
Examining Crime Hotspots in Chicago
Using Bayesian Statistics

Abstract

Chicago currently leads the United States with the greatest number of homicides and violent crimes 
in recent years. Using police data from the City of Chicago’s Data Portal, we examined crime hot spots 
in Chicago and whether crime rates differ by geographic and demographic information. In general, we 
found that crime rate in Chicago has decreased between 2010 and 2015, though the rates differed 
between violent and non-violent crimes. Change in crime rate also varied geographically. We found 
that for areas with lower white populations, crime decreased as income rose. For areas with larger 
non-white populations, crime rate increased as income increased
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1 Introduction

Chicago currently leads the United States with the greatest number of homicides and violent crimes
in recent years. In 2016, the number of homicides in Chicago increased 58% from the year before
(Ford, 2017). Using police data from the City of Chicago’s Data Portal, we examined crime hot spots
in Chicago and whether crime rates differ by geographic and demographic information. In this report,
we defined hot spots as zipcodes with greater increases, or smaller decreases, in crime rates over time
relative to other zipcodes in Chicago. In addition, we examined hot spots for both violent and non-violent
crimes. Understanding crime hot spots can prove advantageous to law enforcement as they can better
understand crime trends and create crime management strategies accordingly (Law, et al. 2014).

A common approach to defining crime hot spots uses crime density. Thus, hot spots by this definition
are areas with high crime rates that are also surrounded by other high-crime areas for one time period.
We were interested in finding areas where crimes increased relative to Chicago’s general trend over
time. Law, et al. (2014) identified hot spots by our definition of interest in the Greater Toronto Area
using a Bayesian spatiotemporal modeling approach. Bayesian statistics allowed them to examine how
hot spots change over time, especially in the presence of the small number problem. The small number
problem occurs in areas with few crime count or small population, thus chance variation in crime over
time might create dramatic change in crime density (Law, et al. 2014). For this reason, we applied
similar Bayesian methods to examine how crime concentration in Chicago changed year over year.

Although Chicago is widely known for its high level of violent crime, certain areas of Chicago are
prone to more crime than others. In Figure 1 below, the concentration of crime in Chicago is particularly
high in areas highlighted in red. The concentration of crime appears to shift slightly from 2010 to 2016,
with greater crime rates in northeast Chicago in 2016 compared to in 2010. In our analysis, since we
defined hot spots as areas with a higher increase (or lower decrease ) in crime rate compared to the
average change over time, the areas that turn redder over time can be identified as hot spots.

Figure 1: Concentration of crimes in Chicago in 2010, 2013, and 2016 (from left to right)

Figure 2, shown below, highlights the significant demographic differences across the zipcodes in
Chicago. While per capita income and median rent appear positively correlated with both the Asian and
White populations in Chicago, they appear negatively correlated with the Hispanic and Black popula-
tions. Since crime rates might differ across different ethnic and income groups, we take these demo-
graphics into consideration when predicting hot spots in Chicago.

2 Data and Methodology

To complete our analyses, we utilized data from the City of Chicago’s Data Portal, in which each row
represents a crime observation in Chicago. In addition to our crime data, we used the 2010 Census
data for the percentage of white populations, per capita income, and total population for each zipcode
in Chicago. We assume that demographic data remain constant from 2010 to 2017. Due to limitations
in our computing capacity, we filtered for crimes that occurred between 2010-2017 and used a subset
of 10,000 observations for our analysis. We then transformed the data to obtain the number of crime
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Figure 2: Maps of demographics by zipcodes of Chicago (from left to right, top to bottom): total pop-
ulation, White population, Black population, Asian population, Hispanic population, per capita income,
median rent, and median age

counts for each zipcodes for each year from 2010 to 2017. We standardized the values for year and
income to help the Markov Chains converge. We then focused on the following variables for our analysis:
time, type of crime, income, percentage of white population and location.

To derive our models, we used the Gibbs sampler. We then checked for convergence of our Markov
Chains by using effective sample sizes and a combination of visual indicators, such as running mean
plots, trace plots of our parameters, and the Gelman-Rubin diagnostic statistics. These tools can be ac-
cessed using MacBayes package (at https://github.com/ajohns24/MacBayes) and diagnostic functions
in the package coda. Upon checking the diagnostics for convergence, we observed autocorrelation
between some of our parameters and reparametrize our models with hierarchical centering and or-
thogonalization of correlated predictors (Browne 2004; Browne et. al. 2009). We also found that
standardizing our variables help the Markov Chains converge more quickly. We ran all of our models for
30,000 iterations for stabilization and subsequently calculate the posterior means. Finally, we checked
all of the 95% credible intervals of our posterior means for statistical significance.

3 Analysis and Results

3.1 Time Trend

Figure 3 plots the relationship between the log of the crime rate and year for zipcodes in Chicago. It
shows a slight downward trend in the log of crime rates as the years increase. Thus, we thought it was
plausible to model overall log crime rates as a linear function of time. Although Figure 3 displays a lot
of noise, we believed it was reasonable to see that each zipcode has a different slope and intercept.
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Figure 3: Crime rate over time, from 2010 to 2015, by zipcodes

In our first model, we predicted crime hot spots in Chicago using a simple model that incorporates
a time trend. From our observations of Figure 3, we assumed in our model that log crime rate for each
zipcode is a linear function of time. Here, yij is the observed crime count in zipcode i in year j and is
modeled with a Binomial distribution. The parameters are pij , which is the inherent crime rate, and nij ,
which is the total population in zipcode i and year j. We model yij with a Binomial distribution because
a Binomial distribution is typically used to model the count of an event given a probability between 0
and 1. In addition, we assumed zipcodes to have different time trends, denoted as δi for zipcode i, that
are normally distributed around a mean crime trend of Chicago, denoted as δ0, with precision τ1. We
also included random effect parameters, βi, that try to account for variance in zipcodes’ crime rates not
explained by time trend. To prevent the random effects βi to be drastically different between zipcodes,
we gave them a normal prior distribution with mean β0 and precision τ0.

yij | pij , β0, βi, δ0, δi, τ0, τ1 ∼ Bin(pij , nij)

log(
pij

1− pij
) | β0, βi, δ0, δi, τ0, τ1 = βi + δi ∗ timej

βi | β0, τ0 ∼ N(β0, τ
−1
0 )

δi | δ0, τ1 ∼ N(δ0, τ
−1
1 )

β0, δ0 ∼ N(0, 10002)

τ0, τ1 ∼ Gamma(0.5, 0.0005)

where i = {1, ..., 58}, j = {1, ..., 5}
The precisions, τ0 and τ1, are modeled with a Gamma distribution whose mean equals 0.00025.

This is equivalent to a mean standard deviation of 63 for βi and δi’s normal distributions. This large
variance indicates that we gave vague prior to βi and δi. The priors for β0 and δ0 are also vague with a
mean of 0 and standard deviation of 1,000.

After approximating the model parameters’ posteriors with the distribution of the Gibbs samples, we
investigate their significance. Based on the 95% credible intervals of our parameters, we conclude that
all of the intercepts and the vast majority of our time trend in Model 1 are significant. Figure 4 maps
the time trend, δi and shows the crime rate changes at different rates over time for each zipcode in
Chicago. The map indicates that overall crime rates are decreasing in all areas of Chicago since δi’s
are all negative. In fact, the posterior mean of the grand time trend δ0 = −0.066 signifies that on average,
for each additional year, the odds of a Chicago resident being involved in a crime incident decreases
by 6.3% (= 1 − e−0.066). (Odds is the ratio of probability of being involved in a crime incident over one
minus that probability.) The smallest decrease in odds of crime is 3.5% and largest decrease is 8.5%.
The crime hot spots, areas with small decrease in odds of crimes, are highlighted in bright orange. In
these hot spots, crime is not decreasing over time as much as in other areas, particularly areas colored
in dark blue and purple.
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Figure 4: Differential crime growth by zipcodes

Since Chicago is particularly well-known for its high level of violent crime including homicides, we
divide our data into two groups-violent and non-violent crimes-to examine whether hot spots for these
two groups vary. We classify the following types of crime as ’violent’: robbery, battery, burglary, as-
sault, homicide, sex offense, criminal sexual assault, and arson. All other crime types in our data are
considered ’non-violent’.

Figure 5: Differential crime growth by zipcodes and types of crime

Figure 5 above indicates that both violent and non-violent crimes in Chicago are decreasing over
time. However, non-violent crimes in Chicago decrease over time by a greater extent than violent
crimes. This is indicated by a darker shade of purple for non-violent crimes in Figure 5. Specifically,
there’s a 95% chance that odds of non-violent crime decreases by 6.9% (δ0 = −0.071) each year
compared to a decrease of 4.8% (δ0 = −0.049) for violent crime in Chicago in general.
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3.2 Incorporating Demographics

In Figure 6, we plotted the log of per capita income against the log of crime rate by percentage of white
population in each zipcode. In areas with large white populations, an increase in the per capita income
seems to result in greater crime rates. However, when an area has a greater non-white population, the
crime rate seems to fall as per capita income increases. Thus, we hypothesized that the relationship
between income and crime depends on an area’s demographic population. For this reason, we derived
Model 2 by taking into consideration income and the percentage of white people in each area.

Figure 6: Relationship between income, percent white population, and crime rate

In our second model, we examined changes in the crime rate while taking into account differences in
race and income levels in specific areas. Model 2 resembles Model 1, except it takes into consideration
income and demographic information for each zipcode. As shown in Figure 6, the relationship between
income and crime rate seems to be different for areas with varying levels of white populations. For
instance, while crime rate seems to decrease as income increases in zipcodes whose percent white
population is below 20%, it seems to increase in those with above 75% white population. Therefore, we
decided to discretize our demographic variable into five groups depending on the percentage of white
people living in each zipcode: more than 80%, between 60-80%, between 40-60%, between 20-40%,
and less than 20% white percentage. Each group contains 4, 12, 14, 7, and 21 zipcodes respectively.

yij | pij , β0, βi, δ0, δi, σe, τ0, τ1, τ2 ∼ Bin(pij , nij)

log(
pij

1− pij
) | β0, βi, δ0, δi, σe, τ0, τ1, τ2 = βi + δi ∗ timej

βi | β0, σe, τ0, τ2 ∼ N(β0 +

5∑
e=1

σe ∗ incomei ∗ perwhitee, τ0)

δi | δ0, τ1 ∼ N(δ0, τ1)

β0 ∼ N(0, 10002)

δ0 ∼ N(0, 10002)

σe | τ2 ∼ N(0, τ2)

τ0, τ1, τ2 ∼ Gamma(0.5, 0.0005)

where i = {1, ..., 58}, j = {1, ..., 5}, e = {1, ..., 5}
We "dummy"" coded the discretized percent white population variable described above as perwhitee

where e ∈ 1, 2, 3, 4, 5. The parameter, σe, allows income to have a relationship with the log odds of
crime for each zipcode group. We decided to include this term in the prior for βi because each zipcode
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is nested in one of the five groups. Thus, each zipcode’s base log odds of crime is normally distributed
around the grand intercept corrected for the group’s association with income. We also found that our
Markov Chains converged better with this parametrization than when σe were included in the log odds
of crime level. In addition, we provided vague priors for all the parameters, similar to Model 1, due to
limited prior knowledge. Based on the 95% credible intervals of our parameters, all of the intercepts
and the vast majority of the time trend parameters in Model 2 are significant. Only σ2 and σ5, which
describes log odds of crime trend as income increases for areas with 60-80% and under 20% white
population, are statistically significant at the 95% credible intervals.

Figure 7: Differential crime growth based on income, percent white population and zipcodes (top). We
can see correlations between crime trend and distribution of white population (lower left) and per capita
income (lower right).

Figure 7 maps σe, which represents the relationship between crime rate and income. The area high-
lighted in blue represents areas with less than 20% white populations. In these areas, the number of
crime decreases over time as per capita income increases (σ5 = −0.939). The bright orange areas rep-
resent areas with between 60-80% white populations. In these areas, crime increases over time as per
capita income increases (σ2 = 0.633). This map follows closely to Figure 6, which indicates a negative
relationship between crime rate and per capita income in areas with large non-white populations.

Figure 8 examines the crime differential growth based on income and demographics for both violent
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Figure 8: Differential crime growth based on income, percent white population, and zipcodes for violent
(left) and non-violent (right) crimes

and non-violent crimes. According to the maps, the number of violent crime increases over time as per
capita income increases for areas with between 60-80% white populations, as indicated in orange (σ2 =
0.365). In areas where the white population falls below 20%, the number of violent crimes decreases as
per capita income increases, as highlighted in blue (σ5 = −1.192). This indicates that areas with large
non-white populations face lower violent crimes as income increases whereas areas with larger white
populations face the opposite effect with more income. The trend for non-violent crimes is similar to the
trend in violent crimes. However, in areas with less than 20% white populations, crime rates are not
decreasing as much as violent crimes when income increases (for non-violent crime, σ5 = −0.6875). In
addition, in areas with between 60-80% white populations, non-violent crime is increasing to a greater
extent than violent crime as income increases (for non-violent crime, σ2 = 0.738). As mentioned above,
these two regions are the only groups with statistically significant parameters.

As an alternative to our Model 2, our last model, Model 3, also takes into account the interaction
between income and race. However, instead of discretizing the demographic variable (i.e. percent
white), we kept the variable as continuous and modeled crime rate with an interaction term between
income and the percentage of white populations.

Since the correlation between income and the percentage of white population is high, with a cor-
relation of 0.72, we corrected for the collinearity between the two predictors. We orthogonalized the
predictors by creating a new predictor, perwhite+. This predictor represent the portion of the original
predictor that cannot be explained by the income variable. Similarly, the (perwhite ∗ income)+ variable
represents the portion of the interaction term that is not already explained by the income and perwhite
variables. We did this by using QR decomposition so the new predictors satisfies the following equa-
tions:

perwhite+ = perwhite− w1 ∗ income

(perwhite ∗ income)+ = perwhite ∗ (income)− w2 ∗ perwhite− w3 ∗ income

perwhite+.income = 0

(perwhite ∗ income)+.income = 0; (perwhite ∗ income)+.perwhite = 0

We could get the effects of the original predictors by premultiplying the effects of new predictors
by the matrix RT from the decomposition above. Orthogonalization of correlated predictors has been
shown to improve Markov Chains convergence, which we find to be true for our model (Browne et.
al. 2009). We also chose to include the parameters ω1, ω2, ω3 for effects of income, percent white
population, and their interaction term respectively in the prior for βi. Because βi represents zipcode level
random effect, and ω1, ω2, ω3 are city-level average effects, we chose to model βi as normally distributed
around its expected value (given its income and percent white population) estimated with city-level
effects. In addition, we saw better mixing and convergence of Markov Chains with this parametrization
compared to when we included these parameters in the log odds of crime level. All priors for our
parameters are vague, similar to both Models 1 and 2.
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yij | pij , β0, βi, δ0, δi, ω1, ω2, ω3, τ0, τ1 ∼ Bin(pij , nij)

log(
pij

1− pij
) | β0, βi, δ0, δi, ω1, ω2, ω3, τ0, τ1 = βi + δi ∗ timej

βi | β0, ω1, ω2, ω3, τ0 ∼ N(β0 + ω1 ∗ incomei + ω2 ∗ perwhite+i + ω3 ∗ (perwhite ∗ income)+i , τ
−1
0 )

δi | δi, τ1 ∼ N(δ0, τ
−1
1 )

ω1, ω2, ω3 ∼ N(0, 10002)

β0, δ0 ∼ N(0, 10002)

τ0, τ1 ∼ Gamma(0.5, 0.0005)

where i = {1, ..., 58}, j = {1, ..., 5}
Based on the 95% credible intervals of our parameters, we concluded that all of the intercepts and

the majority of time trend parameters in Model 3 are significant. The mean estimate of ω1 is -1.94 and
the standard error is 0.003. Since ω1 is considered significant, we conclude that income and crime
have a significant and negative relationship. The mean estimate of ω2 is 7.758 and the standard error is
0.013, meaning crime and the percentage of white population in an area are positively correlated. ω3 is
not considered significant based on its 95% credible interval. This suggests that different percentages
of white people in an area have no effect on the relationship between crime rate and income according
to this model. In other words, the interaction term is not significant in this model.

Figure 9: Difference in predicted minus actual crime counts in Chicago in 2016

Finally, we used our last model to predict crime in 2016. Figure 9 maps the difference in crime count
between the predicted crime count in 2016 and the actual crime count in 2016. In areas highlighted in
dark blue and purple, the predicted crime count is much lower than the actual crime count in 2016. In
fact, the difference in crime count is negative in all zipcodes. This suggests that crime in 2016 might be
greater than the current trend and therefore, our predictions are underestimating the true crime count.
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4 Conclusion

In general, the crime rate in Chicago has decreased in the periods between 2010 and 2015. In addition,
crime rates for both violent and non-violent crimes decreased over time but at varying magnitudes.
For areas with lower white populations, crime decreased as income rose. For areas with larger non-
white populations, crime rate increased as income increased, indicating a discrepancy in crime rates for
different demographic areas. Lastly, our third model suggests that crime in 2016 might be increasing to
a greater extent than the current crime trend. To conclude, our hot spots analyses and results might be
helpful for law enforcement to better understand crime trends in Chicago and predict future crime rates.
As a result, it might help with more efficient crime management in specific areas.

5 Limitations and Future Work

One limitation of our research is that we fitted our model using a subset of 10,000 crime observations in
Chicago. We would like to validate our result on a larger subset of the original data. In the future, we are
interested in examining hot spots for specific types of crime in Chicago. For instance, how do hot spots
for homicides compare to hot spots for petty theft? To add, we used zipcodes in our analysis due to
its familiarity with general audiences. We could ideally repeat the same analysis using tract data since
tracts tend to have more consistent boundaries, similar populations, and is the official unit by which the
U.S. Census data are collected. In addition, although we have random effects for each zipcode in our
analysis, we can also expect to have autocorrelated random effects between zipcodes that are adjacent.
This is because adjacent locations tend to have similar crime rates and behaviors. Therefore, adding
a random effect term to account for this correlation can help smooth out dramatic differences in crime
rates in adjacent locations. Last but not least, we would like to examine crime rates in specific areas
of Chicago in more detail. Certain neighborhoods, such as Fuller Park, experience significantly greater
homicide rates compared to other areas (Lucido, 2016). It would be interesting to examine what factors
contribute to this drastic difference in crime rates such as race, income, graduation rates, and poverty
levels. We could also explore specific areas within the neighborhood, such as parks and schools, to
find hot spots in more local areas.

6 Bibliography

1. Braga, Anthony A., Andrew V. Papachristos, and David M. Hureau. “The Effects of Hot Spots Polic-
ing on Crime: An Updated Systematic Review and Meta-Analysis.” Justice Quarterly iFirst:1–31.
2012.

2. Browne, William. "An illustration of the use of reparameterization methods for improving MCMC
efficiency in crossed random effect models". 2004.

3. Browne, William J., et al. "The use of simple reparameterizaton to improve the efficiency of Markov
chain Monte Carlo estimation for multilevel models with applications to discrete time survival mod-
els". Journal of the Royal Statistical Society. 2009.

4. "Crimes - 2001 to Present." City of Chicago Data Portal. Retrieved December 17, 2017.

5. Ford, Matt. “What’s Causing Chicago’s Homicide Spike?” The Atlantic, Atlantic Media Company,
24 Jan. 2017.

6. Law, Jane, et al. “Analyzing Hotspots of Crime Using a Bayesian Spatiotemporal Modeling Ap-
proach: A Case Study of Violent Crime in the Greater Toronto Area.” Geographical Analysis, vol.
47, no. 1, Oct. 2014, pp. 1–19.

7. Lucido, Gary. “Chicago’s Safest And Most Dangerous Neighborhoods: Homicide Rates.” ChicagoNow,
28 July 2016.

10


	Introduction
	Data and Methodology
	Analysis and Results
	Time Trend
	Incorporating Demographics

	Conclusion
	Limitations and Future Work
	Bibliography



