prove the following result:

Lemma 2. If Conditions 1 – 5 hold, then d((θ̂n, f̂n), (θ0, f0)) = Op(n
−1/3).

Theorem 2. If Conditions 1 – 15 hold, then

n1/2
(
θ̂n − θ0

)
→ N(0, Ĩ−1(θ0 | f0)) in distribution.

Theorem 3. If Conditions 1 – 4 and Conditions 16 – 18 hold, then

n1/3
(
f̂n(t)− f0(t)

)
→

2|ḟ0(t)|f0(t)

 k∑
j=1

Γ
1/2
j

21/3

argmax
h∈R

(B(h)− h2) in distribution,

where Γj = E(γ̃2j ).

4 Simulation results
We simulate n = 1000 independent and identically distributed data with 1-dimensional response
yi’s and with covariates xi = (xi1, xi2, xi3, xi4, xi5)

T . We first generate the covariates, sample the
xi’s from the 5-dimensional normal distribution with mean vector µ = (3.1, 1.8,−0.5, 0.6, 1.5)T and
some given covariance matrix Γ, say

Γ1/2 =


1.13 −0.27 0.55 0.82 0.47

1.34 −0.14 0.57 0.34
1.52 0.57 −0.53

0.72 −0.40
0.96

 .

Set β0 = (1.2,−2.1, 0.6, 1.5, 0.8)T . Set k = 2, α0 = (0.15, 0.87)T , ζ = (1.1, 0.2,−0.4, 0.6, 0.8)T , and

δ1(x) =
exp(ζTx)

1 + exp(ζTx)
, δ2(x) =

1

1 + exp(ζTx)
.

Then conditional on the covariate xi, we sample the error ϵi. Sampling ϵi from the additive mixture

δ(xi)f(· − α0,1) + δ2(x)f(· − α0,2)
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model is straightforward. We set f(·) to be the Student’s t-distribution with 5 degrees of freedom.
Then we generate the response data, given the covariates, as yi = βT

0 xi + α0,1 + ϵi if ϵi is from
f(· − α0,1) and yi = βT

0 xi + α0,2 + ϵi if ϵi is from f(· − α0,2).
We used the nonparametric maximum likelihood estimator to estimate f̂n under unimodal con-

straint, it is uniquely obtained as a formulation of the isotonic regression problem (see proof of
Lemma 1). The pool adjacent violators algorithm (Best and Chakravarti, 1990) is a convenient
computational tool to perform such order restricted maximization or minimization, and is available
in R. Mair et al. (2009) gives a review of the algorithm history and computational aspects. To use
the pool adjacent violators algorithm, we use the following iterative procedure. Given starting val-
ues θ(0) (we can first set f(·) ∼ N(0, 1) and use the maximum likelihood estimate from this model
as θ(0)) , set

ϵ̂1,i = yi − β
(0)T
i xi − α

(0)
1 and ϵ̂2,i = yi − β

(0)T
i xi − α

(0)
2 , (i = 1, . . . , n),

then use the pool adjacent violators algorithm to estimate f̂ (1)(·). Plugging in f̂ (1)(·) into (1), use
maximum likelihood to estimate θ̂(1). Then iterate to get f̂ (r)(·) and θ̂

(r)
until the convergence

criterion is met and the final values are essentially equal to f̂n(·) and θ̂n.
The data was sampled from 3 different generating parameter values. The first time, the ei’s were

sampled from our mixture model with f0 being the Laplace distribution with location parameter 0
and scale parameter 1, and true parameters β0 = (1.2,−2.1, 0.6, 1.5, 0.8)T and α0 = (0.15, 1.25)T ,
and starting values f (0) = N(0, 1) and β(0) = (1.3,−2.2, 0.7, 1.4, 0.7)T and α(0) = (0.21, 1.19)T .
For the second data set f0 was fixed to be the p-generalized normal distribution (also known as
the exponential power distribution or Subbotin distribution) with location parameter µ = 0, shape
parameter β = 6, and scale parameter α equal to the default in the R package pgnorm. The
same true Euclidean parameters and same starting values were used. For the third data set the p-
generalized normal was used as the true distribution but setβ0 = (0.8, 1.5,−1.3, 0.7, 2.1)T andα0 =
(0, 2.2)T , and the starting values were β(0) = (0.9, 1.6,−1.2, 0.8, 2.0)T andα(0) = (0.06, 2.25)T . The
results are given in Tables 1 and 2.

Under both profile and normal densities, the estimates of β were very accurate. It can be seen
from the table that the estimates’ mean values (computed over 200 trials with n=1000 for the first
set, over 100 trials with n=100 for the second set, and 10 trials with n=100 for the third set) are
at most .13 off from the true parameter values. However, estimating α is difficult, probably due to
the unobserved memberships; for example, the average value of α̂n,1 is off by 0.50 for the normal
estimate in data set 1, and by a whopping 0.83 for the that in data set 3. Similarly, the average
value of α̂n,2 is off by 0.32 for the profile estimate in data set 2 and by 0.99 for the profile estimate
in data set 3.

Generally, the estimate under the profile likelihood tended to have the greatest likelihood, then
the true parameter values under the true distribution, then the estimate under the normal distri-
bution. This suggests that the estimates under the profile likelihood actually were the maximum
likelihood estimates; the code actually optimized the parameters correctly. But we do not know
why the estimates for α be so consistently off from the true values.

On the other hand, the estimates for the density function were only fairly accurate. The actual
regression was performed using R’s package Iso’s ufit function. It seemed to return different
results than those from running Iso’s pava twice, on the negative side and on the positive side.
Usually, ufit would perform better than pava. One interesting thing to note is that oftentimes
the estimated density function would have a large spike at and around 0. This is not precluded
by Theorem 1, as we are only guaranteed (with probability 1) convergence of f̂n to f in the L2
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seminorm and not, for example, in the supremum norm. In the future, this problem could potentially
be eliminated with interpolation.

We compare θ̂n with the maximum likelihood estimator θ̄n of θ0 under the normal model in
Tables 1 and 2, and the estimated f̂n and the normal density in Figures 1 and 2. These tables and
figures are at the end of the Appendix.

5 Discussion
Work on this project has raised three important questions. First, it has already been shown that for
a location shift family of mixtures, unimodality and symmetry is a sufficient condition for identifia-
bility (with the exception of a set of measure zero of mixing proportions). Is symmetry a necessary
condition? We conjecture that unimodality alone is sufficient. Then, there is the problem of deter-
mining the efficient score. We have tried but have not been able to find a formula for the efficient
score under this likelihood. Finally, there is the problem of estimating the mixing proportions when
they are unknown. It would be interesting to see how estimating the mixing proportions would
affect the results we derived in Theorems 1, 2 and 3.

A Appendix
A.1 Proof of Lemma 1
We draw inspiration from Robertson et al. (1988, p. 332-334). Reindex the ±e

(r)
ji ’s as {e(r)i : i =

1, . . . , N ;N = 2kn} such that the e
(r)
i ’s are in increasing order, and write fi = f(e

(r)
i ). Let w be the

integer such that e(r)w < 0 < e
(r)
w+1, ci = e

(r)
i+1 − e

(r)
i (if i = 1, . . . , w − 1), − e

(r)
i (if i = w), e(r)i (if i =

w + 1), e(r)i − e
(r)
i−1 (if i = w + 2, . . . , N ). With probability 1, ci ̸= 0, i = 1, . . . , N , and r exists (upon

which r = kn). It follows from the argument by Robertson et al. (1988, p. 326) that f (r+1)
n (·) is a

step function, cádlág on (−∞, 0] and cáglád on [0,∞), that equals zero on (−∞, e
(r)
1 ) ∪ (e

(r)
N ,∞).

Hence, the constraint
∫
{fji}(t)dt = 1 in (4) is written as

w−1∑
i=1

fi · (e(r)i+1 − e
(r)
i ) + fw · (0− e(r)w ) + fw+1 · (e(r)w+1 − 0) +

N∑
i=w+2

fi · (e(r)i − e
(r)
i−1) = 1. (A.1)

To simplify (4), let gi = γ(r)(xi)/(Nci), γ(r)(xi) be the γ
(r)
j (xi) corresponding to e

(r)
ji , and wi =

Nci. Now we can rewrite (4) as

f (r+1)
n (·) = argmax

{fi}∈F

N∑
i=1

giwi log(fi),

however, written in this form will lead to simplification using results in isotonic regression.
For u ∈ R+, let Φ(u) = u logu, ϕ(u) = 1 + logu, and

∆Φ(u, v) = Φ(u)− Φ(v)− (u− v)ϕ(v) = u logu− u log v − (u− v).

NoteΦ(·) is convex onR+. Since γ(r)(xi) log γ(r)(xi) is a constant with respect to fi, argminS(−·) =
argmaxS(·) and for each {fi} ∈ F ,

∑N
i=1 fici = 1, we have

argmax
{fi}∈F

N∑
i=1

giwi log(fi) = argmin
{fi}∈F

N∑
i=1

(
γ(r)(xi) log γ(r)(xi)− γ(r)(xi) log fi −

(
γ(r)(xi)− fi

))
ci

= argmin
{fi}∈F

N∑
i=1

∆Φ

(
γ(r)(xi), fi

)
ci = argmin

{fi}∈F

N∑
i=1

∆Φ

(
gi, fi

)
wi.
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We have that Φ(u) is a convex function and ϕ(u) = dΦ(u)/du, so the solution to the above mini-
mization is equivalent to

argmin
{fi}∈F

N∑
i=1

wi

(
gi − fi

)2
(Robertson et al., 1988, p. 31, Theorem 1.5.1). LetWi =

∑i
j=1wj = Ne

(r)
i and Gi =

∑i
j=1wjgj =∑i

j=1 γ
(r)(xj)/2. Hence, on R−, f (r)

n (·) is the right derivative of the greatest convex minorant of
the sum diagram of

{(Wi/N,Gi/N) : i = 1, . . . , N},

and onR+, f (r)
n (·) is the left derivative of the least concavemajorant of the sum diagram (Robertson

et al., 1988, p. 7-8, Theorem 1.2.1; p. 332-334). Let I(·) be the indicator function, and let

F (r+1)
n (t) =

N∑
i=1

γ(r)(xi)

2n
(I(e

(r)
i ≤ t)I(t ≥ 0) + I(e

(r)
i < t)I(t < 0))

=

n∑
i=1

k∑
j=1

γ
(r)
j (xi)

n

I(e
(r)
ji ≤ t) + I(e

(r)
ji > −t)

2

be a modified weighted empirical distribution function of the e
(r)
i ’s. Note that Fn(t) has the same

greatest convex minorant on R− and least concave majorant on R+ as the sum diagram. Thus,
for each r, f (r+1)

n is equal to the right derivative of the least concave majorant of F (r+1)
n (t) on R−

and the left derivative of the greatest convex minorant of F (r)
n (t) on R+. Thus, taking the limit as

r goes to infinity of f (r), we find f̂n is equal to the right derivative of the least concave majorant of
F̂n(t) on R− and the left derivative of the greatest convex minorant of F̂n(t) on R+.

A.2 Proof of Proposition 1
Assume that
k∑

j=1

δj(x)f(y−βTx−αj) ≡
k∑

j=1

δj(x)f̃(y−β̃
T
x−α̃j), for each (θ, f), (θ̃, f̃) ∈ Θ×F ; y ∈ R;x ∈ Rd.

We want to show (β̃, α̃, f̃) = (β,α, f). First, take x = 0. Then the above reduces to

k∑
j=1

δj(0)f(y − αj) ≡
k∑

j=1

δj(0)f̃(y − α̃j),

and by the identifiability of model (0) we have (α̃, f̃) = (α, f).
Now we need to show β̃ = β, or equivalently, β̃i = βi, i = 1, . . . , d. Without loss of generality,

we only show β̃1 = β1. Set x = (x1, 0, . . . , 0)
T . Then the above equation becomes

k∑
j=1

δj(x)f(y − β1x1 − αj) ≡
k∑

j=1

δj(x)f(y − β̃1x1 − αj).

Without loss of generality, assume α1 < · · · < αk. We show that if β1 > β̃1, then this equality
cannot hold. In fact, since f(·) is monotone increasing on R−, we can choose y ∈ R and x1 < 0
such that y − β1x1 − α1 < 0, so y − β1x1 − αj < 0 and y − β̃1x1 − αj < 0 for all j. We can
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choose x1 such that f(y − β1x1 − αj) < f(y − β̃1x1 − αj) for at least one j. Thus the condition
y − β̃1x1 − αj < y − β1x1 − αj for all j implies f(y − β̃1x1 − αj) ≤ f(y − β1x1 − αj) for all j, and
strict inequality holds for at least one j. Then

k∑
j=1

δj(x)f(y − β1x1 − αj) >
k∑

j=1

δj(x)f(y − β̃1x1 − αj),

contradiction. The case β1 < β̃1 similarly yields a contradiction. Thus β̃1 = β1.

A.3 Proof of Theorem 1 (Sketch)
We only give a sketch of the proof, due to lack of space. Let P (y,x) be the probability measure of
p(y,x | θ0, f0). Define

m(y,x | θ, f) = log
p(y,x | θ, f)
p(y,x | θ0, f0)

.

By Condition 1, the numerator of the above expression will always be zero whenever the denomi-
nator is zero, so m is well-defined. We use the notation

Pm(θ, f) =

∫
m(y,x | θ, f)dP (y,x),

the true mean of m; and

Pnm(θ, f) = n−1
n∑

i=1

m(yi,xi | θ, f),

the empirical mean of m from the data {(yi,xi) : i = 1, . . . , n}.
Pm(θ, f) is the negative Kullback-Leibler divergence of p(y,x | θ, f) from p(y,x | θ0, f0), and

so is always nonpositive, attaining its maximum value of 0 whenever p(y,x | θ, f) = p(y,x | θ0, f0)
almost everywhere.

Now use Conditions Conditions 2 – 4 and Theorems 2.7.5 and 2.4.1 in van der Vaart and
Wellner (1996) to show M is a Glivenko-Cantelli class with respect to P . By Theorem 5.8 in
(van der Vaart, 2002, p. 386),

d((θ̂n, f̂n), (θ0, f0)) → 0 almost surely.

A.4 Proof of Lemma 2 (Sketch)
Use Lemma 3.4.2 in van der Vaart and Wellner (1996) and Theorem 3.2.5 in van der Vaart and
Wellner (1996) to conclude

n1/3d((θ̂n, f̂n), (θ0, f0)) = Op(1).

A.5 Proof of Theorem 2
Let Λ be the nuisance tangent space for this model. Condition 6 implies that l̃(θ0, f0 | y,x) is
square-integrable, and hence that lθ(θ0, f0 | y,x) and Π(l(θ0, f0 | y,x) | Λ) are square-integrable.
For any r ∈ N and any function h(·) = (h1(·), . . . , hr(·))T from Rd+1 to Rr, define

lf (θ0, f0 | y,x)[h] = (lf (θ0, f0 | y,x)[h1], . . . , lf (θ0, f0 | y,x)[hr])T .

Consider the set of functions of the form Blf (θ0, f0 | y,x)[h] with B ∈ Hom(Rd+k,Rr) (the set of
(d+ k)× r real matrices), h ∈ (L0

2(P ))r and r ∈ N. With Conditions 8 and 9, this space is a subset
of (L0

2(P ))d+k. The closure in (L2(P ))d+k of this space is equal to Λ, by definition of nuisance
tangent space. Clearly, Λ is symmetric, in that if (h1, . . . , hd+k)

T is in Λ then for any permutation
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σ, so is (σ(h1), . . . , σ(hd+k))
T . By Condition 6 and Condition 10, lθ(θ0, f0 | y,x) ∈ (L0

2(P ))d+k. By
the Hilbert projection theorem, there exists an element, say λ∗, of Λ, such that

for each λ ∈ Λ, E((lθ(θ0, f0 | y,x)− λ∗(y,x))Tλ(y,x)) = 0.

There exists a sequenceBqlf (θ0, f0 | y,x)[hq], withBq ∈ Rrq and hq ∈ (L0
2(P ))rq , for some rq ∈ N,

such that
λ∗ = lim

q→∞
Bqlf (θ0, f0 | y,x)[hq].

By inspection, lf (θ0, f0 | y,x)[h] is continuous with respect to h and linear with respect to h. There-
fore lf (θ0, f0 | y,x)[h] must be continuous with respect to h, so the inverse image of any closed
set is closed. Therefore, lf (θ0, f0 | y,x)−1(L0

2(P ))d+k is closed.
We have

lim
q→∞

(

rq∑
i=1

(Bq)1ilf (θ0, f0 | y,x)[hqi], . . . ,
rq∑
i=1

(Bq)d+k,ilf (θ0, f0 | y,x)[hqi])T =

lf (θ0, f0 | y,x)[ lim
q→∞

Bqhq].

Let h∗ = limq→∞Bqhq. Then lf (θ0, f0 | y,x)[h∗] = λ∗(y,x).
Therefore, limq→∞Bqhq ∈ (L0

2(P ))r. Therefore, lf (θ0, f0 | y,x)[h] ∈ (L0
2(P ))d+k. By symmetry,

we have
E((lθ(θ0, f0 | y,x)− λ∗(y,x))lf (θ0, f0 | y,x)[h]) = 0

for all h ∈ L0
2(P ). Thus, Π(l(θ0, f0 | y,x | Λ) = lf (θ0, f0 | y,x)[h∗], so

l̃θ(θ0, f0 | y,x) = lθ(θ0, f0 | y,x)− lf (θ0, f0 | y,x)[h∗].

Let
M1 = {lθ(θ, f | y,x) : θ ∈ Θ, f ∈ F}

and
M2 = {lf (θ, f | y,x)[h∗] : θ ∈ Θ, f ∈ F}.

From Condition 3 we know Θ is Donsker, and from Condition 4 we know F is Donsker, as it is a
set of unimodal functions. Similarly as the entropy computation of M in the proof of Theorem 1,
we can show that

N[ ](ϵ,Mj ,L2(P )) = O
(
exp(C/ϵ)

)
for some 0 < C < ∞, and so J̃[ ](1,Mj ,L2(P )) < ∞ (j = 1, 2). Hence, from Theorem 6.8 in
van der Vaart (2002, p. 401) we have that M1 and M2 are Donsker. Thus from Corollary 2.3.12
(van der Vaart and Wellner, 1996, p. 115), we have

lim
ϵ↓0

lim
δ↓0

lim sup
n→∞

P ∗( sup
f∈M1,δ

|n1/2(Pn − P )f | > ϵ) = 0

and
lim
ϵ↓0

lim
δ↓0

lim sup
n→∞

P ∗( sup
f∈M2,δ

|n1/2(Pn − P )f | > ϵ) = 0,

where
M1,δ = {f − g : f, g ∈ M1, ρP (f − g) < δ},

M2,δ = {f − g : f, g ∈ M2, ρP (f − g) < δ}
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and ρP (f) = (P (f − Pf)2)1/2. For any function h from R × Rd to R, let Ph = E(h(y,x)) and
Pnh = n−1

∑n
i=1 h(yi,xi), where {(yi,xi) : i = 1, . . . , n} are the data. Since by Theorem 1

d((θ̂n, fn), (θ0, f0)) → 0 almost surely, and since by inspection for all (y,x), lθ(θ, f | y,x) and
lf (θ, f | y,x) are continuous in (θ, f), we have

n1/2(Pn − P )(lθ(θ̂n, f̂n)− lθ(θ0, f0)) = op(1) (A.1)

and
n1/2(Pn − P )(lf (θ̂n, f̂n)[h

∗]− lf (θ0, f0)[h
∗]) = op(1). (A.2)

Since (θ̂n, f̂n) maximizes l(θ, f | Dn), and since Pnl(θ, f) ∝ l(θ, f | Dn), and since by Con-
dition 10 lθ(θ̂n, f̂n | y,x) and lf (θ̂n, f̂n | y,x)[h∗] exist and by the homogeneity of the differential
operator, we have Pnlθ(θ̂n, f̂n) = 0 and Pnlf (θ̂n, f̂n)[h

∗] = 0. Also, by Condition 10 and Condi-
tion 8 we have Plθ(θ0, f0) = 0 and Plf (θ0, f0)[h

∗] = 0. Hence

n1/2(Plθ(θ̂n, f̂n) + Pnlθ(θ0, f0)) = op(1)

and
n1/2(Plf (θ̂n, f̂n)[h

∗] + Pnlf (θ0, f0)[h
∗]) = op(1).

From Theorem 1, with probability 1, for large enough n, (θ̂n, f̂n) will be in the disks of conver-
gence for the Taylor series of Plθ(θ0, f0) and Plf (θ0, f0). Note also that P (an = op(1)) = 1 implies
an = op(1), for any sequence (an). From expanding Plθ(θ̂n, f̂n) and using Lemma 2 we find

Plθ(θ̂n, f̂n | y,x)− Plθ(θ0, f0 | y,x)− Plθ,θ(θ0, f0 | y,x)(θ̂n − θ0)− Plθ,f (θ0, f0 | y,x)[f̂n − f0]

= Op(d
2((θ̂n, f̂n), (θ0, f0))) = Op(n

−2/3).

Hence, adding n−1/2 times (A.1) we have

−Pnlθ(θ0, f0)− Plθ,θ(θ0, f0)(θ̂n − θ0)− Plθ,f (θ0, f0)[f̂n − f0] = op(n
−1/2). (A.3)

Similarly, from expanding Plf (θ̂n, f̂n)[h
∗] we find

Plf (θ̂n, f̂n)[h
∗]− Plf (θ0, f0)[h

∗]− Plf,θ(θ0, f0)(θ̂n − θ0)− Plf,f (θ0, f0)[h
∗, f̂n − f0] =

Op(d
2((θ̂n, f̂n), (θ0, f0))) = Op(n

−2/3).

Hence, adding n−1/2 times (A.2), we have

−Pnlf (θ0, f0)[h
∗]− Plf,θ(θ0, f0)[h

∗](θ̂n − θ0)− Plf,f (θ0, f0)[h
∗, f̂n − f0] = op(n

−1/2). (A.4)

Given Condition 12 we have

−Plθ,f (θ0, f0)[g] = P
(
lθ(θ0, f0)lf (θ0, f0)[g]

)
for all g,

and given Condition 13 we have

−P
(
lf,f (θ0, f0)[g1, g2]

)
= P

(
lf (θ0, f0)[g1]lf (θ0, F0)[g2]

)
for all g1, g2.

Thus,
Plθ,f (θ0, f0)[f̂n − f0]− Plf,f (θ0, f0)[h

∗, f̂n − f0]
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= Plθ,f (θ0, f0)[f̂n−f0]−Plf,f (θ0, f0)[h
∗, f̂n−f0]−Plθ,f (θ0, f0)[f0−f0]+Plf,f (θ0, f0)[h

∗, f0−f0]

= Op(d
3((θ̂n, f̂n), (θ0, f0))) = Op(n

−1).

From Conditions 14 and 15,

P
(
lθ,θ(θ0, f0)− lf,θ(θ0, f0)[h

∗]
)
= −Ĩ(θ0 | f0).

Hence, subtracting (A.3) from (A.4), multiplying both sides by n1/2 and left-multiplying by Ĩ−1(θ0, f0),
we have

n1/2(θ̂n − θ0) = Ĩ−1(θ0, f0)n
1/2Pn l̃(θ0, f0) + op(1),

which gives the desired result.

A.6 Proof of Theorem 3
Without loss of generality, assume t ∈ R+; the proof for t ∈ R− is similar. Condition 16 excludes
t = 0 and f(t) = 0. Recall Fn(t) from (5), defining the process

Ŝn(a) = argmax
s

(Fn(s)− as), a ∈ R+.

As shown in Lemma 1, f̂n(t) is the left derivative of the least concave majorant of Fn(t), so by the
argument in Example 3.2.14 (van der Vaart and Wellner, 1996, p. 296-297),

f̂n(t) ≤ a if and only if Ŝn(a) ≤ t, for all t, a ∈ R+.

We are to evaluate the distribution function of n1/3(f̂n(t) − f0(t)). For f0(t) > 0, the above rela-
tionship gives

pr
(
n1/3(f̂n(t)− f0(t)) ≤ x

)
= pr

(
Ŝn(f0(t) + xn−1/3)− t ≤ 0

)
,

for each x ∈ R, for each n such that f0(t)+xn−1/3 ≥ 0. Substituting s = t+hn−1/3 in the definition
of Ŝn, we have

Ŝn

(
f0(t) + xn−1/3

)
− t = n−1/3 argmax

h

(
Fn(t+ hn−1/3)−

(
f0(t) + xn−1/3

)
(t+ hn−1/3)

)
= n−1/3 argmax

h

(
Fn(t+ hn−1/3)− f0(t)hn

−1/3 − xhn−2/3
)

= n−1/3 argmax
h

(
n2/3Fn(t+ hn−1/3)− f0(t)hn

1/3 − xh
)

= n−1/3 argmax
h

(
n2/3

(
Fn(t+ hn−1/3)− Fn(t)

)
− f0(t)hn

1/3 − xh
)

= n−1/3 argmax
h

Bn(h),

where
Bn(h) = n2/3

(
Fn(t+ hn−1/3)− Fn(t)

)
− f0(t)hn

1/3 − xh.

Thus,
pr
(
n1/3

(
f̂n(t)− f0(t)

)
≤ x

)
= pr

(
argmax

h
Bn(h) ≤ 0

)
.
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Below we only need to evaluate the asymptotic probability of the event {argmaxhBn(h) ≤ 0}.
Let F0(·) be the distribution function of f0(·), and for all j and any function g(x, ej) let Png =∑n

i=1 g(x, ej) and

Pg =

∫
g(x, ej)dP (x, ej) =

∫
g(x, ej)h(x)f0(ej)d(x, ej).

We rewrite

Bn(h) = n2/3
k∑

j=1

(Pn − P )

(
γ̃j

I(êj ≤ t+ hn−1/3)− I(êj ≤ t) + I(êj > −t− hn−1/3)− I(êj > −t)

2

)

+n2/3

 k∑
j=1

P

(
γ̃j

I(êj ≤ t+ hn−1/3)− I(êj ≤ t) + I(êj > −t− hn−1/3)− I(êj > −t)

2

)

−f0(t)hn
−1/3

− xh,

where êj = y − β̂
T

nx− α̂nj .
Let ej = y − βT

0 x− α0j , and let

ξnj = ej − êj = (β̂n − β0)
Tx+ (α̂nj − α0j).

Since Conditions 17 and 18 hold and θ̂n → θ0 in probability holds by Theorem 1, it can be shown
that

n1/2ξnj = zn0 + n−1/2zn1,

for some zn0, zn1 with E(zn0) = 0 and E(zn1) < ∞. Hence ξnj = Op(n
−1/2). Also,

E(ξnj) = n−1/2E(zn0) + n−1E(zn1) = O(n−1).

Now we consider the first part of Bn(h). Note that

I(êj ≤ t) = I(ej ≤ t+ ξnj) = I(ej ≤ t) + I(t < ej ≤ t+ ξnj)− I(t+ ξnj < ej ≤ t).

Note that

var(I(t < ej ≤ t+ ξnj)) = E(I(t < ej ≤ t+ ξnj))− E2(I(t < ej ≤ t+ ξnj)),

and
E(I(t < ej ≤ t+ ξnj)) = E(E(I(t < ej ≤ t+ ξnj) | ξnj)) = E(F0(t+ ξnj)− F0(t))

= E(f0(t)ξnj +O(ξ2nj)) = f0(t)E(ξnj) +O(n−1) = O(n−1),

hence
var((Pn − P )I(t < ej ≤ t+ ξnj)) = var(PnI(t < ej ≤ t+ ξnj))

=
1

n2
var

(
n∑

i=1

I(t < eji ≤ t+ ξnji)

)
=

1

n
var(I(t < ej ≤ t+ ξnj))

=
1

n
O(n−1) = O(n−2),
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and hence
var(n2/3(Pn − P )I(t < ej ≤ t+ ξnj)) = O(n−2/3).

So by Chebyshev’s Inequality

for each ϵ, n2/3(Pn − P )I(t < ej ≤ t+ ξnj) = op(1).

Similar procedures show that overall,

n2/3
k∑

j=1

(Pn − P )

(
γ̃j

I(êj ≤ t+ hn−1/3)− I(êj ≤ t) + I(êj > −t− hn−1/3)− I(êj > −t)

2

)

= n2/3
k∑

j=1

(Pn − P )

(
γ̃j

I(ej ≤ t+ hn−1/3)− I(ej ≤ t) + I(ej > −t− hn−1/3)− I(ej > −t)

2

)
+ op(1).

For the second part, we have as a consequence of ej ⊥ x, (lengthy calculation)

n2/3
k∑

j=1

P

(
γ̃j

I(êj ≤ t+ hn−1/3)− I(êj ≤ t) + I(êj > −t− hn−1/3)− I(êj > −t)

2

)

= n2/3(F0(t+ hn−1/3)− F0(t) +O(n−1)).

So

Bn(h) = n2/3
k∑

j=1

(Pn − P )
[
γ̃j

I(ej ≤ t+ hn−1/3)− I(ej ≤ t) + I(ej > −t− hn−1/3)− I(ej > −t)

2

]
+n2/3

(
F0(t+ hn−1/3)− F0(t)− f0(t)hn

−1/3
)
− xh+ op(1)

= B1,n(h) +B2,n(h)− xh+ op(1),

where

B1,n(h) = n2/3
k∑

j=1

(Pn −P )
[
γ̃j

I(ej ≤ t+ hn−1/3)− I(ej ≤ t) + I(ej > −t− hn−1/3)− I(ej > −t)

2

]
and

B2,n(h) = n2/3
(
F0(t+ hn−1/3)− F0(t)− f0(t)hn

−1/3
)
.

Note that

B2,n(h) = n2/3

∫ t+hn−1/3

t
f0(s)− f0(t)ds ∼ n2/3

∫ t+hn−1/3

t
ḟ0(t)(s− t)ds =

1

2
ḟ0(t)h

2.

Write

B1,n(h) = n1/2
k∑

j=1

(Pn − P )gj,n,h =

k∑
j=1

B1,j,n(h),

where

gj,n,h(x, ej) = n1/6γ̃j
I(ej ≤ t+ hn−1/3)− I(ej ≤ t) + I(ej > −t− hn−1/3)− I(ej > −t)

2
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and B1,j,n(h) = (Pn − P )gj,n,h.
Now we check the conditions for Theorem 2.11.23 (van der Vaart and Wellner, 1996, p.221).

Let Gj,n = {gj,n,h : |h| ≤ K}. Since 0 < γ̃j ≤ 1, Gj,n has an envelope

Gj,n(ej) = n1/6(I(t < ej ≤ t+Kn−1/3)− I(−t−Kn−1/3 < ej ≤ −t))/2,

as K is positive. We have

PG2
j,n = n1/3P

(
I(−t ≤ ej ≤ t+Kn−1/3) + I(−t−Kn−1/3 ≤ ej ≤ t)

4

)

=
n1/3

4

(∫ t+Kn−1/3

t
f0(ej)dej +

∫ −t

−t−Kn−1/3

f0(ej)dej

)
=

n1/3

2
(F0(t+Kn−1/3)− F0(t))

=
n1/3

2
(f0(t)Kn−1/3 +O(n−2/3)) = O(1).

Note that Gj,n(ej) ≤ n1/6, so for each η > 0, I(Gj,n(ej) > ηn1/2) = 0, for each n ≥ N , where
N ≥ 1/(2η)3, and so

P [G2
j,nI(Gj,n > ηn1/2)] = O(0) → 0.

Note

Pgj,n,h = n1/6E(γ̃j)(F0(t+ hn−1/3)− F0(t)) = n1/6E(γ̃j)(f0(t)hn
−1/3 +O(n−2/3))

= O(n−1/6) → 0,

and

Pgj,n,sgj,n,h =

{
Γjf0(t)

2 (s ∧ h) +O(n−1/3) if sh > 0 or t = 0

O(0) if sh ≤ 0 and t ̸= 0

→

{
Γjf0(t)

2 (s ∧ h) if s, h > 0 or t = 0

0 if sh ≤ 0 and t ̸= 0
=

Γjf0(t)

2
cov
(
B(h),B(s)

)
,

provided t ̸= 0. Now that we have a formula for Pgj,n,sgj,n,h, it readily follows that

P (gj,n,s − gj,n,h)
2 = Pg2j,n,s − 2Pgj,n,sgj,n,h + 2Pg2j,n,h =

Γjf0(t)

2
|s− h|+O(n−1/3)

so for any δn ↓ 0,

sup
(s,h)∈[−K,K]2:|s−h|<δn

P (gj,n,s − gj,n,h)
2 ∼ Γjf0(t)

2
|s− h| < Γjf0(t)

2
δn → 0.

For ϵ > 0, for all

k ∈ {−(Kϵ2)−1,−⌊(Kϵ2)−1⌋, . . . , 0, . . . , ⌊(Kϵ2)−1⌋, (Kϵ2)−1},

let hk = kϵ2K2 and let gk = gn,hk
. Then, for all gj,n,h ∈ Gj,n, there is k such that

gj,n,hk−1
≤ gj,n,h ≤ gj,n,hk

,
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and

∥gj,n,hk
− gj,n,hk−1

∥2 =
(∫

(gj,n,hk
− gj,n,hk−1

)2dP

)1/2

∼
(
(hk − hk−1)n

−1/3f0(t)
)1/2

=
(
ϵ2K2E(γ̃j)f0(t)

)1/2 ∼ ϵ∥Gj,n∥2,
that is, the set of functions

{gn,k : k = (Kϵ2)−1,−⌊(Kϵ2)−1⌋, . . . , 0, . . . , ⌊(Kϵ2)−1⌋, (Kϵ2)−1}
is an (ϵ∥Gj,n∥2)-bracketing cover of Gj,n, with covering number

N[ ](ϵ∥Gj,n∥2,Gj,n,L2(P )) = ⌊(Kϵ2)−1⌋+O(1) = O(ϵ−2).

Thus, for any δn ↓ 0,∫ δn

0
(logN[ ](ϵ∥Gn∥2,Gj,n,L2(P )))1/2dϵ = O(1)

∫ δn

0
(−2 log ϵ)1/2dϵ

= O(1)

∫ ∞

(−2 log δn)1/2
xe−x2/2dx = O(1)δn → 0.

By Theorem 2.11.23 (van der Vaart and Wellner, 1996, p. 221), B1,j,n(h) is asymptotically tight
in l∞[−K,K], where l∞[−K,K] is the set of all bounded, real-valued functions on [−K,K], and
converges in distribution to (Γjf0(t)/2)

1/2B(h). Therefore in generality we have

B1,n(h) =
k∑

j=1

B1,j,n(h) ⇒
k∑

j=1

((
Γjf0(t)

2

)1/2

B(h)

)
=

(f0(t)

2

)1/2 k∑
j=1

Γ
1/2
j

B(h) in distribution,

where ⇒ denote uniform convergence in l∞[−K,K], so

argmax
h∈[−K,K]

Bn(h) → argmax
h∈[−K,K]

B(h)
(
f0(t)

2

)1/2 k∑
j=1

Γ
1/2
j +

1

2
ḟ0(t)h

2 − xh

 in distribution.

Let ĥn = argmaxh∈RB1,j,n(h). As in p. 297 of van der Vaart and Wellner (1996), ĥn is bounded
in probability, and hence

argmax
h∈R

Bn(h) → argmax
h∈R

B(h)
(
f0(t)

2

)1/2 k∑
j=1

Γ
1/2
j +

1

2
ḟ0(t)h

2 − xh

 in distribution.

The right hand side can be rewritten, using Problem 3.2.5 (van der Vaart and Wellner, 1996,
p.308), as 2f0(t)

ḟ2
0 (t)

 k∑
j=1

Γ
1/2
j

21/3

argmax
h

(B(h)− h2) +
x

ḟ0(t)
.

Note ḟ0(t) < 0 on R+ given Condition 16, so

pr
(
n1/3

(
f̂n(t)− f0(t)

)
≤ x

)
→ pr


2f0(t)

ḟ2
0 (t)

(
k∑

j=1

Γ
1/2
j )2

1/3

argmax
h

(
B(h)− h2

)
≤ − x

ḟ0(t)



= pr


2|ḟ0(t)|f0(t)

 k∑
j=1

Γ
1/2
j

21/3

argmax
h

(
B(h)− h2

)
≤ x

 .
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Table 1: Estimates of θ0 from simulated data (f0 = Laplace(0,1))
θ β α

θ0 (1.2, -2.1, 0.6, 1.5, 0.8) (0.15, 1.25)
θ̂n (best) (1.15, -2.10, 0.64, 1.51, 0.79) (0.53, 1.12)
(mean) (1.14, -2.12, 0.62, 1.49, 0.78) (0.60, 0.96)
[sd] [0.036, 0.030, 0.032, 0.079, 0.069] [0.116, 0.151]

θ̄n (best) (1.21, -2.10, 0.57, 1.38, 0.70) (0.50, 1.02)
(mean) (1.13, -2.12, 0.62, 1.47, 0.76) (0.65, 1.00)
[sd] [0.035, 0.034, 0.032, 0.087, 0.077] [0.162, 0.171]

Table 2: Estimates of θ0 from simulated data (f0 = pgnorm(6))
θ β α

θ0 (1.2, -2.1, 0.6, 1.5, 0.8) (0.15, 1.25)
θ̂n (best) (1.17, -2.11, 0.62, 1.43, 0.75) (0.59, 1.02)
(mean) (1.15, -2.12, 0.61, 1.48, 0.76) (0.58, 0.93)
[sd] [0.019, 0.012, 0.014, 0.040, 0.041] [0.077, 0.103]

θ̄n (best) (1.16, -2.11, 0.62, 1.43, 0.74) (0.59, 1.02)
(mean) (1.15, -2.12, 0.61, 1.46, 0.75) (0.62, 0.96)
[sd] [0.020, 0.010, 0.012, 0.045, 0.050] [0.11, 0.12]
θ0 (0.8, 1.5, -1.3, 0.7, 2.1) (0, 2.2)

θ̂n (best) (0.62, 1.47, -1.18, 0.72, 2.10) (0.75, 1.71)
(mean) (0.67, 1.51, -1.24, 0.62, 2.01) (0.73, 1.21)
[sd] [0.053, 0.053, 0.063, 0.127, 0.107] [0.292, 0.498]

θ̄n (best) (0.62, 1.50, -1.22, 0.67, 2.05) (0.92, 1.78)
(mean) (0.67, 1.51, -1.25, 0.59, 1.97) (0.83, 1.38)
[sd] [0.051, 0.057, 0.067, 0.147, 0.135] [0.386, 0.428]
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Figure 1: Estimates of f0 from simulated Laplace data Below: f = f0 = Laplace(0, 1) (dashed),
Normal(0, 1) (dotted), f̂n (solid).
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Figure 2: Estimates of f0 from simulated p-generalized normal data Below: f = f0 =
pgnorm(6) (dashed), Normal(0, 1) (dotted), f̂n (solid).
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