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Abstract

Random Forests (Breiman, 2001) are an ensemble method that utilizes a number of deci-
sion trees to make robust predictions in both regression and classification settings. However,
the process of bootstrap aggregation, the mechanism underlying the Random Forests algo-
rithm, requires each decision tree to physically store and perform computations on data sets
of the same size as the training data set. This situation is oftentimes impractical given the
large size of data sets nowadays. To address this problem, we introduce the Bag of Little Ran-
dom Forests (BLRF), a new algorithm that combines the Random Forests with the Bag of Little
Bootstraps (Kleiner et al., 2014) resampling method, aiming to achieve a better computational
profile while producing predictions with comparable accuracy as those of the Random Forests.
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1 Introduction

With the advent of the era of big data, machine learning techniques have become prevalent in solv-
ing problems across areas ranging from astrophysics to pharmaceutics. Equipped with powerful
models, data scientists and business analysts have managed to make unprecedented advance-
ment in areas like planetary science and bioinformatics (Mjolsness and DeCost, 2001).

Random Forests (Breiman, 2001), or RF, are among one of the top performing machine learn-
ing algorithms that is robust in numerous regression and classification settings (Caruana et al.,
2008). Essential to the Random Forests algorithm is the idea of bootstrap aggregation, also
known as “bagging”(Kleiner et al., 2014), which means the forests consist of a number of decision
trees during training time and output the mode or the average results of all the trees as predic-
tion. Bootstrap aggregation is powerful in that it mitigates the well-known variation and over-fitting
problems of decision trees, yielding high accuracy (Gareth James and Tibshirani, 2013).

Despite their effectiveness, many machine learning algorithms require intense computational
resources. In the case of Random Forests, bootstrapping from the original sample requires each
decision tree to physically store and perform computations on resamples of the input training set,
whose size can be massive. The challenge to address such a problem makes an alternative
resampling method stand out, Bag of Little Bootstraps (Kleiner et al., 2014) .

Bag of Little Bootstraps, also known as BLB, is a resampling method devised by Kleiner et al.
(2014). In their paper, Kleiner et al. showed that BLB can “yield a robust, computationally efficient
means of assessing the quality of estimators” (Kleiner et al., 2014, page 1,2). BLB ingeniously
combines subsampling and bootstrapping such that bootstrapping is performed on small subsets
of distinct observations from the original sample. Because bootstrapping is only performed on
each subset, the computational cost is favorably rescaled to the size of a subset. In addition,
given that calculations for each subset are independent of one another, the BLB structure is well-
suited to distributed and parallel computing architectures that are often used to achieve better
computational performance.

In light of Kleiner’s paper, we see the opportunity to use BLB to replace the process of boot-
strapping in the standard Random Forests algorithm, aiming to achieve a better computational
profile while producing predictions with comparable accuracy to those of Random Forest.

The following sections will be structured as follows: In Chapter 2, we will introduce the un-
derlying algorithm of Random Forests, highlighting their sources of computational demands; in
Chapter 3, we will give an overview of the method of Bag of Little Bootstraps and review its theo-
retical foundations laid out by Kleiner el al.; Chapter 4 integrates RF and BLB by introducing Bag
of Little Random Forests (BLRF), covering its algorithm and main advantages over the standard
Random Forests; then, we will run some simulations to assess BLRF’s statistical and computa-
tional performance relative to the standard RF in Chapter 5; finally, we will conclude with some
further discussions on possible modifications and future directions in Chapter 6.

2 Random Forests

As we mentioned in Chapter 1, the Random Forest (RF) algorithm is a powerful machine learn-
ing algorithm in both classification and regression settings. More importantly, RF is built on
top of a fundamental building block, the Classification and Regression Tree (CART) algorithm
(Leo Breiman, 1999). In this chapter, we will first cover how CART models are constructed and
then move on to how they are transformed into Random Forests. Also, we will highlight the sources
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of computational burden brought by bootstrap aggregation, a method we will explain in detail, to
pave the way for the discussion of Bag of Little Random Forests in Chapter 4.

2.1 Classification and Regression Tree (CART)

As its name suggests, the CART algorithm, like Random Forests, can be applied to classification
and regression problems. The trees are constructed by recursively partitioning the training ob-
servations into a number of regions, (or nodes of a tree), that represent the most homogeneous
space with respect to the response variable for the data. Since this paper is concerned with the
regression setting, the following sections are dedicated to the fundamentals of CART regression
trees.

2.1.1 Regression Tree

In algorithmic terms, a CART regression tree functions in the following way:

1. The CART algorithm is a greedy method used to partition the predictor space - the possible
values for X1, X2, ...Xp - into distinct and non-overlapping regions, R1, R2, ..., RJ . The goal is to
find regions, or high-dimensional boxes R1, R2, ..., RJ , that minimize the Sum of Squared Errors
(SSE) for the tree, defined as:

SSEtree =

J∑
j=1

∑
i∈Rj

(yi − ȳRj )2 (1)

where ȳRj is the average of the response variable for observations in region Rj . The reasoning
behind such a criteria is that a high SSE means that the observations in a region are spread apart
in terms of their response values. Hence, the best regression tree minimizes the SSE of the data.

2. To predict the response value of a new test observation, the algorithm passes this observa-
tion down the tree model constructed to determine which region, Rj , the observation falls into. Its
predicted value will be the average of the response variable in that region.

As an example, suppose from Step 1 we determined that the predictor space should be divided
into two regions: R1 and R2, where the average of response variables in R1 is 5 and the average
of the response variables in R2 is 25. Given a new observation X = x with unknown response Y ,
if x ∈ R1, the model predicts Y to be 5 for this test observation.

Next, we will move on to discuss how these regions are constructed.

2.1.2 Recursive Binary Splitting

The procedure most important and most relevant to the construction of BLRF (as we shall see in
Chapter 4) is called recursive binary splitting.

Recursive binary splitting is a top-down and greedy approach: “top− down” because the splits
begin at the top of the tree (where all observations belong to a single region)l the algorithm then
successively splits each region of points into two branches further down the tree; “greedy” because
at each split, the model looks through all predictors and all of its possible splits to determine the
split that maximizes the reduction in sum of squares of the response variable.
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More specifically, to perform recursive binary splitting on a given node, t, we go through each
one of the predictors, X1, X2, ...Xp, and all possible cut-off values, s (gaps in between the sorted
array of a particular predictor Xj), that splits the observations within that node into two distinct
regions : {X|Xj < s} and {X|Xj ≥ s} (Gareth James and Tibshirani, 2013). Define the SSE of
the node being split (parent node) as SSEt and the two branches after the split (daughter nodes)
as SSEtL and SSEtR . From all the possibilities, we choose the one that maximize the reduction
in SSE, defined by:

∆SSE = SSEt − (SSEtR + SSEtL) (2)

In a regression setting, the CART algorithm will continue such binary splitting procedure until a
user-defined stopping condition is met (e.g., when the number of observations in a node is fewer
than 5). The terminating condition is a crucial step in the CART algorithm, and this part will be
revisited in Section 4.1.4. The resulting tree is one whose terminal nodes are closely centered
around the average of their respective nodes.

It is worth noting that, to reduce the amount of computation, the SSE for a given node, Rt, with
node size nt can be calculated as the follows (Note that SUMt =

∑
i∈Rt yi, where yi refers to the

individual response variables within the node):

SSEt =
∑
i∈Rt

(yi − ȳt)2

=
∑
i∈Rt

(y2i − 2 · yi · ȳt + ȳt
2)

=
∑
i∈Rt

y2i − 2 ·
∑
i∈Rt

yi ·
SUMt

nt
+
∑
i∈Rt

(
SUMt

nt

)2

=
∑
i∈Rt

y2i − 2 · SUM
2
t

nt
+ nt ·

(
SUMt

nt

)2

=
∑
i∈Rt

y2i − 2 · SUM
2
t

nt
+
SUM2

t

nt

=
∑
i∈Rt

y2i −
SUM2

t

nt

(3)

With this, Equation (2) can be rewritten as:

∆SSE = SSEt − (SSEtR + SSEtL)

=
∑
i∈Rt

y2i −
SUM2

t

nt
−
( ∑
i∈RtL

y2i −
SUM2

tL

ntL
+
∑
i∈RtR

y2i −
SUM2

tR

ntR

)

=
SUM2

tL

ntL
+
SUM2

tR

ntR
− SUM2

t

nt

(4)

where RtL and RtR refer to the potential daughter nodes of node Rt, whose node sizes are ntL
and ntR respectively.

Therefore, to find ∆SSE, we simply need to calculate the difference in SUM2

n before and after
the split. This fact is crucial and useful in constructing the Bag of Little Random Forests algorithm
in in a computationally efficient way.

3



2.1.3 Prediction

After the tree is built using the training data, we now have j distinct terminal regions (or terminal
nodes), R1, R2, ..., Rj , corresponding to the predictor space. Given a new test observation, we
can effectively “categorize” this observation by following down the branches corresponding to the
predictor space of the test observation. The predicted response value for this test observation will
be the average of the response variables within the terminal node to which it belongs (using the
mean as the predicted value is specific to the regression setting).

2.2 Building a Random Forest

Although the CART algorithm seems straightforward and easy to understand, it suffers from two
practical difficulties: high variability (slightly different training sets from the same population tend
to produce completely different trees) and overfitting (the decision tree is inclined to make more-
than-necessary splits that reduce training error at the cost of increasing testing error).

The algorithm of RF is proposed to address the problems of CART by adding two new “sources
of randomness”: bagging and random selection of variables.

2.2.1 Bagging

Bagging, also known as bootstrap aggregation, is a machine learning ensemble meta-algorithm
designed to improve stability and accuracy of a set of weaker models. In the Random Forest
setting, the idea behind bagging is to aggregate the results of multiple bootstrapped decision trees
through averaging or majority vote.

More specifically, bootstrap aggregation is built on top of bootstrap (Efron and Tibshirani,
1994), a resampling method that measures the variability and accuracy (e.g., defined in terms
of bias, variance, confidence intervals, or prediction error) of a statistic, θ̂n1, by approximating its
true sampling distribution. We repeatedly sample with replacement up to size n from the given
training observations to build a number of decision trees. The combined effect is that variability of
the predictions is drastically reduced since the final result is given by the average prediction for all
trees.

2.2.2 Random Forests

On top of bootstrap aggregation, there is one more step towards Random Forests: random selec-
tion of variables at each split for each decision tree.

Continuing from the bootstrapped decision trees, the Random Forests algorithm further “de-
correlates” individual trees by making only a subset of all candidate predictors available at each
split in the construction of an individual tree. This procedure effectively de-correlates the trees
because if all the explanatory variables are available to all decision trees, it is very likely that most
of the trees decide to split on several dominating variables and thus become similar to one another.
When giving each tree only m out of p (often m =

√
p) predictors at each split, such a dominant

effect would no longer exist, making the decision trees de-correlated. The main benefit of such
de-correlation is the variance of decision trees is reduced since “averaging many highly correlated
quantities (Bagging alone) does not lead to as large of a reduction in variance as averaging many
uncorrelated quantities” (Gareth James and Tibshirani, 2013).

1n refers to the sample size.
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2.2.3 Limitations of Random Forests

Even though Random Forests effectively mitigate the drawbacks of CART, they also suffer from
some limitations, notably in memory consumption and computational time.

In terms of memory consumption, as we have seen in Section 2.2.1, Random Forests require
a large number of (e.g., 500) decision trees whose sizes are the same as the original training data
set. Such setting can be troublesome because the training data set alone could be too massive to
be stored in memory, not to mention RF builds hundreds of trees using data sets similar in size.

In addition, also due to the large size of the resamples, performing computations on even a
single resample can be computationally demanding and time-consuming, not to mention that such
computation have to be performed for hundreds of times.

Therefore, we are motivated to develop a modification to Random Forests that drastically re-
duces the computational burden while still maintaining the appealing accuracy of the original Ran-
dom Forests. In light of such a need, we will continue our discussion with an alternative resam-
pling/aggregation method called Bag of Little Bootstraps (BLB) in the following chapter, and how
it can be integrated with Random Forests to the new algorithm, Bag of Little Random Forests in
Chapter 4.

3 Bags of Little Bootstraps (BLB)

As discussed in Section 2.2.1, the bootstrap provides a simple and powerful means of assess-
ing the quality of estimators (Efron and Tibshirani, 1994). However, because each resample is
of the same size as the original data set, with roughly 63 percent of the observations present
(Gareth James and Tibshirani, 2013), performing computation for even a single point estimate on
large data sets presents computational challenges. Here, one might naturally turn to parallel and
distributed computing structures, where each resample will be passed to a different core to pro-
cess. But this method is still problematic since the large size of the bootstrap resamples renders
“the cost of transferring data to independent processors or compute nodes ... overly high, as is
the cost of operating on even a single resample using an independent set of computing resources”
(Kleiner et al., 2014).

To mitigate such problem, Kleiner et al. introduced a new resampling method, Bag of Little
Bootstraps (BLB). BLB combines features of the bootstrap and subsampling to form a resampling
method well-suited for computations on large data sets while maintaining the favorable statistical
properties of the bootstrap (Kleiner et al., 2014). In this chapter, we will briefly talk about BLB’s no-
tation, procedures and advantages. For a more rigorous discussion on BLB’s statistical properties
(consistency and higher-order correctness), refer to Kleiner et al. (2014).

3.1 Setting and Notation

Assume we have a set of training observations, a1, a2, ..., an, drawn from an unknown population P .
We denote its empirical distribution as Pn. Using the training data, we are interested in computing
an estimate θ̂n of some population parameter θ ∈ Θ. Here we use Qn(P ) to represent the true
sampling distribution of θ̂n. We will also use θ̂(Pn) to indicate that we used data from distribution
Pn to compute the estimate, θ̂n.

Recall from Section 2.2.1, the bootstrap aims to estimate the true sampling distribution of θ,
Qn(P ), from which we can compute a quality assessment, ξ(Qn(P )) (e.g., confidence interval,
standard error, or bias). Given a training sample with emperical distribution Pn, the bootstrap
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method computes the approximation of Qn(P ) by taking b resamples of size n with replacement
from Pn; using the rth resample, whose empirical distribution is Pn,r, the method calculates the
bootstrap statistic θ̂∗n,r that approximates a realization of θ̂n from the population; then, with a vector
of θ̂∗n,r, the method proceeds by forming the empirical distribution of θ̂∗, denoted by Q∗n; finally,
it completes the approximation ξ̂(Qn(P ) ≈ ξ(Q∗n) by calculating the desired quality assessment
using Q∗n.

For the method of BLB, the essential goal and mechanism is the same, but we would like to
break up the data into several subsamples, so that calculation on each sample can be processed
in parallel.

3.2 Bags of Little Bootstraps (BLB)

3.2.1 Mechanism

BLB essentially functions by combining the results of performing the bootstrap on multiple small
subsets of the incoming training sample. Before we proceed, it is useful to define the parameters
that will be used in the procedure of BLB:

Parameter Definition
n Size of the training set
γ The user-defined parameter that determines the size a each subsample
s Total number of subsamples
b Size of each subsample, b = nγ

Table 1: Parameters of interest

First, the user picks the value of γ ∈ [0, 1] and compute the value of b by b = nγ . Then, we re-
peatedly take s subsamples of size b < n by sampling without replacement from the given training
set. In this way, the observations within each subsample are distinct (no repeated observations),
whereas each observation may be present in multiple subsamples2. We denote the subsamples
as I1, I2, ..., Is and using the notations in Section 3.1, the empirical distribution associated with
subsample Ii is Q∗n,i. After this, we bootstrap each subsample from size b to size n (so that each
resample is still of size n), to obtain the quality assessment ξ(Q∗n,i) for subsample Ii; finally, the
BLB’s estimate of ξ(Qn(P )) is given by:

ξ̂(Qn(P )) =
1

s

s∑
i=1

ξ(Q∗n,i) (5)

In the next section, we will discuss in detail how the resamples can be drawn in an effective
way.

3.2.2 The Multinomial Method

One important aspect of the bootstrap is that it requires each resample to be of size n. As we have
discussed at the end of section 3.2.1, in order for BLB to have consistent statistical performance,
it also requires each resample to be of size n. Such setting, as we have mentioned, can be

2It is worth noting that, in Kleiner et al’s paper, there is also the option of using s distinct and non-overlapping
subsamples obtained by directly partitioning the training set. In such a setting, the subsamples are independent from
one another, which could be useful in some situations.
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troublesome because a data set of size n could be too big to store or compute. Fortunately, the
multinomial method Kleiner et al. (2014) can be employed to scale each subsample of size b to n
using only O(b) space.

The multinomial method makes use of the multinomial distribution, a generalized version of
binomial distribution. Given a number n and a vector of probabilities associated with each out-
come level p = {p1, p2, ..., pb}, the multinomial distribution can generate a vector of multinomial
coefficients M = {M1,M2, ...,Mb} using the facts P (Mi) = pi and

∑b
i=1Mi = n. In the BLB

setting, n represents the size of the given training data set and to construct a resample of size n,
p = {1/b, 1/b, ..., 1/b} since each observation should have equal probability of being chosen (akin
to the bootstrap). In the resulting vector M, each Mi coefficient represents the number of times
that observation ai is present in the resample of a subsample.

To better illustrate the multinomial method, figure 1 (Yenny Zhang, 2017) shows an example
of a resample from subsample of size b = 5 up to size n = 100. In this case, the multinomial
method produces the vector of multinomial coefficients M = {21, 15, 22, 23, 19}, each representing
the number of times an observation is present in this resample.

Figure 1: A Resample of one Subsample of the Training Observations

The complete algorithm of BLB, using confidence interval (CI) estimation as an example, is
given in Algorithm 1 below.
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Algorithm 1 Bag of Little Bootstraps (BLB)
INPUT:

a1, a2, ..., an, observations, s, number of subsamples
θ̂, estimator of interest r, number of resamples
b, size of subsamples ξ, estimator quality assessment (e.g., CI)

OUTPUT: ξ̂(Qn(P )), the desired quality assessment

function BLB(A = {a1, a2, ..., an}, s, r, b)
for i in 1:s do
\\ Subsample the data
Ii ← subsample of size b from A . Subsample without replacement/Partition
for j in 1:r do
\\ Resample from the subsample
Mj ← {M1, ...,Mb,

∑b
ind=1Mind = n} . the multinomial coefficients

Pn,j ← Mj × Ii . replicate each observation by its coefficient
θ̂∗n,j ← θ̂(Pn,j) . Estimate of the statistic of interest

end for
\\ Construct the CI for the statistic in subsample Ii
ξ(Q∗n,i)← ξ({θ̂∗n,1, ..., θ̂∗n,r})

end for
\\ Average all the CIs obtained from s subsamples
ξ̂(Qn(P ))← 1

s

∑s
i=1 ξ(Q

∗
n,i)

return ξ̂(Qn(P ))
end function

3.3 Advantages of the BLB Method

Compared to the standard bootstrap, the advantages of the BLB method are three-fold: computa-
tional, memory-wise, and architectural.

Computationally speaking, since each subsample is of size b, which in practice is much smaller3

than n , the computation associated with BLB scales in O(b), as opposed to O(n) (Kleiner et al.,
2014).

In terms of memory usage, the memory required by BLB is much smaller than that required by
bootstrapping on the original data directly. Such reduction in memory usage results from the ben-
efits of the mulitnomial method, which guarantees a O(b) memory consumption of each resample
from the subsamples; the memory consumption of each resample from the standard bootstrap is
of order O(n). However, it is important to note that, the BLB method requires several subsamples
(the number of subsamples required depends on the value of γ) to obtain comparable results with
those of the standard bootstrap. But as Kleiner et al. (2014) mentioned, for example, in the case
of estimating the average, when γ = 0.9, we need only s = 2 subsamples to obtain a result com-
parable to that of bootstrap. In such a situation, if n is large, the combined memory usage of BLB
is much smaller than that of the bootstrap4. On top of this, sometimes the data set is too large to

3To give readers a sense of the magnitude of b versus n, if n = 10000 and as γ ranges from 0.5 to 0.9, b ranges from
100000.5 = 100 to 100000.9 = 3981, substantially smaller than n.

4Assuming the number of resamples, r, is constant, when n = 10000 and γ = 0.9, BLB requires r×100000.9 = 7962r
units of memory, whereas the bootstrap requires 10000r units of memory.
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be handled by the bootstrap at all; in contrast, the BLB method makes such computation due to
its reduced memory consumption.

Third, with its setup, BLB is more suited than the bootstrap to utilize the paralleled and dis-
tributed computing architecture. To perform BLB on a data set, we can pass each subample to an
invidual compute node to complete its part of the calculation. One could argue that the original
bootstrap can also utilize such a paralleled structure. But again, the massive size of the training
observations might be too big for any single compute node to process. However, the BLB method
uses b < n points and thus can make the computation feasible while reducing computation time
drastically.

4 Bag of Little Random Forests (BLRF)

With the theoretical background of Random Forest and Bag of Little Bootstraps, now we are ready
to proceed to the introduction and discussion on Bag of Little Random Forests (BLRF). BLRF is a
new machine learning algorithm that we developed based on the algorithm of RF with one major
difference: instead of using bootstrap aggregation (or bagging), we will use “BLB Aggregation” to
build multiple forests each built from many “BLB decision trees”. In brief, there are two steps to the
BLB Aggregation method: first, pick a value for γ, calculate b = nγ and repeatedly draw distinct
subsamples of size b from the given training observations; second, build a “Little Random Forest”
(LRF) with the observations from a subsample using the multinomial method; finally, we combine
the results of the LRFs.

The desired outcome of BLRF is that we will be able to not only reduce computation time, but
also produce results (measured in Relative Mean Squared Error (RelMSE) which will be further
discussed in Chapter 5) comparable to that of the standard Random Forests algorithm.

In this chapter, we will go from “macro” to the “micro”: first we will talk about the construction
of the BLRF and the relationship in between the LRFs; then, we will delve into the necessary
modifications to the the stopping criteria of each decision tree under the standard Random Forest
algorithm (in a regression setting) and how it can work with the multinomial method to build a “Little
Random Forest”; after that, we will discuss some advantages to the new BLRF algorithm; we will
conclude with a higher order analogy of BLRF to Random Forests as Random Forests to CART.

4.1 BLB Aggregation

As its name suggests, “Bag of Little Random Forests” consist of a number of “Little Random
Forests” and the final result is the aggregation of all the LRFs. More specifically, in a regression
setting, each LRF is trained using the multinomial method on a subsample of training observations,
while the final result given by the BLRF algorithm is the average of results produced by the LRFs.
We call the above method “BLB Aggregation”.

Before we proceed, it is useful to draw the connection between parameters for the BLB method
and parameters used in BLB Aggregation:

Note that all of the symbols are kept the same except r, which is now denoted as ntree. Since
each subsample corresponds to a single LRF, the corresponding parameter of r, representing
number of resamples of each subsample, should be ntree, representing number of decision trees
within each LRF.
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Parameter Definition in BLRF
n Size of the training set
γ The user-defined sizing factor that determines value of b
s Total number of Little Random Forests
b Number of distinct observations in each Little Forest, b = nγ

ntree (r) Number of trees within each Little Forest

Table 2: Parameters in BLRF

4.1.1 Construction of the Bag - Subsampling

First, it is important to understand how subsmpling is used to construct the Bag and the relation-
ship in between the Little Random Forests.

Given a set of training observations, X1, X2, ..., Xn, of size n, we repeatedly subsample, s
subsets with distinct elements of size b from the training observations, where b = nγ and γ ∈ [0, 1]
is a user-defined parameter5. Note that the word “distinct” refers to the fact that, within each
subsample, the observations have no overlap. But it is totally possible for a observation to be
present in multiple subsamples, which means the LRFs are not completely independent6.

Now, with a Bag of s subsamples of size b, we are ready to use each subsample to build a
Little Random Forest.

4.1.2 Building a Little Random Forest (LRF)

Much like the standard Random Forests algorithm, the building block of a LRF is still a decision
tree. However, there are two fundamental differences between a “Random Forest” and a “Little
Random Forest”: first, the Random Forest has access to all the available training observations,
whereas each “Little Random Forest” only works on a subsample of size b; in addition, the Ran-
dom Forest passes on a bootstrapped resample of size n, in which roughly 63% of all training
observations are present, to each decision tree to perform its calculation, whereas a “Little Ran-
dom Forest” passes b observations plus a vector of b multinomial coefficients, M, to each decision
tree, avoiding the potential problems caused by too large a resample.

More specifically, in a LRF, given the values of n and b, we will repeatedly construct the multi-
nomial coefficient vector by using M = Multinom(n,p), where p = {1/b, 1/b, ..., 1.b}. Then, we
will pass the multinomial coefficient vector along with the b training observations assigned to the
LRF to a number of (usually 500) decision trees. With that, we can delve into how a “BLB” decision
tree is constructed within a LRF.

4.1.3 A “BLB” Decision Tree

As discussed in Section 2.1.2, the crux of the CART algorithm is the process of recursive binary
splitting. Recall that, for each split, the algorithm goes through all possible splits - that is, all the
“gaps” within all explanatory variables to find the best split specified by Equation 4.

5For the predictions to be sufficiently accurate, Kleiner et al. (2014) determined that the optimal value of γ ranges
from 0.7 to 0.9. This will be further discussed with illustration in Chapter 5.

6Like BLB, as discussed in Section 3.2.1, one also has the option of making the subsets independent by partitioning
the training observations into non-overlapping subsets. The only drawback of such a method is that when n is small,
say 500, and γ = 0.9, the value of b = nγ = 5000.9 = 268, the data can form only one subsample, but we need two or
more subsamples to obtain a decent result.
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Now, with the addition of the multinomial coefficients, M, we modify the calculation for recur-
sive binary splitting. Similar to the standard Random Forest, a LRF still de-correlates the trees
by assigning only a subset of all predictors to each tree. However, remember that, instead of a
bootstrapped resample, the information used to build a BLB decision tree is: the b training obser-
vations assigned to the LRF and the multinomial coefficients vector, M. Thus, the algorithm now
goes through the subset of explanatory variable and all gaps in between b observations. Also,
similar to a decision tree, the criteria for finding the best split still uses Equation 4 (reproduced
below as Equation 6), though with the addition of the multinomial coefficients, the calculations of
the node sum, SUM , and the node population, n, are different:

∆SSE = SSEt − (SSEtR + SSEtL)

=
SUM2

tL

ntL
+
SUM2

tR

ntR
− SUM2

t

nt

(6)

and the new SUM and n are calculated as follows:

SUM =

b∑
i=1

yi ∗Mi (7)

n =
b∑
i=1

Mi (8)

where yi is the value of the response variable of observation i and Mi is the coefficient associated
with that observation.

4.1.4 Terminating Condition for BLRF

Aside from the new way to calculate sum of a given node and its population, another important
change that is made to the BLB decision tree relates to the terminating condition, i.e., when a node
should not be further split. In the original CART, a commonly used criteria is stop splitting until
the node population is smaller than 5. Now with the addition of the multinomial coefficients, the
terminating condition is still the same, but note that the new population of a given node is calculated
by Equation 8 - that is, stop the split if the sum of the multinomial coefficients associated with the
observations within a given node is less than 5.

With all the theoretical background laid out, below we give the complete algorithm of BLRF:
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Algorithm 2 Bag of Little Random Forests (BLRF)
INPUT:

a1, a2, ..., an, training observations s, number of LRFs
γ, the user-defined sizing factor ntree, number of trees within each LRF

OUTPUT: A BLRF object able to make predictions on new data

function BLRF(A = {a1, a2, ..., an}, s, γ, ntree)
b← nγ . b: size of each LRF
\\ Build s Little Random Forests
for i in 1:s do

Ii ← subsample of b distinct obs. from A
\\ Use Ii to build a LRF
for j in 1:ntree do

Mj ← {M1, ...,Mb,
∑b

ind=1Mind = n} . the Multinomial coefficients
\\ Build a BLB decision tree using Mj and Ii
Treei,j ← BLB decision tree{Mj , Ii}

end for
LRFi ← Aggregatentreej=1 Treei,j

end for
BLRF ← Aggregatesi=1 LRFi
return BLRF , the trained BLRF object

end function

4.2 Advantages

Much like the advantages of the BLB method as discussed in Section 3.3, the benefits of BLB
Aggregation includes computational, memory-wise, and architectural gains.

First, BLB Aggregation drastically reduces the amount of computation, mainly due to the fact
that each LRF only handles b distinct observations. More specifically, the computational gain
mainly comes from the process of recursive binary splitting. Previously, a single tree inside the
Random Forest has to process a resample of size n and thus it has to calculate Equation 6 for
0.632n times7. However, inside a LRF, each decision tree only needs to handle b observations and
a vector of multinomial coefficients of size b. Now the number of time that we perform Equation 6 is
strictly less than b−1, which in practice is much smaller than 0.632n 8. Here, one may validly argue
that, Bag of Little Random Forests needs to build a number of LRFs, not just one, and therefore
the amount of computation may exceed that of the original Random Forest. Such issue is perfectly
addressed by the paralleled structure of BLRF, which will be further discussed below.

In terms of memory usage, again due to the much smaller size of observations each LRF deals
with, the amount of memory required for each LRF is much smaller than the original Random For-
est. What is more, the algorithm and set up of BLRF makes computation and prediction possible
on data sets that are otherwise too massive for the original Random Forest to work with. Facing
a data set too large to be stored in memory at once, the original Random Forest cannot perform

7This is because, to avoid unnecessary computation, the gaps, or splits, in between repeated observations are
skipped. Since each resample inside the original Random Forest roughly contains 0.632n distinct observations, the
number of times that we perform Equation 6 is approximately equal to 0.632n.

8As an example, for n = 10000 and γ = 0.9, b = nγ = 3981, whereas 0.632n = 6320.
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any computation or give predictions at all, whereas BLRF is able to handle such a data set since
the combined memory usage is much smaller than that of RF; and if even a subset is too big, we
can pass each subset to an individual computing unit to build the model successfully.

Another major benefit that BLRF has over Random Forests is the computation of BLRF is
more suited for the distributed and paralleled structure. As discussed in Section 3.3, we can pass
each subsample, or a LRF, to an individual core and aggregate the results after the computation
is done. If we have a multi-core computer, we can pass each of the LRF to an individual core
to compute; if we have the computational resources of several multi-core computers, we can
distributed each LRF to each computer wherein the resamples, or BLB decision trees, can be
built using the computing power of a number of cores. In this way, the distributed and paralleled
structure alleviates the computational burden brought by the need to construct a number of LRFs
by utilizing the power of several computing cores and even several computers.

The above three advantages boasted by the BLRF algorithm makes it a compelling and prac-
tical algorithm well-suited for making predictions with massive data sets that are hard to process
by the Random Forest.

4.3 Higher Order Analogy

Some readers may have noticed that, Random Forest to CART is as BLRF to Random Forest. The
bootstrap aggregation method of Random Forest helps stabilize the variability of a decision tree by
aggregating a large number of decision trees; BLRF uses BLB Aggregation and the predictability
of several LRFs to enable predictions using massive data sets that cannot be processed by the
Random Forest.

Now we have understood much of the method of BLRF. However, the theoretical set up does
not give us much insight into the statistical and computational performance of the BLRF algorithm.
Hence, in the next chapter, we will use the BLRF method on several data sets and assess its
capabilities.

4.4 BLRF implementation in C

It is worth noting that, during the research, I implemented the regression model of BLRF on top of
the original randomForest (Liaw and Wiener, 2002) package in R. The main modifications I made
include: writing a function that generates random values from a multinomial distribution, passing
the vector of multinomial coefficients and a subsample of b = nγ of observations to a LRF,
changing the calculation of ∆SSE in recursive binary splitting according to equation 4, changing
the R wrapper function to take in s and γ as parameters for BLRF, among other small changes. All
modifications were written in the language of C.

5 Model Performance

To assess the statistical performance of the BLRF algorithm, we use BLRF to make predictions
with simulated data and then compare its performance with predictions made by the standard
Random Forest. The use of simulated data allows for the control of sample size and knowledge
of the underlying relationship between the response and explanatory variables. In addition, to
construct the Relative Mean Squared Error (RelMSE) mentioned at the beginning of Chapter 4,
we need to build the standard Random Forest using the simulated data so that results of BLRF
can be directly compared across different data structures.
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In the following sections, we will briefly talk about the simulation set up, both the hardware and
data structures, and then move on to the results of several simulation studies. With our results,
we aim to show the effects of some important parameters of the BLRF algorithm - s, ntree and γ
- and that BLRF is a practical and asymptotically accurate algorithm. Here, “asymptotically” refers
to when γ − > 1, or in other words, when each LRF essentially becomes a RF.

5.1 Simulation Setup

To evaluation the relative statistical performance of the BLRF algorithm, we use data generated
from three data structures (see details below) and normalized the results by those obtained from
the standard Random Forest algorithm. Since we are working exclusively within a regression
setting, the normalized results are measured in RelMSE:

RelMSE =
MSEBLRF
MSERF

(9)

As we can see, “RelMSE” is defined by the MSE achieved by the BLRF under certain param-
eter settings (MSEBLRF ) divided by the optimal 9 MSE achieve by the Random Forest algorithm
(MSERF ). Thus, a RelMSE smaller than10, equal to or slightly bigger than 1 is considered a good
result (or “comparable to that of Random Forests”).

All tests are run on three types of data structures: linear, clustered and cosine. Each data set
contains n = 10000 observations with ndim = 5 dimensions. For each realization of each data
set, we first draw features X ∼ U([0, 1]5) and then generate the response variables, Y , using the
following rules:

linear: Y = 5X1 + 10X2 + 15X3 + 20X4 + 25X5 + ε
consine : Y = 50 × cos( π × (X1 + X2)) + ε
clustered 11: Y = cluster.mean + ε

where ε is an error term generated from the standard normal distribution. Aside from the training
observations, we also independently generate 2000 test observations from each data structures
to assess the test accuracy of the models.

As for the hardware setup, all simulations are performed on a computer with 64 AMD Opteron
6276 CPUs running at 1.4 GHz. To reduce computation time, each of the tasks is performed in
parallel using 20 cores. It is important to register more number of cores than number of LRFs, s,
since each LRF should be built independently using a single core. In our simulation, s is at most
18.

5.2 Effect of Hyperparameters on Performance

With an overall understanding of the simulation setup, we are ready to discuss the simulation
results. We will assess the simulation results through discussions on the three hyperparameters

9We define “optimal” as the average MSE of the Random Forest algorithm with 10 iterations and ntree = 500.
10In practice, the probability of RelMSE being less than 1 is minimal. In other words, the performance of BLRF should

be worse than those of RF, as the performance of BLB is relatively worse than that of the standard bootstrap (Kleiner
et al., 2014).

11This data set is generated using the “simdataset” function under the MixSim package (Melnykov et al., 2012) in R.
Depending on the values of X, the response variable Y is assigned to one of 20 clusters, whose cluster means range
from 10 to 200 : cluster.mean ∈ {10, 20, 30, 40, ..., 190, 200}. For more information on data generation, please refer
to the MixSim package.
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of BLRF: s (number of little forests), ntree (number of trees within each little forest), and γ (the
parameter that determines the number of observations used to build a little forest). To better
understand the interactions between each of these parameters, we incorporate the analysis of γ
into those of s and ntree, respectively. In this way, we can better understand the effects of s and
ntree, holding γ constant, while also comparing the effect of γ with all else constant.

5.2.1 Number of Subsamples (s)

Figure 2: RelMSE (y-axis) Against Number of LRFs (x-axis), s

Figure 2 shows the results for running the BLRF algorithm on the three simulated data sets, holding
ntree = 500 while varying the values of s and γ. There are three main observations: first, all
measures of RelMSE are bigger than one, indicating that the BLRF algorithm overall produces
more variable predictions compared to those of the standard Random Forest; second, we observe
a decreasing trend in RelMSE as s increases; third, all else constant, RelMSE decreases with an
increasing value of γ. All three points are theoretically sound and are to be expected.

For the first finding, since we know from previous chapters that b << n, each LRF contains
only a subset of all information known by the entire training data set. Therefore, a few LRFs alone
should give more variable results than those of the standard Random Forest. However, we should
expect asymptotically similar results for the two algorithms, i.e. when γ approaches to 1 (which
means each little forest essentially become a standard Random Forest since it has almost all the
training data), both models should produce similar results. And indeed, in the figures we see that
RelMSE close to 1 when γ = 0.9 for all data structures.

The second and third findings both have to do with the amount of information known by the
entire BLRF. All else constant, if we combine and average the results obtained from more inde-
pendently constructed LRFs (a larger value for s), we should expect more accurate predictions
because the Bag as a whole has more information. Similarly, a larger value for γ means that
each LRF has more information; therefore, all else constant, increasing γ will also result in more
accurate predictions and a lower RelMSE.

Aside from the above findings, it is also important to discuss the value of s needed for conver-
gence12 for different values of γ. Kleiner et al. (2014) mentioned “note that fairly modest values

12We define “convergence”, marked as a square on the plot, as when the drop in RelMSE is less than 1% or when
RelMSE goes up.
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of s suffice for convergence of BLB, ..., with s at convergence ranging from 1-2 for b = n0.9 up
to 10-14 for b = n0.5”. Similar conclusion can be found in our figure above for the clustered data
set (the point of “convergence” for each γ value is marked with a square), as s needed for con-
vergence increased from 5 to 13 monotonically as γ goes from 0.5 to 0.9. However, the points of
convergence for the Cosine and Linear data sets do not display such a monotonic relationship13.

In terms of statistical performance, observe from the graphs that small values of γ (0.5-0.6)
tend to produce RelMSE too high to be considered useful while larger values of γ (0.7-0.9) produce
reasonable (RelMSE close to 1) results given sufficient values of s. More interestingly, there is no
point of overlap in between RelMSE curves for different values of γ14. Hence, to obtain a relatively
good result, we prefer higher values of γ (0.7-0.9) with a sufficient value of s (3 to 10).

5.2.2 Number of Trees (ntree)

Figure 3: RelMSE (y-axis) against Number of Trees (x-axis) within a LRF, ntree

Another important hyperparameter we are interested in is ntree, the number of BLB decision
trees within each Little Random Forest. Figure 3 shows the results obtained by running BLRF
algorithm on three data structures, holding s = 5. Similar to the result for s, we observe from the
figures that: first, all results obtained are inferior to those of the standard Random Forest; second,
larger values of γ are associated with lower RelMSE; third, for each value of γ, increasing ntree
tends to lower RelMSE, albeit just slightly.

The reason for the decline in RelMSE resulting from an increasing ntree is much the same as
that of the standard Random Forest: a few decision trees cannot extract all available information
contained in the given training data set (or a subsample of size b in BLRF’s case), while a sufficient
number of trees can; also, including more de-correlated trees helps reduce variance and thus
stabilizes the entire forest (or one LRF in BLRF’s case).

13The rationale for such a phenomenon is multitudes. One reason might be that the family of CART algorithm is not
particularly suited for modeling data from these two data structures. Thus, we don’t need as many LRFs to capture all
information that can be captured by a LRF in a subsample.

14Although a full explanation of such phenomenon requires more mathematical rigor, intuitively, we can imagine
training several weak models using subsets of the training data versus a strong model training using all data. The
several weaker learners, each lacking a large portion of information (b << n) that the strong model has, will produce
inferior results even though we average their results.
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However, we do observe some difference in the behavior of BLRF versus that of the standard
Random Forest: in the standard Random Forest, usually the sufficient value of ntree for conver-
gence ranges from 300-500, while the range is 100-200 in BLRF (true for all values of γ). This
is because the standard RF deals with the entire training data set while each LRF within BLRF
deals with a subsample of size b < n. This is to say that, the maximum available information
that the standard Random Forest can extract is vastly larger that than of a little forest within BLRF.
Such finding is of great benefits to us, since if we know that we could use a relatively small value
of ntree to obtain a sufficiently good result, we could reduce the amount of computation and thus
save execution time.

Therefore, in terms of statistical performance, we prefer a higher value of γ (0.7-0.9) with a
sufficient value of ntree (100-200) to achieve results comparable to those of the standard Random
Forest.

5.3 Trade-off: Performance versus Time

Along with the discussion of the statistical performance of BLRF, it is equally important to talk
about the computational (time) performance of the new model. Again, the time needed to train
BLRF directly depends on the choice of three parameters: s, ntree and γ.

5.3.1 Effect of Hyperparameters on Time

Figure 4: Time (in seconds) Consumed to Train BLRF with Varying Hyperparameters

Figure 4 displays the training times for BLRF with varying values of s and ntree while keeping γ
constant at 0.7. It is important to distinguish the effects that these three variables have on the
overall time consumption:
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s: according to the BLRF algorithm, the s LRFs are all built in parallel, which means that we
should not observe substantial increase in time as s increases. In Figure 4, we observe that as s
goes from 1 to 19, the training time of BLRF goes up by less than 50% across all values of ntree.
The reason behind such increase has to do with the extra overhead created by distribution of tasks
and aggregation of results, a well-documented trade-off in parallel computing (Barney, 2017).

ntree: within each LRF, the BLB decision trees are still built serially. Therefore, time required
to build BLRF should scale linearly with ntree, which is indeed what we observe.

γ: generally speaking, a larger value of γ leads to a larger b15, which requires more time as
each LRF is larger in size. This time increase should scalre exponentially, as γ appears as the
exponent when calculating b (can be seen in Figure 5).

5.3.2 Time Consumption: BLRF vs RF

We would also like to compare the training time of BLRF relative to that of RF.

Figure 5: RF versus BLRF: RelMSE and Relative Time

Figure 5 shows the results of a particular simulation using n = 10000 observations from the
cosine data structure. We trained multiple BLRF models and a RF model using the optimal values
of s found in section 5.2.1 for BLRF and ntree = 500 for both models. The x and y-axes respectively
show the RelMSE and Relative T ime (time to train a BLRF divided by time to train a RF) of the
models. Note that the grey dashed lines represents RelMSE = 1 and Relative Time = 1, or in other
words, the baseline performance of the standard RF in terms of accuracy and time. We observe
that for γ < 0.9, BLRF requires significantly less time to train than RF but suffers from higher
RelMSE. For γ ≥ 0.9, BLRF took more time to train but the RelMSE is around the same level as RF,

15Recall that b = nγ
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suggesting decent asymptotic result. The fact that BLRF with γ ≥ 0.9 requires more time to train
presents a problem: the use of BLRF is no longer justified. We believe that this extra computation
time is a result of the serial part of the program that cannot be paralleled and the extra overhead
created by employing a paralleled structure. It is also possible that the modifications written in
C (discussed in section 4.4) were not optimized to their full extent. However, more research is
needed on this front.

Based on the above results, we conclude that for practical use, γ = 0.7 or 0.8 seems to be
optimal choices in terms of both time and accuracy: γ = 0.7 reduces the computation time by
more than 60%, while γ = 0.8 gives better accuracy (around 2 RelMSE).

5.4 Results

To bring the above analyses together, the three hyperparameters, γ, s and ntree all play crucial
roles in determining how well the new BLRF model performs in terms of computational time and
accuracy. We prefer higher values of γ that ranges from 0.7 to 0.8 to ensure accuracy while picking
sufficient s (3-14) and ntree (100-200) values to ensure the convergence (in RelMSE) behavior.
Larger values of γ ≥ 0.9 create higher-than-justified computational burden. When the parameters
are set as indicated, the BLRF is able to produce results comparable to those of the standard
Random Forest (reflected by RelMSE values close to 1) using reduced computational time.

6 Conclusion and Discussion

In this paper, we introduce the new machine learning algorithm - Bag of Little Random Forests
(BLRF). We have discussed the mechanisms of BLRF as well as its two fundamental building
blocks: Random Forests (RF) and Bag of Little Bootstraps (BLB). We have also show through
simulations that BLRF is able to reduce the model training time while maintaining levels of accuracy
comparable to those of RF.

However, there are several necessary modifications to our current version of BLRF. First, in our
implementation of BLRF, the context is strictly limited to a regression setting. To make the model
fully functional, it is necessary to also implement the classification model of BLRF. Second, we
have not yet dealt with variable importance or OOB error estimation, both important components
of the RF algorithm. Finally, we are not entirely clear on the reasons behind the larger time
consumption required by BLRF when γ ≥ 0.9.

Future work indicates completing the BLRF package by adding the classification part of the
algorithm, as well as calculating variable importance and OOB error rates. To better address the
computational time issues, we will start building the BLRF package on top of the ranger (Wright
and Ziegler, 2015) package, a C++ implementation of Random Forests that is easier to work with
than the original randomForest package16.

16The reason that we did not implement classification BLRF is that the original RF R package was written in C (for
regression) and Fortran (for classification). The learning curves for both were quite high. However, both regression and
classification of RF in the ranger implementation are written in C++ and are better-documented.
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