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Abstract

Crowdsourced ratings are an increasingly important data source, leveraging the abundance of
internet connected consumer devices to boost sample sizes. In this paper, we examine a data set
of crowdsourced bicycle route ratings in Portland, OR collected by the Ride Report app. We fit
multilevel models that show ratings are best described by models with random intercepts by rider.
We also show that the majority of variation in ride ratings across time of day is owed to patterns in
who is riding and where, rather than any effect particular to that time of day, such as traffic. Finally,
we develop models that can adjust for non-ignorable missing ride ratings, but caution that their use
for inference is inappropriate until the data quality of unrated rides can be assured.
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Introduction

Knock Software’s Ride Report app combines a thumbs-up/thumbs-down rating system with GPS traces
to compile a crowdsourced data set of commuter bicycle rides. Knock’s goal is to use this data to
help cities identify the most problematic routes in their infrastructure and help cyclists identify the best
routes in their area.

From the user’s perspective, the app that collects the data is simple: Ride Report automatically
detects when a user starts riding their bike, records the GPS trace of the route, and then prompts the
user at the end of the ride to give either a thumbs-up or thumbs-down rating. From this, they were able
to create a simple “stress map” of Portland, OR, which displays the average ride rating of rides going
through each discrete ride segment.

Figure 1: Ride Report’s Stress Map for Portland, OR. Greener road segments
incidate less stressful streets while more red segments indicate more stressful
streets. “Stress” is computed by taking the average rating for each segment.

The app is designed to minimize barriers to response in order to maximize sample size, at the expense
of ensuring quality and consistent responses. It automates all of the data collection except the rating,
and the rating only requires (and allows) a binary response. There is no direct prompting from the app
indicating what criteria cyclists should be using to evaluate their rides, other than the labels for the
binary ratings. In addition, riders’ rating their rides on Ride Report are volunteers, so they are under
no obligation to rate their rides. In fact, most of the rides lack ratings, and we have no guarantee that
the pattern of missing ratings is ignorable.

The end goal of collecting and studying this data is to be able to accurately map which roads are
not serving bicycle commuters well. This paper makes steps toward this goal by building models that
predict ride rating based on information other than route. (We did not create models that involve routes,
but we do propose ways of modeling routes in section 5.) The models we discuss, besides measuring
the effect of weather, time of day, and ride length on the probability of a negative rating, address two
nontrivial issues in this data: the variability in how different riders rate their rides and the problematic
missing ratings.

We are not the first to worry about the issue of variability in riders interpretations of what a good or
bad route is. As Meyers, a previous researcher examining the Ride Report data observed, “everyone has
different standards for what a ‘good’ or ‘bad’ ride is, and the data might benefit from randomized IDs
attached to each cell device.”1 Thankfully, Ride Report does keep track of which rides belong to each
to rider. We model the varying overall tendencies of each rider to rate a ride negatively with random
intercepts in a multilevel model. For example, if we let yi be the rating of the ith ride and Xi be the

1Meyers (2015)



ride-level variables, then we can fit a regression:

P(yi = 1) = logit−1
(
αj[i] +Xiβ

)
,

where αj is an intercept specific to rider j. In addition, the rider intercepts come from a common
distribution,

αj ∼ N(µα, σ2
α),

where µα is the mean of all the αjs. Similar models have been used in situations when data consist of
subjective ratings, including one study examining how people rate sexual attraction2.

Missing ratings are another important problem in this data set. While we have the route they
chose and all associated covariates, the response variable (rating) is missing for many rides. As we
will discuss in section 4, the pattern of non-response is likely to be correlated with the rating the rider
would have given, which may mean our parameter estimates are inaccurate. To address this problem,
we implement a version of the expectation maximization algorithm for missing data, creating a model
that simultaneously estimates the missing data mechanism and the ride rating model.

1 Data Sources

We combine several data sources to do our analysis. Information about individual rides, including the
GPS trace, the rider, and start timestamp were provided by Ride Report. Weather data were collected
from Weather Underground’s archive of the KPDX weather station and a Portland Fire Bureau station.

Our goal in this section is to discuss these data and what considerations we should have in mind
before exploring it in depth. This includes how and by whom the data were collected, who and what
this data are representative of, and what samples were taken of the data.

Some of these considerations, such as the limited demographics represented in the Ride Report data,
pose serious limitations to how our inferences can be generalized. Others, such as the large number of
missing responses in the Ride Report data, motivate the analysis we are doing in this thesis. Finally,
there are other considerations which we will acknowledge here, but addressing them is out of the scope
of this thesis. This data set contains an abundance of potential research questions, only a fraction of
which could be reasonably addressed in one thesis.

1.1 Ride Report

Ride Report’s data is the focus of this paper. Knock Software created the app to collect large amounts
of information about urban cyclists’ routes and experiences on those routes. The hope is that this
information will be valuable to city planners.3

Ride Report’s approach to crowd sourcing these data is particularly important to understand. The
app automates every piece of the data collection process except for the rating given by the rider. Thus,
the app casts aside nuanced and (somewhat) reliable human input in favor of increasing sample size:
one could imagine a similar app where users have more control over how the route is recorded, have the
ability to rate on a more fine-grained scale, and are given more direction in what they are rating for.
This trade off causes two problems with the reliability with the data.

Before we get into the potential issues in the data collection, though, let’s examine the data collection
process itself. When installed on a person’s phone, the Ride Report app attempts to automatically detect

2Mackaronis, Strassberg, Cundiff, & Cann (2013)
3Knock’s other project is making a cheaper bicycle counter for cities to monitor traffic flow, again intended to be sold

to cities wishing to improve bike infrastructure.



when the user starts riding their bicycle, based accelerometer data, when a user leaves a familiar Wi-Fi
network, and some other pieces of information. When the app detects the start of a ride, it starts
recording a GPS trace. At the end of the users ride, the app detects them getting of their bike (in a
similar process to how it detected the start of a ride) and prompts them to give a rating of the ride.
The ride data are saved then, even if the user does not provide a rating.

This automatic detection of when a ride starts and stops leads to two related and common errors
in the dataset: first, one ride is often split into two or more rides at points, such as at a stoplight or
a train crossing, where a cyclist stops for an extended period of time; second, car rides are sometimes
misclassified as bicycle rides and vice-versa (car rides are not rated.) The app allows riders to correct
the misclassification, but provides no way to join split rides back together.

Figure 2: The Ride Report app’s interface has changed significantly between
versions, including the rating text displayed after a ride. This is the current
version as of Februrary 2015.

The app only recently became publicly available and has undergone significant changes in the course
of its life. In particular, while the ratings have always been binary, the labels have changed at various
points in time. At one point the rating labels were “Stressful” and “Chill”, while now they are labelled
“Recommend” and “Avoid” (see Figure 2). Other fundamentals of the data collection process—such as
the binary ratings, the automatic collection of GPS traces of routes—have remained constant.

The data collection method itself has some problems, but there also may be some biases in the
population of riders using the app. The app is only available on iOS, so only iPhone owners could use
this application which may imply a bias toward riders of higher socioeconomic status. At the time of
the start of the thesis, the app was in private beta, meaning only people who actively sought out using
the app were able to use it. Now the application is public and on the Apple App Store, making it more
widely available. Due to these issues, many of the earlier rides may be people within the developer’s
personal network. Unfortunately, it’s hard to make any solid conclusions about the users of the app
because Ride Report doesn’t collect any demographic data about their riders.

One other issue with the Ride Report data guided our analysis: privacy. Because the data involves
time stamps and GPS locations of people’s commutes, the data is very sensitive: one could easily infer
someone’s home and workplace based on their most common routes. In fact, this data is protected by



an end-user license agreement (EULA) which prevents sharing of data, without the explicit permission of
those involved. This presented a logistical challenge: how were we to do inference and data exploration
without access to the data?

By agreement with Knock Software, identifying data must be kept private. With permission from
five riders, Knock was able to give us a small subset consisting of all the rides from those five riders, to
be kept confidential. That is the data set we used for prototyping models and some basic exploratory
analysis. Knock also agreed to allow us to run models fitting scripts on larger samples of their data set,
as long as they were performed on their computers, with no identifying data leaving their system.

While at first this set up seems like an inconvenience, it actually has some advantages. One of the
pitfalls of having an entire data set, especially a high dimensional one, is that in performing exploratory
analyses it is often too easy to find spurious “statistically significant” results. Instead, we must come
up with our models before running them, greatly limiting the choices we can make in the “garden of
forking paths.”4

1.2 Weather Data

Slippery roads and formidable winds are no fun for anyone balancing on a two-wheeled vehicle. Weather
is, then, one of the most obvious family of predictors for ride rating, at least intuitively. We use the
time of a ride to join in data about the weather conditions during the ride, including

• the temperature,

• whether and how much it is raining,

• whether the roads are wet or have puddles,

• wind and gust speed.

We include the first two, temperature and precipitation, to account for rider comfort. A sweltering,
frigid, or stormy day could make an unpleasant experience for a bicyclist and thus could lead to more
negative ratings.

On the other hand, we include the last two, wet road and gust speed, as factors that impact safety.
During and after storms, puddles often accumulate in bike lanes before the center of the road, pushing
cyclists into lanes shared by cars, which are often more dangerous.

Gust speeds impact the aerodynamics of a ride, which are particular important for bicyclists. It’s
one of the main reasons cyclists care about getting into lower (and more aerodynamic) rider positions.
Thus, high wind or gust speeds may affect rider rating.

We are limiting our study to rides in Portland, Oregon. Given this, we can first assume that it
may be reasonable to expect that riders are used to the same climate, and thus have somewhat similar
responses to weather. This also makes it reasonable to use data from one nearby weather station, rather
than attempting to collect from several stations and creating a spatial model for weather.

For daily summaries of weather conditions, we used weather history from the KPDX weather station
at Portland International Airport downloaded from Weather Underground.5 From this we were able to
get daily weather data, including

• Average, minimum, maximum temperature for the day.
4“The garden of forking paths,” a reference to the short story by Jorge Luis Borges, is a term coined by Andrew Gelman

to refer to the infinite number of choices researchers have in analyzing a set of data, which often allows for enough flexibility
to discover coincidences (“The garden of forking paths,” 2013).

5Weather Underground (2016)
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Figure 3: Locations of weather data collection sites. Daily weather information
was collected at the KPDX weather station at Portland International Airport.
Hourly precipitation data were collected at the Portland Fire Bureau’s rain gauge
in downtown Portland.

• Total precipitation.

• Mean wind speed, as well as gust speed (speed of brief, strong winds.)

We also got hourly rainfall data from a data stream at the Portland Fire Bureau Rain Gage at 55
SW Ash St.,6 which is just about the geographic center of Portland. This just gives raw uncorrected
rain gauge data, but gives us a fine grain look at how much rain there has been recently.

For daily weather data, such as temperature highs and average wind speed, we use information from
the KPDX weather station. It is further from the geographic center of the rides we are examining, but
because the weather is daily summary statistics, we don’t expect closer weather stations to be much
more informative. Figure 3 shows the geographic positions of these two stations.

1.3 Notation for the Joined Data Set

We combined the ride records with weather data by joining by start date stamp of the ride. We will
denote our set of ride-level predictors, each of which is an n by 1 column vector as,

• xlength, log ride length, scaled to have mean 0 and standard deviation of 1

• xrain, rainfall during hour of ride, in tenths of inches

• xrain4h, rainfall during past four hours before ride, in tenths of inches

• xwind, mean wind speed for the day, in miles per hour

• xgust, max gust speed for the day, in miles per hour7

• xtemp, average temperature, in degrees Fahrenheit for the day.
6Portland Bureau of Environmental Science (2016)
7Gust speeds are the max speeds of winds that are fast, highly variable, and short-term. For METAR weather stations,

which the KPDX station is, gust speeds report the maximum wind speed when there were rapid fluctuations in wind speed
with at least 10 knots in the difference between the lows and highs.



We will often represent this set of predictors as the ride-level predictor matrixX = (xlength xrain xrain4h xwind xgust xtemp).
We also have the predictor t ∈ [0, 24]n, representing the time of day of the ride, measured by hours
since midnight. (Because it must be modelled in a different fashion than the other variables, we use the
simple notation of a single letter for it.)

Let yi = 1 if the ith ride received a negative rating, and yi = 0 if it received a positive rating,
for i = 1, . . . , n. Choice of coding which events are 0’s and which are 1’s is arbitrary when making
logistic regression models, though we made this choice because for the sake of our analysis, negatively
rated rides are more interesting events. For urban planning applications, they define the areas that need
attention.

2 Methods
We use many statistical methodologies in this paper. We outline here the central methods used, both
to familiarize the reader and to establish the notation we use throughout this paper. The models we
present combine logistic regression, multilevel8 models, additive models, and smoothing splines. We
also make use of two recently developed graphical model evaluation tools: the separation plot and the
heat map plot.

The one large methodology not covered here is the expectation maximization algorithm we use to
model the missing data mechanism for missing ride ratings. The theory of that algorithm is outlined in
section 4 and an example of its implementation can be found in ??.

2.1 Hierarchical Models and Mixed Effects Models

Data often contain hierarchies. For example, a set of students’ test scores may contain the hierarchy
of districts and schools those students attend. Or a set of soil samples may have been taken at several
distinct sites, thus having a hierarchy of sites and samples. In the bike ride data we examine, there is
the hierarchy of riders and rides.

We will talk about different “levels” of variables corresponding to places in this hierarchy. When
we refer to “ride-level variables,” we refer to variables that are specific to a ride, whereas we refer to
“rider-level variables” as those specific to the rider, and thus also all the rides that rider takes. For
example, we consider length a ride-level variable and total number of rides taken a rider-level variable.

We will also discuss road segment-level variables, which are variables that are specific to the road
segments in the route of a ride (e.g. length, presence of bike lanes, etc). But there isn’t a clear road
segment-ride hierarchy: each ride contains multiple road segments and each road segment is contained
by multiple rides. Thus, this isn’t a case where multilevel modeling is applicable. (The ideas behind it,
though, may be fruitfully adapted, as we discuss in section 5)

Gelman describes two traditional ways of dealing with hierarchical data that multilevel models con-
trasts with: “complete pooling” and “no pooling.”9 In “complete pooling,” we ignore the group-level
variables, and give identical estimates for parameters for every group. In “no pooling,” we do entirely
separate regressions for each group. Multilevel models are a compromise between these extremes (“par-
tial pooling”, as Gelman calls it) where all the data are considered in a single regression with some
parameters shared between groups and some different between groups.

These multilevel models work for other forms of regression, but we will focus on logistic regression,
as it is the method we use in this paper. We will be using notation adapted from Gelman and Hill’s
description of multilevel models.10 Consider a data set composed of

8Multilevel models are often referred to as hierarchical models or mixed effects models.
9Gelman & Hill (2006), p. 7

10Gelman & Hill (2006), p. 251–252



• n observations of a binary response variable yi, i ∈ 1, . . . , n,

• p observation-level predictors Xi = x1
i , . . . , x

p
i ,

• j groups into which the observations are split,

• l group-level predictors Uj[i] = u1
j[i], . . . , u

l
j[i], where j[i] is the group of the ith observation.

We could fit a model where the intercept varies by group:

yi ∼ Bernoulli
(

logit−1
(
αj[i] +Xiβ

))
, (1)

αj[i] ∼ N(γ0 + Uj[i]γ, σ
2
α), (2)

where αj[i] is the intercept for the jth group, β is a vector of coefficients for the observation-
level predictors, γ0 are the group-level intercepts, and γ is a vector of coefficients for the group-level
predictors. We could also specify a similar model where there are no group-level predictors, such that
we simply have different intercepts for each group,

αj[i] ∼ N(γ0, σ
2
α). (3)

We can also consider a model that has slopes varying by group. For simplicity, let’s consider just one
observation-level predictor, xi, that will have varying slopes βj[i] as well as one group-level predictor,
uj . We could specify the model as,

yi ∼ Bernoulli
(

logit−1(αj[i] + βj[i]xi)
)
, (4)

(
αj
βj

)
= N

((
γα0 + γα1 uj
γβ0 + γβ1 uj

)
,

(
σ2
α ρσασβ

ρσασβ σ2
β

))
. (5)

These models can be fit with maximum likelihood estimation using the lme4 package in R(Bates,
MÃďchler, Bolker, & Walker, 2015) or can be fit with Bayesian MCMC using Stan(Carpenter et al.,
2016). The latter has the advantage of making it easy to estimate group-level uncertainty at the
expense of more computation. We fit models using lme4, but make use of Stan when we have ride-level
parameters we want to estimate, in ??.

2.2 Additive Models and Smoothing Splines

Often, it is helpful to allow more flexibility in the functional forms in the models. While parametric
models, like logistic regression, assume a particular form for the relationship between the variables and
response, nonparametric models use the data to determine both the functional form and values of the
parameters in models. However, the curse of dimensionality (the more predictors that are in a model,
the fewer similar observations there are to any observation) can impair nonparametric models. Additive
models, however, are able to keep a lot of the flexibility of nonparametric methods while avoiding the
curse of dimensionality. Additive models assume that the response is the sum of functions of each of
the predictors:

logit(P(yi = 1)) = α+
p∑
j=1

fj(xij).



These functions can be linear, so generalized linear regression is a subset of additive models. But
more interestingly, these functions can be non-parametric.11 One of the most common types of functions
fit are smoothing splines.

Smoothing splines are essentially cubic functions stitched together at points called “knots” such
that the full piece-wise function is continuous and has continuous first and second derivatives. One can
further define cyclic cubic splines, which simply have the constraint that the last knot and first knot be
treated as the same knot, thus allowing a continuous cyclic function to be fit.12

Computation of multilevel additive models with splines is available in the gamm4 package (Wood &
Scheipl, 2014).

2.3 Tools for Evaluating Models

After fitting our models, we will want to know how each of our models compare. Did adding a particular
term enhance or diminish the accuracy of our model? Instead of focusing on one measure of fit we use
several. Log likelihood and AIC provide useful summaries of fits to the data based on the likelihood
function. Separation plots—which we discuss in the next subsection—allow us to assess the predictive
ability of a model; in particular, can the model identify high and low probability events? We also use
the area under the ROC curve (AUC) measure popular for assessing logistic regression. In particular,
we compute 10-fold cross validated ROC statistics to detect if models are overfitting to the data.

2.3.1 The Separation Plot

The separation plot, created by Greenhill, Ward, and Sacks13, is designed to show how well a logistic
regression model can distinguish between high and low probability events.

Figure 4: Examples of three separation plots. The first plot shows what it looks
like when y and ŷ are uncorrelated. The second plot shows a fairly good model,
where the y are generated as Bernoulli(ŷ). The third plot shows a model where
the responses are fully separated.

Let y be a vector of observed binary response and ŷ a vector of predicted probabilities of a 1 for each
observation, predicted by some model. Then we can construct the plot as follows: We plot the data
(y, ŷ) as a sequence of vertical stripes, colored according to observed outcome, y, and ordered from low

11How are these models fit? Using what’s known as the Backfitting Algorithm. We define the kth partial residuals
Y (k) = Y −

(
α+

∑
j 6=k

fj(xj)
)

. (That is, define the portion of Y leftover for fk(xk) to fit to after the other fj ’s have

had their share.) Then, iteratively fit each of the functions fj on the partial residuals Y (j) until each of the functions
converge. For a further quick look at additive models, check out Cosma Shalizi’s lecture notes (Shalizi (2013a))

12For a brief and entertaining introduction to smoothing splines, see Shalizi (2013b). For a more in-depth look at splines,
check out Wood (2006)

13Greenhill, Ward, & Sacks (2011)



to high probability based on ŷ. A curve is superimposed upon the stripes showing the ŷ as a line graph.
And finally, a small triangle is placed indicated the point at which the two colors of lines would meet
if all observations y = 0 were placed to the left of all the y = 1 observations; i.e. showing where the
boundary would be if the two classes were perfectly separated by the model.

Separation plots don’t do well with larger sample sizes: if there are too many observations, it
becomes difficult to read. There are several ways around this, but we choose to randomly sample the
observations.

3 Modeling Rides and Riders
Complex statistical models can accurately model intricate processes. But they also run the risk of
overfitting to the data. To avoid this, we build up our models from simple to complex, comparing the
models with cross validation to make sure the complexities introduced add real value.

In this section we focus on building models that incorporate information about rider, weather condi-
tions, time of day, and ride length. In brief, our models start with a logistic regression model considering
only ride-level variables, and formulate more complex models by adding various terms. Table 1 describes
each model briefly along with the models label.

Table 1: Brief descriptions of Models 1–6

Model Description

Model 1 (Baseline) logistic regression
Model 2 Add rider intercepts
Model 3 Add trigonometric terms for time of day
Model 4 Additive model with cubic cyclic spline for time of day
Model 5 Additive model with spline for ride length
Model 6 Remove random rider intercepts from Model 4

3.1 Six Models for Probability of a Negative Ride Rating

Model 1, which we will use as the baseline for comparing further models, is a logistic regression model:

P(Yi = 1) = logit−1(α+Xiβ),

where α ∈ R and β ∈ Rp are parameters to be estimated. (X is the matrix of ride-level predictors
specified at the end of subsection 1.3.)

Riders appear to have different tendencies to rate rides negatively more often, as we note in ??. In
fact, many riders give zero or nearly zero negative ratings. For Model 2, we account for this variability
by adding intercepts that vary by rider:

yi ∼ Bernoulli
(

logit−1
(
α+ αj[i] +Xiβ

))
, (6)

for i = 1, . . . , n.
Rider intercepts themselves aren’t as interesting as how they deviate from the mean, so we keep a

fixed intercept α and constrain the rider intercepts, αj , by specifying

αj ∼ N(0, σ2
α).



Starting with Model 3, we address time of day, t ∈ [0, 24) as a predictor. (We measure time of day
in hours since midnight.) We use time of day to account for all the daily trends that may affect ratings,
including as a simple way to model the overall traffic level, which is difficult to model on its own. These
patterns are cyclic and very non-linear, so we can’t model time as a linear term. One approach is to
add sinusoidal terms with a period of one day. We would be interested in fitting a term,

β sin(Txtime + φ).

Estimating β wouldn’t be hard: we can easily estimate coefficents of transformed terms; it’s more
difficult to estimate T and φ. But, we know that we want to restrict our terms to fitting trends that
happen over the course of one day, so we can set T = 2π/d, where d is 24 hours or some fraction of
that.

As for φ, a trigonometric transformation reframes the estimation of a phase shift parameter into the
estimation of two coefficients for trigonometric functions with no phase shift:

β sin(Tx+ φ) = β (sin(Tx) cos(φ) + cos(Tx) sin(φ))
= β cos(φ)) sin(Tx) + sin(φ) cos(Tx)
= β1 sin(Tx) + β2 cos(Tx),

where β1 = β cos(φ) and β2 = sin(φ). At this point, we are now just estimating the coefficients of
a couple of transformed variables, which can easily be done in any package that does generalized linear
regressions.

We also want to take into account that weekday hourly patterns may be different than weekend
patterns. We use a variable Xweekend that serves as a weekend indicator. For Model 3, we add two sets
of sinusoidal terms: one set for weekdays and one for weekends. More explicitly, we define the model,

P(Yi = 1) = logit−1(α+ αj[i] +Xiβ

+Xweekend · [βt1 sin(T · t) + βt2 cos(T · t)
+ βt3 sin(T/2 · t) + βt4 cos(T/2 · t)]
+ (1−Xweekend) · [βt1 sin(T · t) + βt2 cos(T · t)
+ βt3 sin(T/2 · t) + βt4 cos(T/2 · t))].

(7)

For Model 4 we abandon parametric methods and use a cyclic non-parametric smoother to model
time of day, making our model,

yi ∼ Bernoulli
(

logit−1
(
α+ αj[i] +Xiβ +Xweekend · f time.w(ti) + (1−Xweekend) · f time(ti)

))
, (8)

for i = 1, . . . , n, where αj is specified like Model 2 and f time.w and f time are cyclic cubic spline
terms for weekend and weekday rides, respectively, with knots at 0, 3, 6, 9, 12, 15, 18, 21, and 24 (0,
again) hours.

Model 5 extends Model 4 by adding a cubic spline for ride length:

yi ∼ Bernoulli
(

logit−1
(
α+ αj[i] +Xiβ +Xweekend · f time.w(ti) + (1−Xweekend) · f time(ti) + f length(xlog.length

i )
))
,

(9)



for i = 1, . . . , n, where f length is a cubic spline smoother.
Finally, Model 6 is identical to Model 5, but without the rider intercepts:

yi ∼ Bernoulli
(

logit−1
(
α+Xiβ + f time(ti)

))
, (10)

for i = 1, . . . , n, where f time is a cyclic cubic spline term, with the same knots as in Model 4.

3.2 Model Evaluation

Table 2: Fit summaries for Models 1–6.

Model Separation Plot log(L) AIC AUCCV
14

Model 1 -4,786 9,586 0.552

Model 2 -3,971 7,957 0.797

Model 3 -3,923 7,877 0.802

Model 4 -3,930 7,870 0.802

Model 5 -3,928 7,878 0.803

Model 6 -4,713 9,455 0.601

To fit the data, we got all of the rides in Portland, OR, from December 3, 2014 to February 8, 2016
for riders that had over 20 rated rides. (We only look at riders with a certain number of rides to make
sure we get can get estimates for rider-level parameters, like rider random intercepts, that aren’t too
uncertain.) There were 25,397 rides, 14,032 of which were rated. Overall, 10.88 percent of these rides
were given a negative rating. There were 138 riders in the data set.

The separation plots in Table 2 give a clear initial picture of how these model fits compare. Model
1 performs very poorly compared to those that include rider intercepts, assigning the same probability
to most observations. Models that include the rider intercept perform similarly to each other. The log
likelihoods and AIC,15 shown in Table 2, corroborate this. Adding time dependency doesn’t seem to
impact predictive ability. We will see later, however, that it gives a fascinating result to interpret.

The gains from the rider intercepts are great, but we are compelled to ask: how much of that
gain could have been achieved with randomly chosen groups? In other words, if riders were randomly
assigned to rides, would the flexibility in the model created by allowing intercepts to vary increase
predictive performance to the same degree? To test this, we ran a Model 4 after we randomly assign
the rides a rider, by randomly permuting the rider column. This quick test nullified this skepticism, as
you can see in the resulting separation plots in Figure 5.

3.3 Model Results

Table 3 presents the fixed effect estimates for our models. Length has a robust strong negative effect.
This makes sense if we think of length as the only information we have about route in these models:

14Area under ROC curve estimated with 10-fold cross-validation.
15Akaike Information Criterion (AIC) is a metric that penalizes the log(L) with the number of parameters estimated k,

with lower values being better. It is defined as AIC = 2k − 2 log(L).



Figure 5: Separation plots for models 2 compared to a similar model where riders
are randomly assigned to rides. This test demonstrates that the improvement
in predictive performance provided by the rider intercepts was not coincidence.

it seems routes that are longer tend to be less likely to be rated negatively. Perhaps longer rides tend
to be for leisure or sport rather than commuting, so and so are less likely to go along routes with high
traffic and other dangers. Temperature also seems to have a small effect. It could be the case that the
temperature itself is important, or perhaps season is a confounding factor. It could be the case that
the type of rides taken during the warmer months are more likely to be rated negatively. Wind and
gust speed don’t seem to have robust effects. These models suggest that four hour cumulative rainfall
was more important than rainfall during the hour of the ride. This supports our suspicion that weather
effects that are more relevant to safety than comfort— like wet road and puddles rather than rain at the
time of a ride—are important in determining a cyclist’s rating of their ride. These coefficients, however,
aren’t nearly as enlightening as the time of day fits.

The marginal fits for time of day, shown in Figure 6, are predictable. On weekdays, the probability
of a negative rating peaks in the afternoon from 4–6 p.m., around when we expect rush hour traffic, and
on weekends it stays steady throughout the day. While Model 4 and Model 5 give similar fits for time
of day, Model 3’s predictions peak at different times on weekdays and exhibit much more variability on
weekends. There are two probable reasons for these differences: first, the sinusoidal terms are less flexible
than the splines; second, the splines, because they are non-parametric functions, penalize complexity
of the fit while the parametric sinusoidal form does not, making the splines more conservative in their
“curviness.” The former explains the discrepancies in the weekday fits while the latter explains the
discrepancies in the weekend fits. Given these differences, fitting time of day with splines is preferable;
there is no motivation to constrain the functional form to any strict parametric form.

But these marginal time-of-day fits don’t just tell a story about our time terms; they also reveal
part of why the random rider intercepts are such powerful predictors. Notice that in comparing Model
6 to the other models in Figure 6, the scale at which the Model 6 time fitted probabilities vary is much
larger than the scale at which the other models’ predictions vary. Without allowing for varying rider
intercepts, the time terms take on a significant role. Yet, interestingly, the time term has nowhere near
the amount of information that the rider intercepts seem to encode, according to the separation plots
in Table 2.

Figure 7 paints a clearer picture of what is going on. These models show two different ways to look
at the time of day pattern in ride rating: Model 2 suggests who is riding determines these patterns
while Model 6 suggests there is something inherent in that time of day, such as traffic, that determines
these patterns. The models between fit a combination of these, but as we saw in Figure 6, the time
dependence is more than an order of magnitude weaker after accounting for the rider intercepts. The
two black pillars of rides in the predictions of Models 2–5 line up with when we expect commuters
to be riding, suggesting that that the riders with high rider intercepts are commuters. The converse,
however, is not true: a great number of rides during commuting times are predicted to have almost zero
probability of receiving a negative rating.

What explains this relationship between the temporal patterns and the rider intercepts? We suspect



Table 3: Regression coefficients for Model 1, Model 2, Model 4, and Model 6.
95% confidence intervals are given in parentheses.

Regression Term Model 1 Model 2 Model 4 Model 6

Log(length) -0.122 -0.100 -0.092 -0.114
(-0.180, -0.063) (-0.168, -0.032) (-0.162, -0.022) (-0.174, -0.054)

Mean Temp. 0.053 0.076 0.075 0.069
(-0.0004, 0.110) (0.005, 0.147) (0.003, 0.147) (0.012, 0.127)

Mean Wind speed 0.028 0.014 0.012 0.027
(0.004, 0.052) (-0.013, 0.041) (-0.014, 0.039) (0.002, 0.051)

Gust speed -0.003 0.001 0.001 -0.003
(-0.015, 0.008) (-0.012, 0.013) (-0.012, 0.013) (-0.014, 0.009)

Rainfall 0.008 0.012 0.008 0.005
(-0.015, 0.031) (-0.015, 0.038) (-0.019, 0.035) (-0.019, 0.027)

Rainfall 4-Hour 0.013 0.016 0.017 0.014
(0.005, 0.021) (0.007, 0.025) (0.008, 0.027) (0.006, 0.022)

Intercept -2.2868 -3.075 -3.127 -2.313
(-2.428, -2.108) (-3.386, -2.764) (-3.436, -2.818) (-2.475, -2.151)

ride route is a confouding factor here. Figure 7 confirms our suspicion that riders have particular
schedules they stick to; so it’s also likely, given that these are mostly commuting cyclists, that most
of their rides follow the same route as well. These models ignore ride route, so we suspect the typical
ride route is encoded in the rider intercepts; i.e. a rider whose commuting route goes through many of
the most stressful intersubsections and streets in Portland will likely have a higher intercept than most
riders. This hypothesis can only be tested, however, when future research develops models with random
rider intercepts and a model for how routes effect ratings.

4 Modeling Missing Response

Of the 25,397 rides in the data set, 11,365 were not rated. With such a large amount of missing
data, careful consideration should be made about what can be inferred from this data set. A common
problem with missing responses in crowdsourced rating data sets is that the missingness of ratings is not
independent of the ratings that the users would give. This worry motivated Ying, Feinberg, and Wedel’s
work on creating models for recomendation systems based on online ratings that explicitely modelled
missing data16. In the case of rides, it’s possible that cyclists are more likely to rate their ride if they
had a bad experience than if their ride was uneventful. This kind of correlation between missingness
and the response can cause strong biases in the estimates, as we will demonstrate.

In this section, we attempt to address the missing data issues by fitting a model that simultanesouly
models the missing data mechanism and the ride ratings. However, with the current state of the ride
data, these models may be unable to come up with accurate estimates because of another problem in

16Ying, Feinberg, & Wedel (2006)
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Figure 6: Predicted probabilities of a negative rating by time for a typical ride.
The rider was chosen so the intercept was closest to the mean intercept for
model 5. The median length and average mean temperature were used, and
all other predictors were set to zero. The dotted lines show ±2 standard errors
from the predictions.

the data collection. As mentioned in section 1, rides are often misclassified as bike rides when they are
actually car rides or rides on public transit. We suspect that many of the unrated rides are rides that
were misclassified as bike rides, and thus were not rated by the rider. (We assume that riders don’t often
go through the effort of correcting the classification of rides and know not to rate rides that weren’t bike
rides.) If this is the case, then it would be inappropriate to make use of the data with missing responses.
If, however, Ride Report is able to improve their classification enough to make this a non-issue, these
methods could be vital to accurately modeling ride rating.

4.1 What could possibly go wrong?

We focus on the situation we have, where our response variable yi has missing values. Define the vector
R = (r1, r2, . . . , rn) such that



Figure 7: Predicted probabilities of negative rating by time of day for Models
3–6. Notice how starting with Model 2, daily trends start to emerge. This
indicates that the rider intercepts are picking up on time of day trends, which
must be reflected in a rider’s typical ride.

ri =
{

1, if yi is missing;
0, if yi is observed; (11)

for i = 1, . . . , n
Rubin classifies missing data into three situations17:

1. Missing Completely at Random (MCAR), where R is independent of Y and the predictors X.
i.e. P(R = 1|Y,X) = P(R = 1)

2. Missing at Random (MAR), where R is independent of Y , but may depend on X, i.e. P(R =
1|Y,X) = P(R = 1|X)

3. Nonignorable, or not MCAR nor MAR, where R is dependent on Y .

As discussed in the introduction, we believe that rider ratings may be correlated with nonresponse
and thus the missing ratings are non-ignorable.

If missing data is nonignorable, what could go wrong with our models? Let’s look at a toy example.
Define the data set of n observations with x ∈ Rn, y ∈ {0, 1}n, and R defined as before, where

xi ∼ Normal(0, 1),
17Little & Rubin (1987) (page 14)



yi ∼ Bernoulli(logit−1(4xi)),

ri ∼ Bernoulli(0.3 + 0.4yi),

for i = 1, . . . , n.
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Figure 8: Simulated example of logistic regression fits to a model with nonig-
norable missing response. One data set of size n = 104 was computed from the
toy data model. We then recomputed R 1,000 times, each time fitting a simple
logistic regression model to y and X.

If we attempt to fit a logistic regression model to this data our estimate of the intercept will be
inaccurate. Figure 8 shows the results of a simulation, computing the slope and intercepts for 1,000
different patterns of missing data for the same generated data set generated from our toy data model.

It makes sense that we are underestimating our intercept. The intercept can be interpreted as the
base rate, and if values of yi = 1 are more likely to be missing, the overall rate we observe will be lower.

Clearly, if we have nonignorable missing response, we are in a bad situation. Having missingness
depend on Y leads to biased estimates of our intercepts when we fit models. But we do have all of
our predictors of y, with no missingness. Could we leverage our understanding of how X predicts Y to
understand the patterns of missing response?

4.2 Modeling the Missing Data Mechanism with Expectation Maximization

Here we perform the expectation maximization (EM) algorithm using the weighting method proposed
by Ibrahim and Lipsitz18. Let y be our binary response and X be our predictors. With these we have our
complete data logistic regression model f(y | X,β), where β is a vector of parameters in the complete
data model.

We then specify a logistic regression model for missingness (R): f(R | X, y, α), where α is the
vector of parameters in the missingness model.

We begin the algorithm by getting our first estimates of α and β. We obtain β(1) by estimating
β with only the non-missing data (i.e. fit the models as if there were no missing data). We can then
estimate y for the missing data using β(1), and then use those estimates to compute α(1).

For the E-step, we compute weights for each observation with missing response, representing the
probability that the ith observation has response value yi:

18Ibrahim & Lipsitz (1996)



w
(t)
i yi

= f(yi | ri, xi, α(t), β(t)) = f(yi | xi, β(t))f(ri | xi, yi, α(t))∑
yi∈{0,1} f(yi | xi, β(t))f(ri | xi, yi, α(t))

. (12)

12 is essentially an application of Bayes’ theorem. We can view f(yi | ri, xi, α(t), β(t)) as the
posterior density of yi given observation i is missing, where f(yi | xi, β(t)) is the prior distribution and
f(ri | xi, yi, α(t)) serves as the likelihood.

For observed responses, w(t)
i yi

= 1. Note that for each observation i,
∑
yi∈{0,1}wi yi = 1. We can

compute f(yi | xi, β(t)) and f(ri | xi, yi, α(t)) by making use of predictions from regression models.
So in R, we can fit models and use the predict() function to get our probabilities from each of these
models.

For the M-step, we find our next estimates of the parameters, α(t+1) and β(t+1), by maximizing

Q(α, β | α(t), β(t)) =
n∑
i=1

∑
yi∈{0,1}

w
(t)
iyi
· l(α, β|xi, yi, ri). (13)

We do this by first by estimating β(t+1) using weighted maximum likelihood for the complete data
model, and then estimating α(t+1) using the same method. To maximize l(α, β|xi, yi, ri), we maximize
the product of their likelihoods,

l(α, β|xi, yi, ri) = l(β|xi, yi)l(α|ri, xi, yi),

which we can maximize by maximizing each of the likelihoods separately because our estimates of α
and β are only dependent on each other through x and y. This allows us to use any package that can
fit models by maximum likelihood estimation using weights for the observations, which includes all of
the model fitting packages we used in section 3.

In order to create the data to fit these models, we create an augmented data set where each
observation missing the response is recorded as two rows. These duplicate rows represent the two
possible values of the response, and also contain the weights computed in the E-step. Figure 9 describes
this process graphically.

Figure 9: How to create augmented data for EM algorithm: duplicate rows that
are missing the response variable, assigning to each row a possible value of the
reponse and its associated weight.

Original Data Augmented Data

yi xi ri

1 2.4 0
0 1.3 0
NA -0.4 0

→

yi xi ri wi

1 2.4 0 1
0 1.3 0 1
1 -0.4 0 0.2
0 -0.4 0 0.8

We repeat the E and M step until the joint loglikelihood converges to within some tolerance. An
implementation of this algorithm can be found in ??.

As an example, we simulated a dataset from the same model we presented earlier of size 104. Of
those observations, 6,252 were missing. As shown in Table 4, the estimate for the intercept in the
model that only considers the complete data is way off, but the model resulting from the EM algorithm
is nearly as accurate as the model fit to the full data (with missing values filled in from the original data



model.) The missing data model is also able to get accurate estimates of the parameters that define
the missing data mechanism, but the estimates are quite uncertain.

Table 4: Coefficients for models fit to simulated data set (± twice the standard
error.)

Model β̂0 2 · SEβ̂0
β̂X 2 · SEβ̂X

Actual 0 – 4 –
Full Data Model −0.009 0.065 3.881 0.080
Complete Data Model −0.278 0.106 3.819 0.259
EM Final Model 0.042 0.065 3.814 0.157

Table 5: Estimates for missing data mechanism for simulated model.

Model α̂0 2 · SEα̂0 α̂Y 2 · SEα̂Y

Actual 0.3 – 0.4 –
EM Missing Data Model 0.263 0.132 0.530 0.268

4.3 EM Algorithm for the Ride Data

In order to perform the algorithm, we need to specify a model for nonresponse. We will use the same
predictors that we do in Model 4 for ride rating—including a smoothing spline for time of day for
weekdays and weekends—except we do not use random rider intercepts. For the EM algorithm, we use
Model 4 as our ride rating model and use the following model for the rating nonresponse mechanism:

ri ∼ Bernoulli(logit−1(α0 + yiαy +Xiαx +Xweekend · f time.w(ti) + (1−Xweekend) · f time(ti))). (14)

Table 6: Fit summaries for Model 4 and the EM Model

Model Separation Plot AUC19

Model 4 0.802

EM Model 0.763

The fit for the EM algorithm seems to be worse. The AUC, shown in Table 6, which was computed
on the complete data, was lower than that of Model 4.

There are two disagreements between the EM model and Model 4 for ride rating: the coefficients for
xlength and xrain. The former has flipped sign while the latter has much less uncertainty in its estimate.

The coefficients for the missing model, shown in Table 8 confirm our worry that many of the rides
missing the rating are not bike rides. These model coefficients suggests that rides are much more likely
to be missing if they have a negative rating. We hypothesized that there would be a weak negative
effect of a negative rating on missingness; while any reasonable researcher wouldn’t dismiss the estimates



Table 7: Ride rating model estimates after EM algorithm

Parameter Model 4 EM Model

Log(Length) -0.147 0.205
(-0.290, -0.005) (0.106, 0.304)

Mean Temperature 0.142 0.100
(0.004, 0.281) (0.005, 0.196)

Mean Wind Speed 0.002 -0.026
(-0.054, 0.057) (-0.069, 0.016)

Max Gust Speed -0.005 0.020
(-0.031, 0.021) (0.001, 0.039)

Rainfall 0.050 0.051
(-0.017, 0.117) (0.009, 0.093)

Rainfall 4-Hour 0.022 0.017
(0.003, 0.041) (0.003, 0.030)

Intercept -2.792 -3.144
(-3.334, -2.250) (-3.604, -2.684)

because the sign wasn’t what was expected, the magnitude seems much more in line with the hypothesis
that many of the missing ratings correspond to car rides.

It’s tempting to suggest that longer rides tend to be missing, but they are also more likely to be
rated negatively; the distribution of ride lengths are actually about the same for rated and non-rated
rides. But does it make sense that we would have the same distribution of ride lengths for rated and
non-rated rides, if we suspect many of the non-rated rides are actually car rides? Yes, so long as we keep
in mind that these are rides that have been misclassified as bike rides; we expect the classifier already
filtered out car rides that were too long and fast to be bike rides.

Unfortunately, these models do not seem ready for use on the Ride Report data until the quality of
data with missing ratings can be assured. Knock Software is planning on fixing this, so such an analysis
may be viable within a year or two of collecting new data. (Because the accelorometer data is not saved,
they cannot go back and attempt to reclassify old rides.)

5 Unfinished Work: Incorporating Routes
These models so far do not incorporate routes. Though our initial aim was to create models that use
the routes, we were not able to transform the route to a state that was useful for modeling. I leave the
models as they are, but here I explain some of my work toward the goal of incorporating routes and
describe some potential modeling approaches. Throughout this work is the caveat that many of these
results are hard to interpret without taking into account route. We hope future researchers will be able
to accomplish this.

Conclusion
By focusing on minimizing barriers to responding and automating as much of the data collection as
possible, the designers of the Ride Report app created an infrastructure that could collect large numbers
of ride ratings. But sample size isn’t everything: the subjectivity of the ratings and the pattern of missing
ratings make this a treacherous data set to model naively.



Table 8: Estimates for ride rating nonresponse mechanism. The Basic Nonre-
sponse Model is estimated based on the data with y predicted by Model 4. The
EM Nonresponse Model is estimated with the EM algorithm, which uses the
same model specifications.

Parameter Basic Nonresponse Model EM Nonresponse Model

y 0.730 1.035
(0.235, 1.224) (0.493, 1.577)

Log(Length) -0.297 -0.327
(-0.362, -0.232) (-0.393, -0.262)

Mean Temperature 0.200 0.139
(0.139, 0.262) (0.077, -0.262)

Mean Wind Speed 0.032 0.031
(0.003, 0.060) (0.001, 0.061)

Max Gust Speed -0.003 -0.007
(-0.016, 0.010) (-0.021, 0.006)

Rainfall 0.007 -0.024
(-0.028, 0.041) (-0.057, 0.009)

Rainfall 4-Hour -0.002 0.010
(-0.012, 0.009) (-0.001, 0.021)

Intercept -0.927 -0.967
(-1.124, -0.729) (-1.163, -0.771)

The subjective ratings pose a problem particularly when used to infer the quality of particular road
segments; if most of the rides are by one particular rider, then the typical rating over that segment
will reflect that particular rider’s interpretation of the ratings more than others. Our models from
section 3 confirm that modeling ride rating with rider intercepts is essential. Adding rider intercepts
to a multivariate regression model increased the cross-validated AUC from 0.552—little better than
the null model—to 0.797. These intercepts turned out to encode much more than a rider’s baseline
tendency to rate a ride negatively; Figure 7 showed how much information rider intercepts had about
riders’ typical time of day, and it’s likely that riders’ typical routes are also encoded in these intercepts
as well. Future research should pay special attention to how these intercepts change when routes are
incorporated into these models.

Our missing data models showed some questionable results, though it’s hard to know if those issues
stem from the data quality of the unrated rides or a flaw in the model. If many of the unrated rides are
actually not bicycle rides— which we suspect is the case—then these missing data models will not be
appropriate until the misclassification of non-bike rides as bike rides is no longer a problem.

In some ways, this is an incomplete work. To leverage the insights from this paper in creating a map
of good and bad routes, models that use ride route information need to be developed and implemented.
Both the theoretical development and the technical implementation are difficult problems in and of
themselves. There are many ways one could model the relationship between ride rating and route, and
it’s difficult to find any good theoretical justification for one particular model. And even if a good
theoretical model can be formulated, such models will likely not be simple to implement, both because
the models will probably not be supported by common model fitting packages and because matching
the GPS traces to the road network model is a difficult inference problem in itself.
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