
Local Dependence in Exponential Random Network
Models

Abstract
Graph representations are used across disciplines for the analysis and visualization of relational data.

Exponential random graph models allow for a general method of modelling the underlying stochastic
process that has generated the observed data conditional on observer attributes of the vertices, or nodes.
Recent developments in ERGMs have introduced the notions of local dependence and the exponential
random network model, or ERNM. Local dependence enforces the assumption of independence between
edges that connect nodes that are, in some sense, “far apart.” This is formalized by the introduction of a
neighborhood structure on the graph: a partition of the vertices with the property that edges between
two neighborhoods are stochastically independent of all other edge variables. This independence allows
for the proof of a desirable consistency condition and a central limit theorem for statistics of the graph.
The random network model allows for the joint modelling of both the graph and random attributes of the
vertices. This has useful applications in network analysis, as it allows researchers to make inferences about
how graphical features affect vertices and vice versa. This thesis combines these two developments to
show the original result that ERNMs with the local dependence property have the same useful consistency
property and that a similar central limit theorem also holds.
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Figure 1: An undirected graph on four vertices.
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Figure 2: A directed graph on four vertices

1 Introduction

1.1 Random graphs

The mathematical object we call a graph is a set of vertices and edges, so for a graph G, we write G = (V,E)
where V is the set of vertices and E are ordered or unordered pairs (i, j) for i, j ∈ V . These objects can be
represented visually by pictures like Figure 1. If the pairs in E are ordered, then we say that G is directed (or
sometimes that G is a digraph), otherwise we say that G is undirected. The example in Figure 1 is undirected;
when drawing directed graph, we can indicate the direction of the the edge (i, j) by drawing an arrow from
node i to node j, as in Figure 2. If we only consider the presence or absence of an edge between vertices, then
we say that the graph G is unweighted. In a weighted graph, each edge is assigned a numeric value, called the
weight. The case of an unweighted graph is equivalent a weighted graph where each edge weight wij ∈ {0, 1}.

Generally, the most convenient way to represent a graph is as an adjacency matrix. For a graph with n
vertices, the adjacency matrix is the n× n matrix with the weight of edge (i, j) in the i, j position. Note that
if a graph G is undirected, then its adjacency matrix is symmetric and if G is an unweighted graph, then all
its entries are either 1 or 0. For example, the graph in Figure 1 has adjacency matrix
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0 1 0 1
1 0 0 1
0 0 0 1
1 1 1 0

 . (1)

Here, we have adopted the convention that vertices do not have an edge with themselves, so the diagonal
elements of this matrix are all zero. Sometimes we will also represent a graph as an edge list, which is simply
the set of pairs in E with their weights.

If we assume that a graph G is generated by some kind of stochastic process, then we consider the whole
graph as a random variable. This is equivalent to considering the random matrix Y , where Y is the adjacency
matrix of G. We can consider the n2 random variables Yij for i, j ∈ {1, . . . , n}, taking values in the set of
possible weights for the random graph in consideration. For example, if G is an undirected binary random
graph, then this can be simplified to the n2/2− n Bernoulli random variables Y(i,j) for 1 ≤ i ≤ j ≤ n. By
breaking the random graph into these simpler parts, we can begin to apply familiar statistical ideas to these
complex objects.

1.2 Network modeling

Graphs are a convenient way to represent relational data, or data that contain information about a relationship
between actors. This brings us to the area of network analysis, where random graphs are used to model many
different kinds of relationships. For example, in sociology, networks are commonly used to model relationships
among people, like marriages within a group of people. Political scientists use random graphs to represent
things like the network of trade agreements between nations. Finally, in epidemiology, random networks can
model an underlying contact network, say of people who shake hands or otherwise come into contact in a
way that could spread a disease, over which a transmissible infection spreads. This allows the researcher to
estimate how the medical features of the disease and the sociological features of the population interact to
promote or inhibit the spread of disease. As an example of this, see Groendyke, Welch, & Hunter (2012),
where, among other things, they examine if closing schools would have had an effect on the spread of an 1861
measles outbreak.

To formalize these notions, we begin with a random graph Y on n vertices (called nodes in the field of network
analysis) considered as a random matrix with sample space Y, where Y is the set of all possible graphs on n
vertices. There may be some restrictions on Y, depending on the application being considered. Usually, we
prohibit edges that connect a vertex to itself by forcing the diagonal entries of Y to be 0, as in (1). However,
specific contexts may require nonobvious constraints put in place by the researcher; for example, when using
a network to model the romantic relationships within a group of people, the researcher must exclude networks
with ties between nodes that do not have the appropriate gender, depending on the respective preferences of
each pair of nodes.

This thesis explores two classes of network models: the exponential random graph model (ERGM) and
the exponential random network model (ERNM). These models are quite similar in that they both model
the structural features of the network, such as node degree and triangle formation, as a function of nodal
covariates, say age or gender. However, the ERNM also models the effect of network features on the nodes.
For example, Fellows & Handcock (2012) show that teens with friends who smoke or drink are more likely to
smoke or drink themselves.

The notion of local dependence was introduced by Schweinberger & Handcock (2015) in the context of ERGMs.
Here we extend this idea to ERNMs and provide new proofs of their two main theorems in this context.
The first theorem shows that the stochastic process of sampling smaller subnetworks from a large network
satisfies a desirable consistency condition. This means that as we sample larger and larger subnetworks, the
model parameter estimates become better and better approximations of the true parameter values. Shalizi &
Rinaldo (2013) showed that this is not the case for most ERGMs. The second theorem shows that certain
types of statistics of locally dependent random networks have an asymptotically normal distribution, which is
also desirable from the point of view of making inferences based on these models.
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2 Exponential random graph models

The first model of interest to this thesis is the exponential random graph model (ERGM), introduced by S.
Wasserman & Pattison (1996). Broadly, given a network, this model allows us to specify structural features
that are of interest and test in a principled way if there are more of those kinds of features present than
would be expected if the network were formed by chance. This allows the researcher to draw conclusions
about the latent process that generated the network.

This model can be expressed by the equation

P (Y = y|θ) = eθ·g(y)

C(θ,Y) , (2)

where g(y) is a vector of statistics that depend on the network y and θ is a vector of parameters. The
function C(θ,Y) is a normalizing constant. We may easily extend the model to include nodal covariates (like
demographic information) by introducing the fixed n× p matrix x which is used to calculate some of the
components of g.

Note that the constant in the denominator depends both on the support of the random variable Y , which is
fixed and—in principle—known, and the unknown parameter θ. In general, this constant will have the form

C(θ,Y) =
∑
y∈Y

eθ·g(y), (3)

which is impossible to compute in all but the most trivial cases, as the sum is over all possible networks. For
the simplest undirected binary network with n nodes, we have |Y| = 2n(n−1)/2, so for 10 nodes, the constant
C will be a sum of 245 terms. As each term requires a non-trivial calculation, we are unable to calculate the
value of C directly for a network of any reasonable size.

With the model in place, we can begin to estimate the parameter θ via maximum likelihood estimation. To
do that, we define the likelihood function, which takes the parameter space into the reals. Our goal is to find
the value of θ that maximizes this function given the observed data. We call this θ the maximum likelihood
estimator, or MLE. Intuitively, we are looking for the value of θ that makes the network we have observed
most likely according to our model. In our case this function is

L(θ|y) = eθ·g(y)

C(θ,Y) . (4)

Note that C also varies with θ.

The fact that this term varies with θ means that a naive optimization algorithm will be prohibitively slow.
Exploring the parameter space almost always involves evaluating the function at many different points.
For example, the common gradient descent algorithm involves evaluating the function many times in the
neighborhood of a point to approximate the gradient. This then allows the algorithm to choose a new point
where the function is larger. This process then repeats. Even when given relatively simple functions, this
algorithm can require hundreds of function calls. In our case, that is not feasible, as we cannot even evaluate
our function once.

Difficulties aside, this model will be the jumping off point for our exposition of the properties of the exponential
random network model.
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Figure 3: A locally dependent random network with neighborhoods A1, A2, . . . , AK and two binary node
attributes, represented as gray or black and circle or diamond.

3 Locally dependent exponential random network models

To begin, we define a random network, developed by Fellows & Handcock (2012). By way of motivation, note
that in the ERGM the nodal variates are fixed and are included in the model as explanatory variables in
making inferences about network structure. Furthermore, there is a class of models that we do not discuss
here that consider the network as a fixed explanatory variable in modeling (random) nodal attributes. It
is not difficult to come up with situations where a researcher would like to jointly model both the network
and the node attributes. Thus we define a class of networks in which both the network structure and the
attributes of the individual nodes are modeled as random quantities.
Definition 3.1 (Random network). Let N be a countable collection of nodes (which we take to be a subset
of N). Let Y be the random graph on the nodes N with support Y. Then for each element n ∈ N , let there
be a corresponding random vector of node attributes Xn ∈ Rq and collect them into the n× q random matrix
X with support X . The random network is the random variable Z = (Y,X) with support Z = Y × X .

Now we wish to model these objects, so we follow the ERGM and turn to the exponential family (Fellows &
Handcock, 2012). We write

P (Y = y,X = x|η) ∝ eη·g(y,x). (5)

This looks very similar to the ERGM, but note the explicit dependence on the quantity x. More concretely,
we can include terms that depend only on x, which would have no place in an ERGM. We can further express
the difference of the two models by rewriting the left hand side of 5 as

P (X = x, Y = y|η) = P (Y = y|X = x, η)P (X = x|η),

where the first term on the right hand side is the ERGM and the second term is

P (X = x|η) = C(Z, η, x)
C(Z, η) ,

where

C(Z, η, x) =
∫
{(v,u)∈Z:u=x}

P (X = x|η).

Roughly, this is the proportion of the total sample space Z that is possible with x fixed. This is not, in
general, equal to one, so the ERNM is not equal to the ERGM (Fellows & Handcock, 2012).

5



3.1 Definitions and notation

We will consistently refer to a set of nodes, Ak, as the k-th neighborhood, with an uppercase K representing
the total number of neighborhoods and a lowercase k representing a specific neighborhood. The variable
N will refer to the domain of a random network, usually the union of a collection of neighborhoods. Nodes
within the network will be indexed by the variables i and j, with Zij = ({Yij , Xi, Xj}), where Yij is referring
to the edge between nodes i and j, and Xi and Xj refer to the random vectors of node attributes. Abstracting
this further, i and j will also refer to tuples of nodes, so we will write ~i = (i1, i2, . . . , iq) ∈ N ×N × · · · × N .
The variables Z and Y will also often carry a subscript of W or B (for example YBij) which emphasizes that
the edge from i to j is within or between neighborhoods, respectively. Finally, for lack of a better notation,
the indicator function IB(i, j) (where B is for between) is one if i ∈ Al and j ∈ Ap where l 6= p, and zero
otherwise.
Definition 3.2 (Local dependence property). Extending the definition in Schweinberger & Handcock (2015),
a random network model satisfies the local dependence property if there is a partition of the node set N into
neighborhoods A1, A2, . . . , AK for K ≥ 2 such that the network variables Zij are dependent when i, j ∈ A`
for some ` and independent otherwise. We also require that nodal attributes depend only on the attributes of
nodes within the same neighborhood. Thus, the probability measure can be written as

P (Z ∈ Z) =
K∏
k=1

[
Pkk(Zkk ∈ Zkk)

k−1∏
`=1

Pkl(Zkl ∈ Zkl, Zlk ∈ Zlk)
]
, (6)

where Zmn is the subnetwork consisting of the random graph ties from nodes in Am to those in An and the
appropriate node variables and Zmn is a subset of the sample space of Zmn. Furthermore, the measures Pkk
can induce dependence between dyads while the measures Pkl induce independence.
Definition 3.3 (Sparsity). Also from Schweinberger & Handcock (2015), we say a locally dependent random
network is δ-sparse if there is some δ > 0 and some C > 0 such that

E (|YBij |p) ≤ Cn−δ, (p = 1, 2) (7)

where n = |N | and YBij signifies the tie between neighborhoods from node i ∈ Al to node j ∈ Am where
l 6= m.

3.2 Preliminary theorems

In proving our theorems, we will make use of several other central limit theorems, all of which can be found
in Billingsley (1995). The first is the Lindeberg-Feller central limit theorem for triangular arrays. The second
is Lyapounov’s condition, which gives a convenient way to show that the Lindeberg-Feller theorem holds.
Finally, we make use of a central limit theorem for dependent random variables. For the sake of brevity, in
this section we state each of these without proof.
Theorem 3.1 (Billingsley, 1995 Theorem 27.2). For each n take Xn1, . . . , Xnrn , independent with E(Xns) = 0
for all n and s (where no generality is lost in this assumption). Then we have σ2

ns = Var(Xns) = E(X2
ns).

Next, set s2
s =

∑rn

s=1 σ
2
ns. Now set

Sn = Xn1 + · · ·+Xnrn
.

If the Lindeberg condition,

lim
n→∞

rn∑
s=1

1
s2
n

∫
|Xns≥εsn

X2
ns = 0 (8)

holds for all ε > 0, then Sn
d−→ N(0, 1).
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Theorem 3.2 (Billingsley, 1995 Theorem 27.3). Let Sn be as before. Then if Lyapounov’s condition,

lim
n→∞

rn∑
s=1

1
s2+δ
n

E
(
|Xns|s+δ

)
= 0 (9)

holds for some δ > 0, then the Lindeberg condition also holds. Therefore Sn
d−→ N(0, 1).

Theorem 3.3 (Billingsley, 1995 Theorem 27.4). Suppose that X1, X2, . . . is stationary and α-mixing with
αn = O(n−5) and that E(Xn) = 0 and E(X12

n ) <∞. Note that the condition on α is stronger than what we
require. Our Xn will be M -dependent, meaning that each Xn is independent of all Xm where |n−m| > M .
It is true that an M -dependent sequence is α-mixing for constant α. Then, if Sn = X1 + . . . Xn, we have

Var(Sn)
n

→ σ2. (10)

Then, if σ > 0, we have Sn
d−→ N(0, 1).

The final theorem is Slutsky’s theorem, a classic result of asymptotic theory in statistics.
Theorem 3.4 (Wasserman, 2004 Theorem 5.5). Let Xn, X, Yn be random variables and let c be a constant.
Then, if Xn

d−→ X and Y p−→ c we have Xn + Yn
d−→ X + c and XnYn

d−→ cX.

3.3 Consistency under sampling

With these in place, we attempt to extend a result about locally dependent ERGMs proven by Schweinberger
& Handcock (2015) to locally dependent ERNMs. In short, this theorem states that the parameters estimated
by modeling a small sample of a larger network can be generalized to the overall network. It was shown
by Shalizi & Rinaldo (2013) that most useful formulations of ERGMs do not form projective exponential
families in the sense that the distribution of a subgraph cannot be, in general, recovered by marginalizing the
distribution of a larger graph with respect to the edge variables not included in the smaller graph. Hence, we
are unable to generalize parameter estimates from the subnetwork to the total network.

To show that locally dependent ERNMs do form a projective family, let A be a collection of sets A, where
each A is a finite collection of neighborhoods. Also, allow the set A to be an ideal, so that if A ∈ A, every
subset of A is also in A and if B ∈ A, then A ∪ B ∈ A. If A ⊂ B, think of passing from the set A to the
set B as taking a larger sample of the (possibly infinite) set of neighborhoods in the larger network. Then
let {PA,θ}A∈A be the collection of ERNMs with parameter θ indexed by the sets in A. For each A ∈ A, let
PA,Θ = {PA,θ}θ∈Θ be the collection of ERNMs on the neighborhoods in A with parameter θ ∈ Θ where
Θ ⊂ Rp is open. Assume that each distribution in PA,Θ has the same support ZA and that A ⊂ B if and
only if ZB = ZA × ZB\A. Then, the exponential family {PA,Θ}A∈A is projective in the sense of Shalizi &
Rinaldo (2013 Definition 1) precisely when Theorem 3.6 holds.

This follows from a specific case of the general definition given by Shalizi & Rinaldo (2013). There, for every
pair A and B with A ⊂ B, they define the natural projection mapping πB→A : ZB → ZA. Informally, this
mapping projects the set ZB down to ZA by simply removing the extra data. For example if B = {A1, A2}
and A = {A1} as in Figure 3, then the mapping πB→A is shown in Figure 4.

This is desirable because Shalizi & Rinaldo (2013) have demonstrated the following theorem.
Theorem 3.5 (Shalizi & Rinaldo, 2013 Theorem 3). If the exponential model family {PAΘ}A∈A is projective
and the log of the normalizing constant can be written as

log (C(θ,Z)) = log
(∫
Z
eθ·g(z) dz

)
= r (|Z|) a(θ),

(11)
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A1 A2

πB→A

A1

Figure 4: The projection mapping from B = {A1, A2} to A = {A1}.

where r is a positive, monotone increasing function of some positive measure on Z and a is a differentiable
function of θ, then the maximum likelihood estimator exists and is strongly consistent, meaning that the MLE,
θ̂

a.s.−−→ θ, where θ is the unknown parameter being estimated.

This is trivially achieved by setting r = 1 for all values of |Z| and setting a(θ) = log(C(θ,Z)). We have
differentiability of a with respect to θ by a result from multivariable calculus that follows from Fubini’s
theorem. From a practical perspective, this means that a researcher using this model can assume that
parameters estimated from samples of a large network are increasingly good approximations for the true
parameter values as the sample size increases.
Theorem 3.6. Let A1, A2, . . . be a sequence of neighborhoods and define the sequence {NK} =

⋃K
i=1Ai.

Then let Z1, Z2, . . . be the sequence of locally dependent random networks on the NK . For each ZK , there
is the corresponding set of neighborhoods AK . Let PK be a generic probability distribution from the family
{PKθ}θ∈Θ. Let the network

πAK+1→AK
(ZK+1) = ZK+1\K ,

with corresponding distirbution PK+1\K . Then

PK(ZK ∈ ZK) = PK+1(ZK ∈ ZK , ZK+1\K ∈ ZK+1\K), (12)

my_dev where ZK is the sample space of the distribution PK and ZK ⊂ ZK . This is a specific case of the
definition of projectibility for a general exponential family given by Shalizi & Rinaldo (2013).

Proof. This follows from the definition of local dependence, in much the same way as the proof for ERGMs
by Schweinberger & Handcock (2015) does. We have

PK+1(ZK ∈ ZK , ZK+1\K ∈ ZK+1\K) = PK+1(ZK ∈ ZK)PK+1\K(ZK+1\K ∈ ZK+1\K)
= PK(ZK ∈ ZK)(1)
= PK(ZK ∈ ZK),

where the measure becomes Pk from the product definition of a locally dependent random network.

3.4 Asymptotic normality of statistics

In this section we will prove that certain classes of statistics of locally dependent random networks are
asymptotically normally distributed as the number of neighborhoods tends to infinity. The statistics we
consider can be classified into three types: first, statistics which depend only on the graph structure; second,
statistics that depend on both the graph and the nodal variates; and third, statistics that depend only on the
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nodal variates. The first class of statistics has already been considered by Schweinberger & Handcock (2015),
but we will reproduce the proof here, as the second proof is very similar. The third class of statistics becomes
normal in the limit by a central limit theorem for M dependent random variables in Billingsley (1995).

Before we begin to explicitly define each of these classes, we clarify the notation that will be used. A general
statistic will be a function

S : N d → R,

where N d is the d-fold Cartesian product of the set of nodes, N , with itself:

N d = N × · · · × N︸ ︷︷ ︸
d times

.

Additionally, the statistic will often carry a subscript K, indicating that the statistic is of the random network
with K neighborhoods.

Formally, as explained in Schweinberger & Handcock (2015), the first class of statistics contains those that
have the form

SK =
∑
i∈Nd

SKi,

where

SKi =
∏
l,p∈i

Ylp,

a product q of edge variables that captures the interaction desired. We will also make use of the set Adk, wich
is a similar cartesian product. When we write i ∈ Adk, we mean the every component of the d-tuple i is an
element of Ak. Furthermore, by a catachrestic abuse of notation, we will write l, p ∈ i to mean that l and p
are vertices contained in the d-tuple i. Now we are ready to prove the first case of the theorem.
Theorem 3.7. Let A1, A2, . . . , AK be a sequence of neighborhoods of size at most M and form the sequence
of domains NK =

⋃K
k=1Ak. Then let Z1, Z2, . . . , ZK be the sequence of unweighted random networks on the

NK . Then, let the statistic SK : N d
K → R be given. Furthermore, assume the statistic depends only on the

graph variables of the ZK . We also assume that the ZK satisfy the local dependence property and that they
are δ-sparse, for some δ > d. Finally, we require that Var(W ∗K)→∞, where W ∗K is defined in (14). Then

SK − E(SK)√
V ar(SK)

d−−−−→
K→∞

N(0, 1). (13)

Proof. As the networks ZK are unweighted, all edge variables Yij ∈ {0, 1}. Let µij = E(Yij). Then define
Vij = Yij − µij . Therefore, without loss of generality, we may work with Vij , which has the convenient
property that E(Vij) = 0. This means that we can similarly shift our statistics of interest, SK . Therefore,
call S∗K = SK − E(SK), so that E(S∗K) = 0.

Note that we can write

S∗K = W ∗K +B∗K ,

with
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W ∗K =
K∑
k=1

W ∗K,k =
K∑
k=1

∑
i∈Nd

K

I(i ∈ Adk)S∗Ki (14)

and

B∗K =
∑
i∈Nd

K

IB(i)S∗Ki, (15)

where the indicator functions restrict the sums to within the k-th neighborhood and between neighborhoods
of the graph, respectively. Specifically, IB(i) = 1 when the d-tuple of nodes i contains nodes from different
neighborhoods, or exactly when I(i inAdk) = 0 for all neighborhoods k. By splitting the statistic into the
within and between neighborhood portions, we are able to make use of the independence relation between
edges that connect neighborhoods. We also have E(W ∗K) = 0 and E(B∗K) = 0, as each quantity is a sum of
random variables with mean zero.

The idea of this proof is to gain control over the variances of B∗K and all the elements of the sequence W ∗Kk.
We can then show that B∗K is converging in probability to zero and that the triangular array W ∗K satisifies
Lyaponouv’s condition, and is thus asymptotically normal. Finally, Slutsky’s theorem allows us to extend the
result to S∗K .

To bound the variance of B∗K , note that

Var(B∗K) =
∑
i∈Nd

K

∑
j∈Nd

K

IB(i)IB(j) Cov(S∗Ki, S∗Kj).

Despite independence, some of these covariances may be nonzero if the two terms of the statistic both involve
the same edge. For example, in Figure 3, a statistic that counted the number of edges between gray nodes
plus the number of edges between diamond shaped nodes would have a nonzero covariance term because of
the edge between the two nodes that are both gray and diamond shaped. To show that, in the limit, these
covariances vanish, we need only concern ourselves with the nonzero terms in the sum. That is, only those
terms where IB(i)IB(j) = 1. This happens exactly when both S∗Ki and S∗Kj involve a between neighborhood
edge variable. So, note that we have

Cov(S∗Ki, S∗Kj) = E(S∗KiS∗Kj)− E(S∗Ki)E(S∗Kj)
= E(S∗KiS∗Kj),

(16)

as the expectation of each term is zero. Next we take Yl1l2 to be one of the (possibly many) between
neighborhood edge variables in this product (such that IB(i) = 1 where i is any tuple containing l1 and l2)
and Vl1l2 to be the recentered random variable corresponding to Yl1l2 . Then,

Cov(S∗Ki, S∗Kj) = E

 ∏
m,n∈i

Vmn
∏

m,n∈j
Vmn


= E

V pl1l2 ∏
m,n∈(i∪j)\{l1,l2}

Vmn

 , (p = 1, 2)

where we must consider the case where p = 1 to account for the covariance of S∗Ki and S∗Kj when i 6= j and
the case where p = 2 to account for the variance of S∗Ki, which is computed in the case where i = j. So, if
p = 1, then
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E

Vl1l2 ∏
m,n∈(i∪j)\{l1,l2}

Vmn

 = E (Vl1l2)E

 ∏
m,n∈(i∪j)\{l1,l2}

Vmn


= 0,

by the local dependence property and the assumption that E(Vl1l2) = 0. The local dependence property allows
us to factor out the expectation of Vl1l2 , as this edge is between neighborhoods, and therefore independent of
every other edge in the graph. Now, if we have p = 2, then, by sparsity and the fact that the product below
is at most 1,

E
(
V 2
l1l2

)
E

 ∏
m,n∈(i∪j)\{l1,l2}

Vmn

 ≤ DCn−δ,
where D is a constant that bounds the expectation above. There exists such a constant because each of the
V_{mn} are bounded by definiton, so a product of them is bounded. So as K grows large, the between
neighborhod covariances all become asymptotically negligible. Therefore, we can conclude that

Var(B∗K) =
∑
i∈Nd

K

∑
j∈Nd

K

IB(i)IB(j) Cov(S∗Ki, S∗Kj) ≤ DCn2d(−δ). (17)

So we have

VarB∗K → 0. (18)

Then, for all ε > 0, Chebyshev’s inequality gives us

lim
K→∞

P (|B∗K | > ε) ≤ lim
K→∞

1
ε2

Var(B∗K) = 0, (19)

so

B∗K
p−−−−→

K→∞
0. (20)

Next, we bound the within neighborhood covariances, as we also have

Var(W ∗Kk) =
∑
i∈Nd

K

∑
j∈Nd

K

I(i, j ∈ Ak) Cov(S∗Ki, S∗Kj).

As the covariance forms an inner product on the space of square integrable random variables, the Cauchy-
Schwarz inequality gives us

I(i, j ∈ Ak)
∣∣Cov(S∗Ki, S∗Kj)

∣∣ ≤ I(i, j ∈ Ak)
√

Var(S∗Ki)
√

Var(S∗Kj). (21)

Then, as each S∗Ki has expectation zero, we know that

Var(S∗Ki) = E(S∗2Ki)− E(S∗Ki)2 = E(S∗2Ki). (22)

As S∗2Ki ≤ 1, we know Var(S∗Ki) ≤ 1 for all tuples i, so we have the bound
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I(i, j ∈ Ak)
∣∣Cov(S∗Ki, S∗Kj)

∣∣ ≤ I(i, j ∈ Ak). (23)

Now all that remains is to apply the Lindeberg-Feller central limit theorem to the double sequence W ∗K =∑K
k=1W

∗
K,k. To that end, first note that, as each neighborhood contains at most a finite number of nodes,

M , we can show that

Var(W ∗K,k) =
∑
i∈Nd

K

∑
j∈Nd

K

I(i, j ∈ Adk) Cov(S∗Ki, S∗Kj)

=
∑
i∈Nd

K

∑
j∈Nd

K

I(i, j ∈ Adk)E(S∗KiS∗Kj)

≤
∑
i∈Nd

K

∑
j∈Nd

K

1

≤M2d.

(24)

Now we prove that Lyaponouv’s condition (25) holds for the constant in the exponent δ = 2. So

lim
K→∞

K∑
k=1

1
Var(W ∗K)2E(|W ∗K,k|4) = lim

K→∞

1
Var(W ∗K)2

K∑
k=1

E(W ∗2K,k)E(W ∗2K,k)

≤ lim
K→∞

M2d

Var(W ∗K)2

K∑
k=1

E(W ∗K,k)2

= lim
K→∞

M2d

Var(W ∗K)2

K∑
k=1

Var(W ∗K,k)

= lim
K→∞

M2d

Var(W ∗K)
= 0.

(25)

where Var(W ∗K) tends to infinity by assumption. Therefore, Lyaponouv’s condition holds, and so by the
Lindeberg-Feller central limit theorem, we have,

W ∗K√
Var(W ∗K)

d−−−−→
K→∞

N(0, 1). (26)

Slutsky’s theorem (3.4) gives the final result for S∗K = W ∗K +B∗K . Then we have

S∗K√
Var(S∗K)

d−−−−→
K→∞

N(0, 1), (27)

as desired.

The second class of statistics are those that depend on both the graph and the nodal variates. These have a
very similar form as the statistics previously considered. Now we require that

SK =
∑
i∈Nd

SKi,
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where

SKi =
∏
l,p∈i

Ylph(Xl, Xp),

a product with at most q terms.
Theorem 3.8. If SK is a statistic depending on both the random graph and the random nodal attributes, the
sequence of random networks are as before, and the function h is uniformly bounded in the sense that, for all
l and m, there is some B such that

P (|h(Xl, Xm)|p > B) = 0, (p = 1, 2)

then we also have

SK
d−−−−→

K→∞
N(0, 1).

Proof. This proof is very similar to the proof of Theorem 3.7. We write

SK = WK +BK,

exactly as before, incorporating the function h into each SKi as we did above. Then the binary nature of the
graph and the uniform boundedness of h allow us to once again recenter the Yij , meaning that we will work
with Vijh(Xi, Xj) = Yijh(Xi, Xj)− µij . We also have E(Vijh(Xi, Xj)) = 0, so E(S∗Ki) = 0 as well.

For the between neighborhood covariances, we once again choose Vl1l2 , a between neighborhood network
variable. Then we once again write

Cov(S∗Ki, S∗Kj) = E

 ∏
m,n∈i

Vmnh(Xm, Xn)
∏

m,n∈j
Vmnh(Xm, Xn)


= E

(Vl1l2h(Xl1 , Xl2))p
∏

m,n∈(i∪j)\{l1,l2}

Vmnh(Xm, Xn)

 , (p = 1, 2)

= E ((Vl1l2h(Xl1 , Xl2))p)E

 ∏
m,n∈(i∪j)\{l1,l2}

Vmnh(Xm, Xn)

 ,

by the local dependence property. Then, when p = 1, we have E(Vl1l2h(Xl1 , Xl2)) = 0 by assumption, so the
covariance is identically zero. When p = 2 we have

E
(
(Vl1l2h(Xl1 , Xl2))2) ≤ Cn−δ

by sparsity and

E

 ∏
m,n∈(i∪j)\{l1,l2}

Vmnh(Xm, Xn)

 ≤ (DB)2q−2

almost surely by uniform boundedness and the fact this product has at most 2q − 2 terms. This follows from
the fact that h is bounded by B and that Vmn is bounded by some constant D, by defintion. So

13



Cov(S∗Ki, S∗Kj) ≤ B2q−2Cn−δ,

which tends to zero as K grows large. So, again by Chebyshev’s inequality, we have

B∗K
p−−−−→

K→∞
0.

Next we bound the within neighborhood covariances. Now with each |S∗Ki| ≤ Bq, we have

I(i, j ∈ Ak)
∣∣Cov(S∗Ki, S∗Kj)

∣∣ ≤ I(i, j ∈ Ak)B2q. (28)

Now, we show that Lyaponouv’s condition (25) holds for the same δ = 2. Once again note that each
neighborhood has at most M nodes, so

Var(W ∗K,k) =
∑
i∈Nd

K

∑
j∈Nd

K

I(i, j ∈ Ak) Cov(S∗Ki, S∗Kj)

≤
∑
i∈Nd

K

∑
j∈Nd

K

I(i, j ∈ Ak)B2q

≤M2dB2q.

Then Lyaponouv’s condition is

lim
K→∞

K∑
k=1

1
Var(W ∗K)2E(|W ∗K,k|4) = lim

K→∞

1
Var(W ∗K)2

K∑
k=1

E(W ∗2K,k)E(W ∗2K,k)

≤ lim
K→∞

M2dB2q

Var(W ∗K)2

K∑
k=1

E(W ∗2K,k)

= lim
K→∞

M2dB2q

Var(W ∗K)2

K∑
k=1

Var(W ∗K,k)

= lim
K→∞

M2dB2q

Var(W ∗K)
= 0.

(29)

Therefore, by the Lindeberg-Feller central limit theorem and Slutsky’s theorem, we have

S∗K√
Var(S∗K)

d−−−−→
K→∞

N(0, 1).

Finally, the last class of statistic is that which depends only on the nodal variates. This result follows directly
from a central limit theorem for M -dependent random variables, which can be found in Billingsley (1995, p.
364). Establishing this theorem requires that we assume that the statistic in question depends only on a
single variable across nodes. Therefore we assume that the statistic depends only on a single nodal covariate.
Theorem 3.9. Take the sequence ZK as before, and let XK be the vector of nodal variates for each ZK . Call
each entry of this vector XKi, the variate corresponding to node i. Furthermore, we assume that E(X12

Ki) <∞,
E(XKi = 0). Then,
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lim
K→∞

Var(
∑n
i=1XKi)
n

= σ2,

where n = |N |. Furthermore, if σ > 0, then

∑n
i=1XKi√

nVar(
∑n
i=1XKi)

d−−−−→
K→∞

N(0, 1).

Proof. Two random variables XKl and XKp are dependent if and only if l and p are in the same neighborhood.
Without loss of generality, assume that the neighborhoods are such that all nodes within a neighborhood are
indexed by consecutive integers. Then let M = lim sup |AK |. Then the sequence XKl is M -dependent, so the
result follows by application of Theorem 27.4 in Billingsley (1995).

In practice, the hypothesis that the twelfth moment exists is satisfied for most reasonable distributional
assumptions about nodal covariates. Furthermore, the assumption that all nodal variates have expectation zero
can easily be satisfied by recentering the observed data. Finally, the delta method gives us an asymptotically
normal distribution for a differentiable statistic of the nodal variate. The univariate nature of the statistic
is a fundamental limitation of this approach, however I am unable to find an analogous multidimensional
central limit theorem that would allow us to establish the asymptotic normality of a statistic of multiple
nodal variates.

4 Discussion and examples

4.1 Examples of convergence

In this section we simulate locally dependent random networks and calculate a statistic from each class
discussed in Chapter 3. These networks grow larger and larger throughout the simulation, with each having n
vertices and n/10 neighborhoods, to explore the asymptotic properties of our statistics. The nodes have two
attributes. The first is a group, coded as 0 or 1, that effects the network formation. Edges are more likely to
form between vertices in the same group. The second is a random attribute, also coded as 0 or 1. For each
vertex, the value of this attribute depends on the attributes of the other vertices that it is connected to. The
attribute can be thought of as a contagious infection or behavior that spreads along edges of the graph. The
C++ and R code used to generate these networks is shown in section ??. This sort of complex relationship
between the vertices and the edges is exactly the kind of generative process that ERNMs hope to capture.

Figure 5 shows an illustration of a simulated network with 100 vertices. The coloring shows the neighborhood
membership of each vertex, while the presence or absence of fill indicates the value of the simulated attribute.
Note the clustering of the neighborhoods and the attribute values. This is exactly the kind of joint clustering
the locally dependent ERNM models. Furthermore, this also makes very intuitive sense as a realistic network
structure. For example, suppose the attribute we are considering is smoking. This network shows that people
who are friends with smokers are more likely to smoke themselves. This was the analysis done by Fellows &
Handcock (2012) when introducing the ERNM.

Adding local dependence to this model is what allows us to show central limit theorems, however. In Figures
6 and 7, we can see the desired convergence towards a normal distribution that is guaranteed by the theorems
proved in Chapter 3. In Figure 7, the quantile-quantile plots become very linear when the number of nodes
reaches 200 and the number of neighborhoods reaches 20. All of the skewness has disappeared by this point
and the tails of the distributions are almost perfectly normal. Finally, note that the slope is becoming
shallower as the number of vertices grows. This corresponds to the shrinking of the statistic’s variance, which
is exactly what we hope to see as we grow the sample size.
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Figure 5: A simulated network with 100 vertices, colored according to neighborhood. The vertex fill indicates
the presence or absence of the simulated attribute.
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Figure 6: Density plots of simulated statistics of locally dependent random networks.
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Figure 7: Normal Q-Q plots for simulated statistics of locally dependent random networks.
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Table 1: Standard error estimates using the jackknife at the vertex level.

Statistic Simulated standard error Jackknife standard error
% Attribute 0.0666614 0.0203652
Mean degree 1.1684929 0.7662253
% Hom. ties 0.0269267 0.0184758

Table 2: Standard error estimates using the jackknife at the neighborhood level.

Statistic Simulated standard error Jackknife standard error
% Attribute 0.0666614 0.0677752
Mean degree 1.1684929 1.4487743
% Hom. ties 0.0269267 0.0372798

4.2 Standard error estimation

Given the asymptotic normality, all that remains to make these theorems useful for inference is to find a
method to estimate the standard error of a statistic from a single observation. To that end, here we simulate
a single network with 200 vertices by the same procedure as above and attempt to recover the standard errors
of the statistics. We can compare these estimates to the standard errors of the empirical distributions we
found in our previous simulation.

There are several approaches to approximating the standard errors. The first is to follow the vertex-level
jackknife procedure outlined by Snijders & Borgatti (1999). This method is a modification of the standard
jackknife estimator of standard deviation. At each iteration of the procedure, we remove one vertex from the
network and recalculate the statistics of interest. Then we estimate the standard error with the equation

ŝ.e. =

√√√√n− 2
2n

n∑
i=1

(g−i − ḡ)2, (30)

where g is the quantity whose standard error we are approximating and g−i is g calculated with vertex i
removed. This differs from the standard jackknife estimator in the multiplicative constant. Heuristically, this
constant accounts for the fact that we are seeing much less variation in the jackknife networks than we would
expect to see in the true distribution. This follows from the fact that the variance of a statistic of the edge
variables is (approximately) inversely proportional to the number of edge variables, n(n− 1), not the number
of vertices, n (Snijders & Borgatti, 1999). We can see in Table 1 that this procedure underestimates the
variance of our statistics.

This is most likely because of the dependence between vertices in the process that generated the network.

The second method is a standard jackknife, but leverages the neighborhood structure and the local dependence
of the network. We do this by applying the jackknife at the level of the neighborhoods. That is to say, we
remove each neighborhood in turn and recompute the statistic and then compute the jackknife estimator

ŝ.e. =

√√√√m− 1
m

m∑
i=1

(g−i − ḡ)2, (31)

where m is the number of neighborhoods. This process gives much more appropriate estimates, shown in
Table 2.
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4.3 Discussion of future work

Further development of locally dependent ERNMs for modelling complex social processes will have major
impacts in the social sciences. The most pressing issue is the creation of software that allows for estimating
parameters in these models. Code for fitting locally dependent ERGMs was developed by Schweinberger &
Handcock (2015) and a Markov chain Monte Carlo algorithm for ERNMs was implemented by Fellows &
Handcock (2012). However, it still remains to combine these two developments to work with locally dependent
ERNMs.

Further mathematical work is also required to extend Theorem 3.9 to statistics involving more than one
vertex attribute. This proof requires a multivariate analogue of the central limit theorem for M -dependent
random variables. As my adviser told me, where there is a univariate central limit theorem, there is invariably
a corresponding multidimensional theorem. However, we are unable to find a proof of this, so that result
must be the topic of future work.

Finally, an investigation into the properties of standard error estimates like those produced above is much
needed. Network sample sizes tend to be relatively small, so being forced to aggregate at the neighborhood
level is a nontrivial issue. Furthermore, the jackknife procedure is most likely not making full use of all the
information available within the observed network. However, a bootstrap procedure is, as far as my research
shows, undefined for network data. Difficulty comes from being unable to sample with replacement. If one
were to sample a network’s vertices or edges with replacement, most likely duplicate edges would appear in
the resampled networks. It is unclear how duplicates should be handled when calculating network statistics,
so that sort of procedure is difficult to define.
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