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Abstract

In recent years, there has been a drive to study the genetic etiology of diseases. Many statistical
models, centered around regression techniques, have been proposed in order to find genes or groups of
genes that affect diseases; however, these models often ignore many biological facts, such as the effect
of the interdependence of genes and the role genes play in various biological pathways. Additionally,
many of these models, such as genome wide association studies, may take as long as several months to
complete and have problems with predictor selection. In this paper, we propose the use of a Bayesian
partial factor regression model in order to address the covariance structure of the genes and gene sets, aid
in variable selection and decrease computation time. Through the use of this model, we find a decrease
in computational expense, reproduce genetic results in two separate real data examples, and suggest a
novel biological interpretation that provides unique insight into the genetic etiology of many diseases.
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Introduction

With the decreasing cost of sequencing genomic data, it comes as no surprise that the demand for statis-
tical methods that accurately model our biological understanding of genetics has increased. Namely, gene set
analyses have become progressively important due to the biological understanding that complex phenotypes
are jointly influenced by multiple genes [3]. As the goal of many biological studies is to identify groups
of genes with a common biological function that explain a given phenotype, many statistical models have
arisen that attempt to quantify the relationship between these predefined gene sets and the phenotype. In
the literature, these are often referred to as deriving a ”molecular signature.” There are many problems with
deriving a molecular signature, such as its instability, thus motivating further statistical research in devel-
oping more complete methods of analyzing gene sets [2]. Additionally, many current gene set approaches do
not consider the interdependence of pathways because they only test one gene at a time, such as gene set
analysis (GSA) [4].

Recent works have shown that using predefined gene sets often improves both statistical power and in-
terpretability of the model [1, 5, 6]. Many of these works incorporate the use of Bayesian factor models,
which allow for analyses in a reduced dimension setting yet retaining the ability to make inferences on the
original predictors. In this paper, we implement a Bayesian partial factor regression model that identifies
functionally relevant enriched gene sets and genes in cancer data and we discuss this model’s statistical and
biological relevance.

In section 2, we evaluate the ability of the partial factor regression model to identify genes and pathways
associated with two types of cancer: melanoma and colon. In section 3, we discuss the statistical relevance
of the partial factor model in gene set analyses and the novel biological interpretability of the partial factor
model. We also comment on the limitations of the partial factor regression model and describe potential
avenues for future work. In section 4, we outline specifically the partial factor regression model.

Results

Partial Factor Method Overview

We begin with a summary of the Bayesian partial factor model (PFRM). First, it is important to recognize
that this model is best understood to be a combination of two models: a linear regression model for the
response variable, Y, and a marginal model for the predictor variables, X. We can model Y as:

Y = Xβ + ε, ε ∼MVNn(0, σ2In). (1)

Here, Y is an n-dimensional vector of test statistics (p-values may be used as well) derived from genetic
signatures from n genes. X is an n × p incidence matrix, where n is the number of genes and p is the
number of pathways being considered, with entries of 1 if the gene is in the pathway or 0 otherwise. β
is a p-dimensional vector of effect sizes for the pathways being analyzed. ε is an n-dimensional vector
of idiosyncratic noise with a variance component of σ2 modeled by an n-dimensional multivariate normal
distribution with mean µ and variance Σ: MVNn(µ,Σ). For our marginal model for the predictor variables,
we have:

XT = BF + ν, ν ∼MVNn(0,ΨIn), (2)

where X remains the n× p incidence matrix of genes in the pathways; B is a p× k dimensional matrix of the
p pathways in the k factors, commonly known as the factor loadings matrix; and F is a k × n dimensional
matrix of the n genes in the k factors. By combining Equations 1 and 2, we see that the regression model
can be written as

Y = Fθ + ε, (3)

where θ is a 1× k vector of effect sizes for the factors.
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There are many advantages to using a Bayesian partial factor model in gene set analyses, both from a
statistical and a biological viewpoint. From a statistical standpoint, there is a unique equation relating the
lower dimensional coefficient parameter to the original high dimensional coefficient parameter, which allows
for biological interpretations on original predictors. Additionally, through implementing principal compo-
nent analysis (PCA), the dimensionality on X is reduced, thus resulting in a decrease in computational
expense and no collinearity. See Appendix A to see the computational efficiency of this model. Another
important consequence to underscore is that when using a latent factor regression model, yi is conditionally
independent of xi given fi.

From a biological viewpoint, we find a novel interpretation of the partial factor model in a genetics
setting. One way in which the factors can be viewed are as meta-pathways, meaning groups of gene sets
that appear to be functionally related to the phenotype, or response. Looking at Equations 2 and 3, we can
see that there are several interpretations B and F can take. B, the factor loadings matrix with dimensions
p× k, can be interpreted as the strength of pathway membership in the meta-pathways or the probability of
pathway membership in the meta-pathways. F , the factor matrix with dimensions k×n, can be interpreted
as the strength of gene membership in the meta-pathways or the probability of gene membership in the
meta-pathways. In this way, the partial factor model provides a novel avenue where it can be seen which
collection of pathways and genes most influence the phenotype. This unique interpretation may allow for
unprecedented insight into many biological problems, especially in genetics.

We implemented our partial factor model on two real data sets that have well known genetic signatures
and established pathways: a BRAFV 600-mutant melanoma study and a colon-APC loss cancer study. Each
data set contained genetic signatures of the enriched genes from each study. The test statistic derived from
the genetic signatures was treated as the response variable in each analysis. All gene sets were downloaded
from the MSigDB website from the C2 KEGG and C2 REACTOME sets. For each example, a binary design
matrix based on these genetic signatures was created, where a value of 1 was given if the gene appeared in
the gene set and 0 otherwise. The final predictor matrix was completed when all of the pathways containing
no enriched genes and the enriched genes that were not in any pathways were removed. This matrix was
then scaled so that the genes in each pathway were centered.

The gene set and number of factors used in the analysis were selected so that theta was identifiable,
meaning that it converged to its posterior distribution. This was determined by looking at the trace plots of
theta. If more than one gene set and factor combination resulted in posterior estimates on theta, then the
one with the largest number of pathways in the gene set and the largest number of factors was used. In this
paper, the significant genes and pathways were determined subjectively, due to time constraints [26]. In the
following subsections, we will describe each example in more detail in addition to the model in context and
subsequent results.

Melanoma Example

Microarray gene expression data was obtained on BRAFV 600-mutant melanoma metastatic samples from
NCBI’s Gene Expression Omnibus. After preprocessing steps to ensure data quality, there was a total of
68 samples and 11,657 genes. In order to find the enriched genes for MAPK pathway addiction, a genetic
signature was derived using the logistic version of the Bayesian approximate kernel regression (BAKR-logit)
model, which yielded 68 enriched genes. We used the KEGG gene set, freely available from the MSigDB
website, in this analysis. The number of pathways and genes that were used, after removing the pathways
that contained no enriched genes and the enriched genes that were not in any pathways, were 61 and 29,
respectfully. The number of factors, or meta-pathways, was set equal to 2. We report the pathways and
genes with posterior means greater than 0.3 and 1 as the elements that most influenced melanoma. In both
meta-pathways, 6 genes and 8 gene sets were found to be most influential. PFRM replicated findings of 2
genes known to be associated with melanoma, MYC and CCND1, and found several pathways related to
various cancers among the most influential pathways.
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Table 1: The genes recognized as having the largest posterior
value in the melanoma example.

Meta-Pathway Genes Posterior Value

1

MYC 6.953
CCND1 5.809

HLA-DMB 3.215
HLA-DMA 3.215

ACTN1 1.031
VEGFB 1.028

2

HLA - DMA 5.759
HLA - DMB 5.758

VEGFB 1.566
ACTN1 1.565

POLR3G 1.150
IRAK1 1.150

The estimated factors and factor load-
ings that are above our threshold are pro-
vided in Tables 1 and 2, respectfully. See
Appendix B for a complete list of values
for each pathway and gene in each meta-
pathway. The most interesting result was
that the melanoma pathway and the MAPK
pathway did not have large posterior val-
ues. The melanoma pathway had poste-
rior values of 0.183 (SD = 0.113) and -
0.006 (SD = 0.081) for the first and second
meta-pathways, respectfully. The MAPK
pathway had posterior values of 0.017 (SD
= 0.075) and -0.019 (SD = 0.075) for the
first and second meta-pathways, respect-
fully. Additionally, Figures 1 and 2 have
been provided that depict the posterior
means for the strength of association of the
genes and pathways in the melanoma meta-pathways. Each figure provides a visual image of how PFRM is
able to select variables as there are clear groups of association.

Table 2: The pathways recognized as having the largest posterior value
in the melanoma example.

Meta-Pathway Pathways Posterior Value

1

Acute Myeloid
Leukemia

0.553

Colorectal Cancer 0.553
Endometrial Cancer 0.553

Chronic Myeloid
Leukemia

0.553

Thyroid Cancer 0.553
Small Cell Lung

Cancer
0.553

WNT Signaling
Pathway

0.553

Cell Cycle 0.553

2

Type 1 Diabetes
Mellitus

0.493

Autoimmune Thyroid
Disease

0.493

Intestinal Immune
Netowrk for IGA Production

0.493

Asthma 0.493
Graft vs. Host

Disease
0.493

Antigen Processing
and Presentation

0.493

Allograft Rejection 0.493
Viral Myocarditis 0.448

One of the motivating fac-
tors on which gene set was used
and the number of factors cho-
sen was due to the proper mix-
ing of θ. It is important
that θ converges because that
shows the model reached con-
vergence at the posterior distri-
bution. As shown in Figure
6 in Appendix B, θ converged.
The effect size of the first meta-
pathway was 0.215 (SD = 0.300)
and the effect size of the second
meta-pathway was -0.128 (SD =
0.260).

Melanoma is common cancer
in the first world, especially in
regions with high rates of Cau-
casian individuals [36]. While it is
known that exposure to UV radi-
ation from the sun is a major risk
factor, several genetic mutations
have been recognized for their role
in the progression of melanoma,
which makes this a valuable dis-
ease to use for testing the effec-
tiveness of PFRM [36]. In the
first meta-pathway, two genes pre-
viously recognized as important
to the etiology of melanoma were
found to be influential: MYC and

CCND1. MYC is an oncogene that has been linked to many types of cancers, specifically melanoma [39].
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MYC is widely regarded as a major player in melanoma due to the detrimental results of its overexpression,
namely a continuous and high rate of cell growth and the regulation of angiogenic factors [33] [39]. CCND1,
also an oncogene, is known to play an important role in the cell cycle, where its function results in the cell’s
entry into the S phase [38]. Any abnormalities during the S phase of the cell cycle may cause numerous
negative consequences for the cell, as it is in the S phase where DNA is replicated and mutations to the DNA
are more likely to occur. The replication of these genes are important in that it demonstrates the ability of
PFRM to find correct results.

The novel genes found in the first meta-pathway were HLA-DMA, HLA-DMB, ACTN1 and VEGFB.
Both HLA-DMA and HLA-DMB are part of a class of immune system proteins called major histocompata-
bility complexes (MHC). More specifically, they are part of the MHC class II proteins that help stimulate
the immune system to recognize foreign antigens outside of the cell [29, 30]. Until recently, there has not
been a significant number of studies that have attempted to link the immune system to cancer, but immuno-
oncology is becoming a more prevalent research topic and has even shown promising results in increasing
survival for patients with melanoma [32, 40]. Seeing HLA-DMA and HLA-DMB among these results may
provide evidence that further research should be done on the role these genes play in melanoma, which may
lead to actual clinical targets for treatment.

(a) Posterior Means for Pathways in Meta-pathway 1 (b) Posterior Means for Pathways in Meta-pathway 2

Figure 1: Graphs of the absolute value of the posterior means for the pathways in each melanoma meta-
pathway. The pathways reported as significant are in blue.

(a) Posterior Means for Genes in Meta-pathway 1 (b) Posterior Means for Genes in Meta-pathway 2

Figure 2: Graphs of the absolute value of the posterior means for the genes in each melanoma meta-pathway.
The pathways reported as significant are in blue.

ACTN1 encodes for a protein in the cytoplasm that is necessary for proper cell matrix adhesions and
organization of the cytoskeleton [18, 28]. When ACTN1 is phosphorylated, it can interact with tyrosine-
protein kinase Src, which is a proto-oncogene that plays a key role in cancer through its determination of
many fundamental cellular processes, such as cell growth, differentiation, and specialized cell signals [34].
Finding ACTN1 among these results appears to make sense from a biological standpoint and suggests that
further research should be done to fully realize the role ACTN1 plays in melanoma.

The last significant gene was VEGFB, which is an important component of endothelial cell growth and
survival during vasculogenesis and angiogenesis [8]. Angiogenesis, or the growth of new capillaries from
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blood vessels, is especially important for the growth of cancerous cells, as without access to sufficient oxygen
and nutrients from the blood, the cancerous cells cannot not survive [7]. Additionally, VEGFB can influence
the tumor microenvironment by changing the way in which the host organism responds to the tumor [27].
While VEGFB has not been specifically linked to melanoma, its role has been explored in other types of
cancer, such as breast cancer [27]. Further research should be completed to explore the function of VEGFB
in melanoma.

In the second meta-pathway, four of the six genes overlapped with genes from the first meta-pathway.
These genes were HLA-DMA, HLA-DMB, VEGFB and ACTN1. It is interesting to note that HLA-DMA,
HLA-DMB and VEGFB were reproduced in this second meta-pathway, especially since there is limited
knowledge about their role in melanoma. This provides further motivation to explore the roles of these three
genes in melanoma and should be a focus of future research. The last two genes found to be influential in
the second meta-pathway were POLR3G and IRAK1. POLR3G is a gene that codes for one type of RNA
polymerase III, which transcribes genes that control the cell cycle and growth. Moreover, MYC binds to
the POLR3G promoter, thus suggesting that POLR3G may play a role in the progression of melanoma due
to this relationship with MYC [35]. IRAK1 has previously been linked with melanoma through its effects
on activating proteins involved in cell division and survival, most notably the p38 MAPK pathway [37] [19].
Reproducing results in which MYC and IRAK1 are important in melanoma is important in that it provides
evidence that our model is identifying genes truly associated with melanoma and not only false positives.

While PFRM recognized several well-known genes as most important in the meta-pathways, PFRM failed
to identify two key pathways in melanoma: the melanoma pathway and the MAPK signaling pathway. This
is unexpected, as MYC plays a central role in both pathways. One reason PFRM may not have uncovered
these pathways is because MYC has a stronger representation in other pathways considered, such as those
found to be most prevalent in the first meta-pathway: acute myeloid lukemia, colorectal cancer, endome-
trial cancer, chronic myeloid leukemia, thyroid cancer, small cell lung cancer and WNT signaling pathways.
While we did not necessarily expect to see these specific cancer pathways, we are not surprised as many
cancers share common features [7]. Additionally, the cell cycle pathway, which encodes key regulators of
mitosis checkpoints, was found to be significant. We expected to see this pathway as it is well known that
unregulated cell division contributes to cancer.

In the second meta-pathway, we found that the pathways with the highest posterior means were asso-
ciated with the immune system: type 1 diabetes mellitus, autoimmune thyroid disease, intestinal immune
network for IGA production, asthma, graft vs. host disease, antigen processing and presentation, allo-
graft rejection, and viral myocarditis pathways. While not initially intuitive, these pathways coincide with
the most significant genes found in the second meta-pathway. The prevalence of pathways related to the
immune system in the second meta-pathway suggests that the immune system contributes to melanoma.
This provides a new area for clinical intervention, as the immune system can be targeted to help combat
cell abnormalities. Further research should be done on the intersection of the immune system and melanoma.

PFRM has demonstrated its strength in identifying several genes that are known to contribute to
melanoma; however, there is significant ambiguity at the ability of PFRM to recognize pathways that affect
melanoma. We examine this problem from a statistical perspective in the discussion.

Colon Cancer Example

The levels of three gene expression data of matched colon cancer tumor samples was taken from The
Cancer Genome Atlas (TCGA). Since this data had already been preprocessed and mapped to the gene
level, we labeled each sample by the presence of the APC gene and derived the genetic signature using the
BAKR-logit model. 49 genes were found to be enriched. The combination of the KEGG and REACTOME
gene sets was used in this analysis. 93 pathways and 21 genes were included after removing the pathways
that contained no enriched genes and the enriched genes that were not in any pathways. The number of
factors, or meta-pathways, was set equal to 3. We report the pathways and genes with posterior means
larger than 0.3 and 2, respectfully, as the most influential elements (see Appendix C for a complete list of
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pathways and genes in each meta-pathway). In the first meta-pathway, 42 pathways and 2 genes were found
to be most influential while in the second meta-pathway, 9 pathways and 2 genes were found to be most sig-
nificant. In the third meta-pathway, 7 pathways and 1 gene were above the threshold. PFRM identified the
driving gene of colon cancer, WNT2, and several potential new pathways that may play a role in colon cancer.

Table 3: The genes recognized as having the largest posterior
value in the colon cancer example.

Meta-Pathway Genes Posterior Value

1
GNG7 7.090

ADORA2A -3.879

2
ADORA2A 3.215

WNT2 5.759
3 WNT2 5.758

The estimated factors and factor load-
ings that are above our threshold are pro-
vided in Tables 3 and 4, respectfully. It
should be noted that only the first ten path-
ways for the first meta-pathway are listed in
Table 4 due to space constraints. Of special
note is the absence of the WNT pathway,
which is known to contribute significantly
to colon cancer. In the first meta-pathway,
its posterior mean was -0.032 (SD = 0.093);
in the second, its posterior mean was -0.044
(SD = 0.106); and in the third, its posterior
mean was 0.054 (SD = 0.127). Additionally, Figures 3 and 4 show a graph of the posterior values of each
pathway and gene in each meta-pathway, thus providing a good visual to see the groupings of elements PFRM
identified as important in colon cancer. Just as in the melanoma example, the gene set and the number of
factors was chosen so that θ was able to converge to its posterior distribution (Figure 7 in Appendix C). The
effect size of theta in the first meta-pathway was -0.172 (SD = 0.401), the second meta-pathway was -0.325
(SD = 0.242) and the third meta-pathway was -0.118 (SD = 0.359).

(a) Posterior Means for Pathways in Metap-
athway 1

(b) Posterior Means for Pathways in Metap-
athway 2

(c) Posterior Means for Pathways in Metap-
athway 3

Figure 3: Graphs of the absolute value of the posterior means for the pathways in each colon meta-pathway.
The pathways reported as significant are in blue.

(a) Posterior Means for Genes in Metapath-
way 1

(b) Posterior Means for Genes in Metapath-
way 2

(c) Posterior Means for Genes in Metapath-
way 3

Figure 4: Graphs of the absolute value of the posterior means for the genes in each colon cancer meta-
pathway. The pathways reported as significant are in blue.

PFRM identified several genes in this data set that have not previously been found linked to colon cancer.
In the first meta-pathway, the two genes that were identified as most influential were GNG7 and ADORA2A.
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Table 4: The pathways recognized as having the largest posterior value in the colon cancer example.

Meta-Pathway Pathway Posterior Value

1

REACTOME NEUROTRANSMITTER RECEPTOR
BINDING AND DOWNSTREAM TRANSMISSION

IN THE POSTSYNAPTIC CELL
0.550

REACTOME G ALPHA Q SIGNALLING EVENTS 0.550
REACTOME GABA RECEPTOR ACTIVATION 0.550

REACTOME GLUCAGON TYPE
LIGAND RECEPTORS

0.550

REACTOME INHIBITION OF
VOLTAGE GATED CA2 CHANNELS

VIA GBETA GAMMA SUBUNITS
0.550

REACTOME NEURONAL SYSTEM 0.550
REACTOME POTASSIUM CHANNELS 0.550

REACTOME ADP SIGNALLING
THROUGH P2RY1

0.550

REACTOME TRANSMISSION
ACROSS CHEMICAL SYNAPSES

0.550

REACTOME ADP
SIGNALLING THROUGH P2RY12

0.550

2

REACTOME NUCLEOTIDE LIKE
PURINERGIC RECEPTORS

0.561

KEGG CALCIUM SIGNALING PATHWAY 0.561
REACTOME CLASS A1

RHODOPSIN LIKE RECEPTORS
0.561

KEGG NEUROACTIVE LIGAND
RECEPTOR INTERACTION

0.561

KEGG VASCULAR SMOOTH
MUSCLE CONTRACTION

0.560

REACTOME NGF SIGNALLING VIA
TRKA FROM THE PLASMA MEMBRANE

0.560

REACTOME SIGNALLING BY NGF 0.560
REACTOME GPCR

DOWNSTREAM SIGNALING
0.510

REACTOME G ALPHA S
SIGNALLING EVENTS

0.509

3

KEGG BASAL CELL CARCINOMA 0.813
KEGG HEDGEHOG SIGNALING PATHWAY 0.813

KEGG PATHWAYS IN CANCER 0.813
KEGG MELANOGENESIS 0.813
REACTOME CLASS B 2

SECRETIN FAMILY RECEPTORS
0.646

REACTOME SIGNALING BY GPCR 0.349
REACTOME GPCR LIGAND BINDING 0.346

GNG7 is part of a group of large G-proteins that may function to suppress tumors and halt cell growth [41].
The role of GNG7 in colon cancer remains unclear, however it is known to to be downregulated in gastroin-
testinal cancer, oseophageal cancer, and carcinoma [41, 42]. These three types of cancer are closely related
to colon cancer, as the colon is simply the end of the digestive tract and an internal organ. Thus, it is not
completely unexpected to find the presence of GNG7 in this first meta-pathway. Future research should focus
on the role of GNG7 in colon cancer, especially as it is known to contribute to similar cancers. ADORA2A
functions to increase intracellular cAMP levels, which aids many biological functions, such as blood flow in
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the kidneys, heart and cerebrum, a component in the immune system and a contributor to pain regulation
[20]. Recent research has shown it to be a potential site of clinical intervention due to its ability to slow the
growth of tumors via the immune system. In tumors, there is a high rate of cell death and dying cells release
the nucleotide adenosine which binds to ADORA2A. When adenosine is bound to ADORA2A, T cells of the
immune system become TReg cells, which then stimulates an inflammatory response to the cancerous cells
[43]. This is an unexpected, yet potentially insightful, result that warrants further research.

In the second meta-pathway, ADORA2A is again found to be influential. However, a more notable gene
found to have a large posterior mean was WNT2. WNT2 is widely known for its role in cell proliferation
and differentiation in colon cancer [44–46]. It is also the sole influential gene in the third meta-pathway. The
fact that we see WNT2 among our results provides us with evidence that our model successfully identifies
genes that relate to colon cancer. This helps to provide evidence that PFRM is able to correctly describe
the genetic foundations of diseases.

While PFRM correctly identified WNT2 as a significant contributing gene in colon cancer, there were
several unexpected pathways that were found to be influential in colon cancer in each meta-pathway. No-
tably, the WNT pathway did not have a posterior mean larger than 0.3 in any of the meta-pathways. This
is interesting to note, especially since the WNT2 gene, which is a major contributor to the WNT pathway,
had high posterior means in two of the meta-pathways. Similar to the melanoma example, the WNT2 gene
may play a dominating role in other pathways, which may overshadow the importance of the WNT pathway.

Results found to be larger than 0.3 in the first meta-pathway included many pathways that pertain
to metabolism and chemical signaling, such as the GABA receptor activation, the glucagon signaling in
metabolic regulation and the potassium channels pathways. Similarly, in the second meta-pathway the
pathways with the highest posterior means mostly related to nerve growth factor pathways, nucleotide re-
ceptor pathways and signalling pathways. For example, the calcium signaling pathway, the signalling by
nerve growth factor pathway and the neuroactive ligand receptor interaction pathway were all found to be
influential. While these results were not expected, they are mostly consistent with the known functions of
ADORA2A. This suggests that ADORA2A is a major component in a diverse set of pathways that pertain
to many biological functions while it remains absent in known cancer pathways. As there has been limited
previous research on the role of ADORA2A in cancer, more research should be completed to explore this role.

In the third meta-pathway, there were three pathways that related to cancer: melanogenesis, basal cell
carcinoma and the overall pathways in cancer from KEGG. The first two pathways are not necessarily con-
sistent with known pathways in colon cancer, which may suggest that these pathways contain features that
are consistent with many types of cancer. Additionally, there were two other pathways with posterior means
larger than 0.3 that were related to cell growth and differentiation: the hedgehog signaling pathway and the
class B2 secretin family receptors pathway. These two pathways were not expected to be seen, which may
show that the WNT2 gene is a significant contributor to these pathways due to WNT2’s role in the cell cycle.
Further research should be done into the overlap of these pathways and the role of WNT2 in each pathway.

While PFRM successfully identified WNT2 as a contributor to colon cancer, PFRM failed to recognize
many of the canonical pathways of colon cancer, such as the WNT pathway. This is a cause for concern, as
it is unclear if these pathways are truly connected to colon cancer or are simply false positives. We consider
this concern from a statistical viewpoint in the following section, as there are several modeling considerations
that need to be addressed.

Discussion

We have proposed a method for gene set analyses that is computationally efficient, is decent at variable
selection and provides insightful biological interpretations. The statistical strengths of this model stem from
the dimensionality reduction that occurs when finding and using the factors in the regression. While we
work in this lower dimensional space, we retain the ability to make inferences on the original parameters.
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Additionally, this dimensionality reduction allows for a decrease in computational expense and burden (See
Appendix A for further details). Furthermore, the fact that yi is conditionally independent of xi given fi, is
non-trivial. Through this fact, we are better able to infer the genetic architecture of the phenotype we are
examining. By using the partial factor regression model, instead of a factor regression model, we are better
able to select the variables that most contribute to the phenotype.

Biologically, we have found a statistical model with a unique interpretation of collections of genes and
pathways. We have examined the idea of meta-pathways, or groups of both genes and pathways that appear
to be functionally related to the phenotype beyond biological experiments. This is important because having
an unbiased method of relating groups of genes and previously known pathways to phenotypes in new ways
may decrease experimental bias and allow for more accurate and precise gene set analyses. In this paper,
we have focused on demonstrating the strengths of PFRM using two real life data sets with widely accepted
results. We have replicated several of these expected results as well as found new genes and pathways that
may influence melanoma and colon cancer.

While PFRM has addressed several known challenges that are common to gene set analyses and can be
a valuable tool to many researchers, it is not without its limitations. First, one major assumption is that
there is a linear relationship between Y and X. In a genetics context, we cannot necessarily assume that
this assumption is met due to our current biological knowledge, especially due to the effects of epistasis. As
such, a model that considers and captures non-linear effects is highly desired. An extension of PFRM would
be to consider using a kernel function to model these types of relationships between genes and the given
phenotype. The use of kernels in statistics to model non-linear processes is not uncommon and its use has
become increasingly important in the machine learning community [25]. One way in which kernel models
could be incorporated into the PFRM framework is by transforming Fθ from Equation 3 using a kernel,
resulting in Y = Kα+ ε, where K is the kernel and α is the coefficients of the kernel. In this way, non-linear
effects can be captured.

While using kernels would allow us to consider the non-linear case and still work in a reduced dimension,
there are several shortcomings. One drawback of using a kernel model is that the effect size of each explana-
tory variable is lost because there are no methods that allow the kernel coefficients, αi, to be related to the
original variable coefficients, β. This negatively impacts the biological inferences we can make since we do
not have posterior conclusions on the original explanatory variables, only on the factors. Furthermore, there
is no way to perform variable selection. This is problematic for several reasons, most notably because it
produces additional challenges for subsequent biological research to be completed if there is uncertainty in
which predictors influence the response and the extent of this influence. Several of the drawbacks of kernel
models have been addressed by the Bayesian approximate kernel regression (BAKR) model.

The main result stemming from BAKR is an analog for the effect size of each explanatory variable when
the kernel is shift-invariant [12, 17]. The main link between the coefficients of the original explanatory
variables and the coefficients of the factors in the kernel space is known as the basis function. While, this
function is very difficult to compute in practice, an approximate basis function is relatively straightforward
to compute. Through utilizing this approximate basis function, the relationship between the kernel factor
effects, α, and the original variable effects, β can be defined through the feature regression coefficients in the
approximate basis function. This allows us to move from the kernel space back to the original space without
a loss of information. BAKR combines the empirical factor model’s method of mapping back to the original
explanatory variables in the context of using a kernel model, thus allowing for non-linearity.

While BAKR allows us to move to the original space from the kernel space and allows us to assume non-
linearity, PFRM is a hierarchical model that is centered at the Bayesian factor model and conditioned on a
fixed number of factors. Fixing the number of factors aids in computational efficiency, however, choosing the
number of factors is a serious challenge. If k is chosen to be too large, convergence of θ may not be reached as
the model cannot distinguish between each factor. Contrarily, if k is chosen to be too small, inferences may
be inaccurate [13]. It would be ideal to allow k to be a variable in a MCMC model; however, this would most
likely create numerous computational issues such as increasing the time and computational power necessary
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to have the model run. Additionally, the parameters may not mix well due to the variation in the dimensions
of k and the starting values for the parameters may be influential in the posterior summaries. This idea of
letting the number of factors remain unknown was approached in a paper by Lopes and West in which they
utilize a reversible jump MCMC algorithm [15].

Another limitation of PFRM is that it assumes the genes in these pathways taken from MSigDB represent
the true membership. While we have great faith in the scientific validity in the experiments that led to the
creation of these gene sets, we recognize the fact that these gene sets were found under specific experimental
conditions and designs. As such, they are subject to experimental and human error. To our knowledge,
there are no methods that explicitly address this issue. While further research should be done to overcome
this assumption, it should be noted that the meaning of the factors in PFRM hints at the uncertainty of
pathway membership through the interpretation of both B and F : each factor represents a collection of
pathways and genes that share common biological aspects with the phenotype. In this way, the factors can
be thought of as proposed true meta-pathways for the phenotype.

Lastly, there were situations in which θ did not converge. As such, it is important to recognize that
PFRM does not always recognize each factor as being unique. This may be due to the presence of a few
genes that are overwhelmingly important in the phenotype, such as MYC and melanoma. These genes
strongly influence each factor, which then results in multiple unfixed pathways where gene members are the
same or nearly the same. Another reason why θ did not converge may be a result of a lack of variation
in the incidence matrix; as such, there is no variation in the factors. These situations will cause theta to
be unidentifiable thus preventing posterior inferences on theta to be drawn. Consequently, there must be
variation in the incidence matrix of genes and pathways, effectively ensuring that each pathway is unique.
Additionally, posterior inferences on theta may not be consistent, as using different sets of pathways, even
if each set has significant overlap, may change the results. As such, the MCMC starting value is important
for obtaining convergence and posterior summaries.

Further research should be completed on the constraints of this model especially in situations where
PFRM is used for inference, as it is unclear as to which cases are completely identifiable and which cases are
not identifiable. Another consequence of this identifiably problem is that determining significance becomes
an issue. For example, we attempted to use two different imputation methods, the family wise error rate
(FWER) and the false discovery rate (FDR), to determine which genes and pathways were significant.
However, in nearly all of the imputed data sets, θ was unidentifiable and no conclusive results could be
drawn. As such, restricting the parameters of PFRM would allow these significance tests to be used, thus
avoiding the case where the thresholds are subjectively chosen. As stated above, due to time constraints
we chose the threshold for B and F subjectively. If this was not the case, we would have implemented a
bootstrap procedure and gained a better understanding of the distribution of our test statistics.

Methods

For many years, factor models have been studied extensively in several fields of application, notably gene
set analyses [1, 3, 5]. They have become popular due to their computational efficiency and implementation,
especially under a Bayesian framework. Moreover, when working in fields where high dimensional data is
prevalent, statistical methods that can successfully predict and select variables are highly desired. Factor
models are especially useful for prediction and variable selection because they can be modified to use sparse
priors [9]. In this section, we provide details on both Bayesian factor regression models and the partial factor
model.

Factor Regression Models

We begin with a description of a generalized regression model:

y = f(x) + ε, ε ∼ N(0, σ2I). (4)
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Here, y is a vector of responses, f(x) is the link function that relates the linear predictor to the response
variable, and ε is the idiosyncratic noise vector. In the linear case, f(x) is equal to Xβ, where X is an n× p
matrix of predictors and β is a p-dimensional vector of regression coefficients. This model was developed for
the case where p < n; however, we are working in the situation where p � n, as is true in most gene set
analyses. This causes many problems with computation, variable selection, and over-fitting of the model.
Moreover, unlike the case where p < n and β can be estimated by its maximum likelihood estimate (MLE):
(X ′X)−1XtY , when p � n, often XtX is not invertible and multiple MLE’s exist.

One way in which these high dimensional problems can be solved is through using Bayesian latent factor
models [9]. In these models, the variation in X is separated into two components: latent variables that
encode the underlying structure of the predictors and idiosyncratic noise. Specifically,

xi = Bfi + νi, νi ∼ N(νi|0,Ψ2) (5)

fi ∼ N(fi|0,∆2) (6)

where xi is the ith row of X, i=1,...,n, B is the p × k factor loadings matrix, fi is the k dimensional vector
of latent factors for case i, and νi is the idiosyncratic noise vector. There are several constraints on ∆, Ψ
and B: ∆ and Ψ must be diagonal and B must be a lower triangular matrix. The use of latent variables in
the p � n setting allows the underlying structure in the predictors to be related directly to the response.
Normally, these factors are formed through finding the principal components of X. Since the factors are
formed through principal component analysis methods, k ≤ n, which means we have reduced our predictor
dimensions from p � n to k ≤ n. Choosing the number of factors, either directly or through learning it
from the data, to include in the model is a significant problem that has numerous ramifications if chosen
improperly. Traditionally, k is chosen so that both the accuracy of the model fit and the predictive power
are maximized. Often, this results in conflicting values of k, where the model fit is unaffected by chang-
ing the value of k by one, but the predictive power of the model favors the model with a larger value of k [13].

Under the assumption that the predictors relate directly to the response variable only through the latent
factors, we see that:

yi = θfi + εi, εi ∼ N(0, σ2I) (7)

cov(Xi, Yi) =

(
BBt + Ψ V t

V ξ

)
, (8)

V = θBt, (9)

ξ = σ2 + θθt. (10)

where yi is the response for case i, θ is a 1 × k row vector of the effect sizes for the factors, εi is the id-
iosyncratic noise, and V is the covariation between Y and X. Since the latent variables are derived from the
principal components of X, xi does not directly enter the linear regression and yi is conditionally indepen-
dent of xi given fi. This is an important fact because it is here that a critical assumption is made: the latent
factors provide information about all of the variation in both the predictors and response. A noteworthy
consequence of this assumption in gene set analyses is that the variation in the phenotype is most likely not
explained solely by the latent factors. Moreover, the incidence matrix is assumed to be error free; however,
it can be concluded that the incidence matrix contains experimental and humanistic errors and so assuming
that the latent factors completely describes the phenotype may be suboptimal.

A positive aspect of Bayesian factor analysis is that, unlike strict principal component analysis, inferences
can be made on the original parameter coefficients as there is a unique equation to relate the k-dimensional
regression parameters, θ, to the original p-dimensional parameters, β:

β = Ψ−2BCθ (11)
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C−1 = ∆−2 +B′Ψ−2B. (12)

This property of factor models is very important, especially in biological settings, as it allows for computa-
tional efficiency via dimensionality reduction yet it retains the ability to obtain effect sizes on the original
predictors.

While Bayesian factor regression models allow for dimensionality reduction and inferences on β, there
are numerous issues that need to be addressed. Namely, how to overcome the assumption that the latent
factors do not explain all of the variation in the predictors and responses and how to pick the number of
factors, k. One way to address several of these issues is by constructing a hierarchical model, centered at the
Bayesian factor regression model and conditioned on a fixed number of factors, more commonly known as
the Bayesian partial factor model [13]. This model not only addresses these statistical challenges, but also
provides a unique and useful biological interpretation in gene set analyses.

Partial Factor Regression Model

The PFRM implements a jointly normal distribution between xi, yi, and the latent factors, fi:

Yi = θfi + [(V − θBt)Ψ−1/2][Ψ−1/2(Xi −Bfi)] + εi. (13)

Yi is the n dimensional vector of responses, θ is the k × 1 vector of effect sizes of the factors, fi are the k
factors, V is the covariance between X and Y, Ψ is the variance of the idiosyncratic noise of the marginal
predictor model (Xi = Bfi + νi), B is the p× k factor loadings matrix, and εi is the n dimensional idiosyn-
cratic noise vector. The variation of Yi remains the same between the factor model and PFR, but the change
in the expectation of Yi allows for the covariation between X and Y to change. In a pure factor model,
where it is assumed that Yi is conditionally independent of Xi given fi and that Yi linearly depends on the
same fi that encode all of the variation in Xi, V is required to equal θBt and the relationship between Yi
and Xi can be linear in up to k dimensions. However, in PFRM, V does not need to be restricted to θBt;
Yi and Xi can now be described in up to p dimensions. An important note is that we can easily return to a
factor regression model by setting V equal θBt.

The prior on V, conditional on θ,B and Ψ is:

vj ∼ N(θBt, ω2ω2
jψ

2
j ), j = 1, ..., p (14)

where ω2 is a global prior variance, w2
j is the prior variance for predictor j, and ψ2

j is the jth diagonal element
of Ψ. This prior implies that the idiosyncratic noise from the latent factors does not affect the regression.
Additionally, this prior may be conditioned on ΣX , which allows for greater flexibility when finding the
predictors that are most likely to be predictive of the response. Consequently, the prior for the predictors is
less formative than in factor regression models.

Additionally, the PFRM can be adapted to perform variable selection through placing sparse priors on
Λ, θ, and B, similar to a spike-and-slap model. This implies that the posterior values of β will be sparse as
well. In this way, PFRM places a semi-informative prior on β. This allows the model to account for several
cases. First, the case where the response is most strongly and exclusively associated with the least important
principal component, commonly known as the least-eigenvalue scenario [21–23], can be acknowledged. Sec-
ond, for the case where the response depends on predictors that do not have the largest or smallest degree
of variation. Third, for the expected cases where the response is most strongly associated with the most
important principal component.

By defining Λ = (V − θBt)Ψ−1/2, the prior on V can be written as λj ∼ N(0, ω2ω2
j ). In this way, a

hierarchical model can be constructed that addresses and overcomes the assumption that the latent factors
explain the entirety of the variation in both the predictors and the responses. This also centers PFR at the
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factor model. Using this parametrization, the complete partial factor model may be defined as

Xi|B, fi,Ψ ∼ N(Bfi,Ψ) (15)

Yi|Xi, B, θ,Λ, fi,Ψ, σ
2 ∼ N(θfi + ΛΨ−1/2(Xi −Bfi), σ2) (16)

λj ∼ N(0, ω2ω2
j ) (17)

fi ∼ N(0, Ik) (18)

θh ∼ N(0, τ2q2h) (19)

bjh ∼ N(0, τ2t2jh), h = 1, . . . , k, (20)

j = 1, . . . , p. (21)

Independent half-Cauchy priors are used for τ and ω as well as for each element in the vectors t, w and q.
Using a half-Cauchy prior over t, w and q coincides with the horseshoe priors over B, θ, and Λ, respectfully
[24]. The use of a horseshoe-like prior is beneficial in our gene set analysis case due to the sparsity of X.
The Strawderman-Berger prior, with density p(s) ∝ s(1 + s2)−3/2, is placed on σ and each element in Ψ1/2.
This model can be implemented using Gibbs Sampling, the details can be found in Appendix A.

Biological Interpretation Revisited

Perhaps one of the most important consequences of using the partial factor regression model in gene set
analyses is its biological interpretation. Returning to the two main equations for the partial factor model:

Y = Fθ + ε (1)

X = BF + ν (2)

we can see that there are insightful interpretations for θ, B, and F . Recall that in a genetics context,
the factors can be viewed as meta-pathways, defined as collections of the most influential pathways with
respect to the phenotype, thus implying that θ can be interpreted as the effect of each meta-pathway on the
response variable. This is important for many genetics studies because these meta-pathways may show which
gene sets work together in specific biological contexts, which will help stimulate further research into which
pathways can and should be targetable via therapy. B, the factor loadings matrix with dimensions p×k, can
be interpreted as the strength of pathway membership in the meta-pathways or the probability of pathway
membership in the meta-pathways. B provides valuable information on which gene sets should be further
tested under controlled lab conditions. F , the factor matrix with dimensions k × n, can be interpreted
as the strength of gene membership in the meta-pathways or the probability of gene membership in the
meta-pathways. Similar to the practical usage of B, F draws out the most important genes among all the
pathways in each meta-pathway. In this way, the information gained from F can be used to further research
on the clinical significance of these genes and the molecular contribution of these genes to the phenotype
being studied. In this way, the partial factor model provides a novel and useful interpretation in which to
see how collections of pathways and genes most influence any given phenotype.
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Appendix A: Computational Implementation and Efficiency

Computational Implementation

We utilize MCMC methods, specifically a Gibbs sampler with one Metropolis Hastings update step,
in order to sample from the joint posterior distribution. This is taken directly from Hahn, Carvalho and
Mukherjee, 2013 [13]. Throughout this section, a dash to the right of the conditioning bar should be read
as ”everything else.”

1. Sample the latent factors, (F |−), using the joint normal distribution of fi, Xi and Yi. Draw fi ∼ N(µi, S),
where

µi = (Btθt)Σ−1X,Y (Xt
iYi)

t

S = Ik − (Btθt)Σ−1X,Y (Btθt)t.

2. Sample variance components. We update all of the variance components using the same general form.
We have random variables rl, l = 1, ...,m, where rl ∼ N(0, s2) and π(s) ∝ s2a−1(1 + s2)−(a+1)/2. When a =
1/2, this form reduces to a half-Cauchy distribution and is a horseshoe prior on rl. When a = 1, this form
is a Strawdeman-Berger prior on rl. Define η = 1/s2. Sample s by performing the following steps:

I. Draw (u|η) ∼ Uniform(0, (1 + η)−(a+1/2))
II. Draw (η|r, u) ∼ Gamma((m+ 1)/2,Σml=1r

2
i /2), restricted to be below u−(1/(a+1/2)) − 1.

III. Set s = η−1/2.

(a) Sample (Ψ|−). Let m = n and j=1,...,p. Define rl(j) = Xjl − bjfl.
(b) Sample (σ|−). Let m = n. Define rl = Yl − θfl − ΛΨ−1/2(Xl −Bfl).
(c) Sample (ω|−). Let Λ̃ be the vector of nonzero elements of Λ and w̃ be the corresponding elements of w.
Then, m is the length of Λ̃ and rl(j) = λ̃/wl.
(d) Sample (w|−). For each wj , j = 1,...,p, m = 1 and r = λj/ω.

(e) Sample (τ |−). Let B̃ represent the vector of nonzero elements of B, θ and t̃ be the corresponding vector
of t, q. Then, m is the length of B̃ and rl = b̃/tl.
(f) Sample (t|−). For each tj,h, j=1,...,p, h=1,...,k, m = 1 and r = bjg/τ .
(g) Sample (q|−). For each qh, h = 1,...,k, m = 1 and r = θh/τ .
3. Sample the residual regression coefficients, (Λ|−). Let Y ∗i = Yi − θfi. and X∗i = Ψ−1/2(Xi − Bfi).
For each j=1,...,p, let Ỹi = Y ∗i − Λ−jX

∗
−j and X̃ij = X∗ij . Draw λj ∼ N(µ, s) where µ = sX̃Ỹ /σ2 and

s = (X̃ ˜X−1/σ2 + ω−2w−2j )−1. Set λj = 0 with probability

(1− αλ)φ(0|µ, s)
(1− αλ)φ(0|µ, s) + αλφ(0|0, ω2w2

j )

φ(−|m, s) is the normal density function.
4. Sample the factor regression coefficients, (θ|−). Let Y ∗i = Yi − ΛΨ−1/2(Xi − Bfi). For each h = 1,...,k,
let Ỹi = Y ∗i − θ−hf−h,i. Draw θh ∼ N(µ, s), where µ = sfhỸ /σ

2 and s = (f thfh/σ
2 + τ−2q−2h )−1. Set θh = 0

with probability
(1− αθ)φ(0|µ, s)

(1− αθ)φ(0|µ, s) + αθφ(0|0, τ2q2h)

5. Sample the factor loadings, (B|−). This is the Metropolis-Hasting update. The proposal distribution is:

π(B|X) =
f(X|B)π(B)∫
f(X|B)π(B)dB

.
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We sample from this distribution by setting X̃ji = Xji − bj,−hf−h,i for h=1,...,k and j=1,...,p. Then draw

bjh ∼ N(µ, s) where µ = sfhX̃t
j/φ

2
j and s = (f thfh/φ

2
j + τ−2t−2jh )−1. The rejection probability is:

min

(
1,

Πn
i=1φ(Yi|Bt, X,−)

Πn
i=1φ(Yi|B,X,−)

)
.

Computational Efficiency

In order to determine the computational efficiency of PFRM, we ran simulations under various settings
of genes and gene sets. We simulated sets of 30, 50, 100 and 200 genes and ran them using PFRM against
pathways that ranged from 100 to 1500 by 50. As shown in 5, there does not appear to be a drastic change
in computation time between these settings until the number of pathways is larger than 800 and the number
of genes is larger than 100. Additionally, these simulations represent more extreme cases, meaning that the
number of pathways and genes is much larger than the typical gene set analysis using enriched genes. As
such, PFRM can be considered to be a more computationally efficient algorithm for gene set analyses.

Figure 5: Time (seconds) per 100 MCMC iterations versus the number of pathways for four different numbers
of genes. There is not a major difference in time between the number of genes and pathways analyzed until
the number of pathways and number of genes increases above 500 and 100, respectfully.
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Appendix B: Results from Melanoma Data

(a) Trace Plot for Theta in Metapathway 1 (b) Trace Plot for Theta in Metapathway 2

Figure 6: Plots of the posterior values of theta for each metapathway. It appears as if posterior convergence
is reached, as the values do not degenerate to 0 and are centered around a single value. This indicates that
Theta is identifiable.

Table 5: Posterior Values for each gene in each meta-pathway for the Melanoma example.

Gene MP1 MP2
ACTN1 -1.031 -1.565
ARPC5L -0.651 -0.986
ATG4A -0.369 -0.562
ATP2B1 -0.37 -0.56
CCND1 5.809 -0.011
CCNG2 -0.37 -0.561
CD33 -0.369 -0.561
DUSP4 -0.37 -0.56
DUSP6 -0.369 -0.56
HCLS1 -0.526 -0.8

HLA.DMA -3.215 5.759
HLA.DMB -3.215 5.758
HYAL4 -0.369 -0.561
ID2 -0.369 -0.561

IRAK1 -0.758 -1.15
MYC 6.953 0.831
NPC2 -0.37 -0.561
NR3C1 -0.368 -0.561
PDE1C -0.651 -0.988
POLR3G -0.758 -1.15
PPAT -0.527 -0.8
PRPF4 -0.369 -0.561
SDC3 -0.527 -0.8
SH2B3 -0.368 -0.562
SPRY2 -0.369 -0.562

ST3GAL5 -0.369 -0.561
THOC1 -0.37 -0.561
UGCG -0.369 -0.561
VEGFB -1.028 -1.566
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Table 6: Posterior values for the pathways in each meta-pathway in the Melanoma example.

Pathway MP1 MP2
KEGG ACUTE MYELOID LEUKEMIA 0.553 0.144

KEGG ADHERENS JUNCTION -0.051 -0.077
KEGG ALANINE ASPARTATE

AND GLUTAMATE METABOLISM
-0.024 -0.036

KEGG ALLOGRAFT REJECTION -0.214 0.493
KEGG ANTIGEN PROCESSING AND PRESENTATION -0.214 0.493

KEGG APOPTOSIS -0.032 -0.051
KEGG ARRHYTHMOGENIC RIGHT

VENTRICULAR CARDIOMYOPATHY ARVC
-0.05 -0.075

KEGG ASTHMA -0.214 0.493
KEGG AUTOIMMUNE THYROID DISEASE -0.214 0.493

KEGG BLADDER CANCER 0.222 -0.009
KEGG CALCIUM SIGNALING PATHWAY -0.023 -0.037

KEGG CELL ADHESION MOLECULES CAMS -0.092 0.117
KEGG CELL CYCLE 0.553 0.144

KEGG CHRONIC MYELOID LEUKEMIA 0.553 0.145
KEGG COLORECTAL CANCER 0.553 0.144
KEGG CYTOKINE CYTOKINE

RECEPTOR INTERACTION
-0.048 -0.08

KEGG CYTOSOLIC DNA SENSING PATHWAY -0.038 -0.05
KEGG ECM RECEPTOR INTERACTION -0.021 -0.038

KEGG ENDOMETRIAL CANCER 0.553 0.144
KEGG ERBB SIGNALING PATHWAY 0.246 0.034

KEGG FC GAMMA R MEDIATED PHAGOCYTOSIS -0.033 -0.046
KEGG FOCAL ADHESION 0.019 -0.078

KEGG GLIOMA 0.183 -0.007
KEGG GLYCOSAMINOGLYCAN DEGRADATION -0.019 -0.025

KEGG GLYCOSPHINGOLIPID
BIOSYNTHESIS GANGLIO SERIES

-0.015 -0.027

KEGG GRAFT VERSUS HOST DISEASE -0.214 0.493
KEGG HEMATOPOIETIC CELL LINEAGE -0.016 -0.021

KEGG INTESTINAL IMMUNE
NETWORK FOR IGA PRODUCTION

-0.214 0.493

KEGG JAK STAT SIGNALING PATHWAY 0.075 -0.004
KEGG LEISHMANIA INFECTION -0.125 0.161
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Table 6 continued.

Pathway MP1 MP2
KEGG LEUKOCYTE TRANSENDOTHELIAL MIGRATION -0.049 -0.078

KEGG LYSOSOME -0.017 -0.026
KEGG MAPK SIGNALING PATHWAY 0.017 -0.019

KEGG MELANOMA 0.183 -0.006
KEGG MTOR SIGNALING PATHWAY -0.052 -0.078

KEGG NEUROACTIVE LIGAND RECEPTOR INTERACTION -0.014 -0.023
KEGG NEUROTROPHIN SIGNALING PATHWAY -0.026 -0.037

KEGG NON SMALL CELL LUNG CANCER 0.181 -0.009
KEGG OLFACTORY TRANSDUCTION -0.033 -0.047
KEGG P53 SIGNALING PATHWAY 0.021 -0.019

KEGG PANCREATIC CANCER 0.049 -0.053
KEGG PATHOGENIC ESCHERICHIA COLI INFECTION -0.03 -0.052

KEGG PATHWAYS IN CANCER 0.224 -0.009
KEGG PROSTATE CANCER 0.176 -0.01

KEGG PURINE METABOLISM -0.039 -0.065
KEGG PYRIMIDINE METABOLISM -0.035 -0.053

KEGG REGULATION OF ACTIN CYTOSKELETON -0.044 -0.072
KEGG REGULATION OF AUTOPHAGY -0.017 -0.025

KEGG RENAL CELL CARCINOMA -0.048 -0.074
KEGG RNA POLYMERASE -0.037 -0.056

KEGG SMALL CELL LUNG CANCER 0.553 0.144
KEGG SPHINGOLIPID METABOLISM -0.015 -0.024

KEGG SPLICEOSOME -0.018 -0.028
KEGG SYSTEMIC LUPUS ERYTHEMATOSUS -0.163 0.21
KEGG TGF BETA SIGNALING PATHWAY 0.03 -0.01

KEGG THYROID CANCER 0.553 0.144
KEGG TIGHT JUNCTION -0.037 -0.056

KEGG TOLL LIKE RECEPTOR SIGNALING PATHWAY -0.033 -0.053
KEGG TYPE I DIABETES MELLITUS -0.214 0.493

KEGG VIRAL MYOCARDITIS -0.017 0.448
KEGG WNT SIGNALING PATHWAY 0.553 0.144
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Appendix C: Results from Colon Data

(a) Trace Plot for Theta in Metapathway 1 (b) Trace Plot for Theta in Metapathway 2 (c) Trace Plot for Theta in Metapathway 3

Figure 7: Plots of the posterior values of theta for each metapathway. It appears as if posterior convergence
is reached, as the values do not degenerate to 0 and are centered around a single value. This indicates that
Theta is identifiable.

Table 7: Posterior Values for each gene in each meta-pathway for the Colon Cancer example.

Gene MP1 MP2 MP3
WNT2 -1.556 -2.118 5.367
GNG7 7.090 1.293 -0.905
CDH3 -1.319 -1.354 -0.768
INHBA -1.319 -1.353 -0.767
TIMP1 -1.320 -1.353 -0.766
LIPC -1.319 -1.353 -0.766

ABCG2 -1.173 -1.203 -0.682
COL11A1 -1.173 -1.202 -0.681

DAO -1.174 -1.203 -0.681
SLCO4A1 -1.174 -1.203 -0.681
MMP7 -1.010 -1.037 -0.587
CLDN23 -1.012 -1.035 -0.586
ARNTL2 -0.820 -0.842 -0.478
MMP11 -0.821 -0.840 -0.477
LIFR -0.821 -0.841 -0.476
SFRP1 -0.577 -0.592 -0.336
NEFM -0.578 -0.592 -0.336

TNFRSF12A -0.577 -0.591 -0.336
GCNT2 -0.578 -0.592 -0.336
PRDX6 -0.577 -0.591 -0.334

ADORA2A -3.879 5.711 0.067
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Table 8: Posterior Values for all of the pathways in each meta-pathway for the Colon Cancer example.

Pathway MP1 MP2 MP3
KEGG ABC TRANSPORTERS -0.037 -0.033 -0.015

KEGG AMYOTROPHIC LATERAL SCLEROSIS ALS -0.016 -0.018 -0.006
KEGG ARGININE AND PROLINE METABOLISM -0.035 -0.034 -0.012

KEGG BASAL CELL CARCINOMA -0.038 -0.052 0.813
KEGG CALCIUM SIGNALING PATHWAY -0.335 0.561 0.014

KEGG CELL ADHESION MOLECULES CAMS -0.046 -0.052 -0.022
KEGG CHEMOKINE SIGNALING PATHWAY 0.549 0.131 -0.069

KEGG CYTOKINE CYTOKINE RECEPTOR INTERACTION -0.041 -0.046 -0.02
KEGG ECM RECEPTOR INTERACTION -0.036 -0.029 -0.012

KEGG FOCAL ADHESION -0.04 -0.032 -0.015
KEGG GLYCEROLIPID METABOLISM -0.038 -0.041 -0.02

KEGG GLYCINE SERINE AND THREONINE METABOLISM -0.037 -0.032 -0.01
KEGG GLYCOSPHINGOLIPID BIOSYNTHESIS

LACTO AND NEOLACTO SERIES
-0.017 -0.012 -0.005

KEGG HEDGEHOG SIGNALING PATHWAY -0.039 -0.051 0.813
KEGG JAK STAT SIGNALING PATHWAY -0.025 -0.019 -0.005

KEGG LEUKOCYTE TRANSENDOTHELIAL MIGRATION -0.032 -0.032 -0.014
KEGG MELANOGENESIS -0.038 -0.052 0.813

KEGG NEUROACTIVE LIGAND RECEPTOR INTERACTION -0.335 0.561 0.014
KEGG PATHWAYS IN CANCER -0.038 -0.052 0.813

KEGG PEROXISOME -0.038 -0.036 -0.01
KEGG PHENYLALANINE METABOLISM -0.015 -0.015 -0.006
KEGG TGF BETA SIGNALING PATHWAY -0.039 -0.037 -0.014

KEGG TIGHT JUNCTION -0.029 -0.027 -0.007
KEGG VASCULAR SMOOTH MUSCLE CONTRACTION -0.334 0.56 0.014

KEGG WNT SIGNALING PATHWAY -0.032 -0.044 0.054
REACTOME ABACAVIR TRANSPORT AND METABOLISM -0.034 -0.035 -0.014

REACTOME ACTIVATION OF KAINATE
RECEPTORS UPON GLUTAMATE BINDING

0.549 0.131 -0.07

REACTOME ADHERENS JUNCTIONS INTERACTIONS -0.042 -0.038 -0.018
REACTOME ADP SIGNALLING THROUGH P2RY1 0.55 0.131 -0.07
REACTOME ADP SIGNALLING THROUGH P2RY12 0.55 0.131 -0.07
REACTOME AQUAPORIN MEDIATED TRANSPORT 0.549 0.131 -0.069

REACTOME BMAL1 CLOCK NPAS2
ACTIVATES CIRCADIAN EXPRESSION

-0.026 -0.024 -0.012

REACTOME CELL CELL COMMUNICATION -0.042 -0.043 -0.017
REACTOME CELL CELL JUNCTION ORGANIZATION -0.039 -0.04 -0.016

REACTOME CELL JUNCTION ORGANIZATION -0.04 -0.04 -0.013
REACTOME CHYLOMICRON MEDIATED LIPID TRANSPORT -0.046 -0.036 -0.01

REACTOME CIRCADIAN CLOCK -0.023 -0.021 -0.004
REACTOME CLASS A1 RHODOPSIN LIKE RECEPTORS -0.335 0.561 0.013
REACTOME CLASS B 2 SECRETIN FAMILY RECEPTORS 0.15 -0.016 0.646

REACTOME COLLAGEN FORMATION -0.03 -0.039 -0.013
REACTOME DEGRADATION OF THE EXTRACELLULAR MATRIX -0.048 -0.062 -0.034

REACTOME EXTRACELLULAR MATRIX ORGANIZATION -0.063 -0.078 -0.032
REACTOME G ALPHA I SIGNALLING EVENTS 0.549 0.131 -0.069
REACTOME G ALPHA Q SIGNALLING EVENTS 0.55 0.131 -0.069
REACTOME G ALPHA S SIGNALLING EVENTS -0.046 0.509 -0.047
REACTOME G ALPHA Z SIGNALLING EVENTS 0.549 0.131 -0.07

REACTOME G ALPHA1213 SIGNALLING EVENTS 0.549 0.131 -0.07
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Table 8 continued.

REACTOME G BETA GAMMA
SIGNALLING THROUGH PI3KGAMMA

0.549 0.131 -0.069

REACTOME G BETA GAMMA
SIGNALLING THROUGH PLC BETA

0.549 0.131 -0.07

REACTOME G PROTEIN ACTIVATION 0.549 0.131 -0.07
REACTOME G PROTEIN BETA GAMMA SIGNALLING 0.55 0.131 -0.07

REACTOME GABA B RECEPTOR ACTIVATION 0.549 0.131 -0.069
REACTOME GABA RECEPTOR ACTIVATION 0.55 0.131 -0.07

REACTOME GASTRIN CREB
SIGNALLING PATHWAY VIA PKC AND MAPK

0.549 0.131 -0.069

REACTOME GLUCAGON SIGNALING
IN METABOLIC REGULATION

0.549 0.131 -0.07

REACTOME GLUCAGON TYPE LIGAND RECEPTORS 0.55 0.131 -0.07
REACTOME GLYCOPROTEIN HORMONES -0.043 -0.043 -0.017

REACTOME GPCR DOWNSTREAM SIGNALING -0.048 0.51 -0.048
REACTOME GPCR LIGAND BINDING -0.033 0.211 0.346

REACTOME HEMOSTASIS 0.041 -0.025 -0.031
REACTOME INHIBITION OF INSULIN

SECRETION BY ADRENALINE NORADRENALINE
0.549 0.131 -0.069

REACTOME INHIBITION OF VOLTAGE GATED
CA2 CHANNELS VIA GBETA GAMMA SUBUNITS

0.55 0.131 -0.069

REACTOME INTEGRATION OF ENERGY METABOLISM 0.549 0.131 -0.07
REACTOME INWARDLY RECTIFYING K CHANNELS 0.549 0.131 -0.069

REACTOME IRON UPTAKE AND TRANSPORT -0.035 -0.036 -0.016
REACTOME LIPID DIGESTION

MOBILIZATION AND TRANSPORT
-0.038 -0.039 -0.017

REACTOME LIPOPROTEIN METABOLISM -0.038 -0.042 -0.016
REACTOME METABOLISM OF

AMINO ACIDS AND DERIVATIVES
-0.053 -0.061 -0.033

REACTOME METABOLISM OF
LIPIDS AND LIPOPROTEINS

-0.043 -0.036 -0.011

REACTOME NEURONAL SYSTEM 0.55 0.131 -0.07
REACTOME NEUROTRANSMITTER

RECEPTOR BINDING AND DOWNSTREAM
TRANSMISSION IN THE POSTSYNAPTIC CELL

0.55 0.131 -0.07

REACTOME NGF SIGNALLING VIA
TRKA FROM THE PLASMA MEMBRANE

-0.335 0.56 0.014

REACTOME NUCLEOTIDE LIKE PURINERGIC RECEPTORS -0.335 0.561 0.014
REACTOME OPIOID SIGNALLING 0.549 0.131 -0.07

REACTOME PEPTIDE HORMONE BIOSYNTHESIS -0.038 -0.036 -0.017
REACTOME PLATELET ACTIVATION

SIGNALING AND AGGREGATION
0.037 -0.025 -0.034

REACTOME PLATELET HOMEOSTASIS 0.55 0.131 -0.07
REACTOME POTASSIUM CHANNELS 0.55 0.131 -0.07
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Table 8 continued.

REACTOME PROSTACYCLIN SIGNALLING
THROUGH PROSTACYCLIN RECEPTOR

0.549 0.131 -0.07

REACTOME REGULATION OF INSULIN SECRETION 0.549 0.131 -0.07
REACTOME REGULATION OF INSULIN

SECRETION BY GLUCAGON LIKE PEPTIDE1
0.549 0.131 -0.07

REACTOME REGULATION OF WATER
BALANCE BY RENAL AQUAPORINS

0.549 0.131 -0.07

REACTOME RESPONSE TO ELEVATED
PLATELET CYTOSOLIC CA2

-0.042 -0.036 -0.015

REACTOME SIGNAL AMPLIFICATION 0.55 0.131 -0.07
REACTOME SIGNALING BY GPCR -0.032 0.208 0.349
REACTOME SIGNALLING BY NGF -0.335 0.56 0.014

REACTOME SLC MEDIATED TRANSMEMBRANE TRANSPORT -0.041 -0.034 -0.013
REACTOME THROMBIN SIGNALLING

THROUGH PROTEINASE ACTIVATED RECEPTORS PARS
0.549 0.131 -0.07

REACTOME THROMBOXANE
SIGNALLING THROUGH TP RECEPTOR

0.55 0.131 -0.07

REACTOME TRANSMEMBRANE
TRANSPORT OF SMALL MOLECULES

0.005 -0.043 -0.038

REACTOME TRANSMISSION ACROSS CHEMICAL SYNAPSES 0.55 0.131 -0.07
REACTOME TRANSPORT OF ORGANIC ANIONS -0.033 -0.033 -0.01

REACTOME TRANSPORT OF VITAMINS
NUCLEOSIDES AND RELATED MOLECULES

-0.039 -0.033 -0.012
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