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Abstract

In the environmental sciences, portions of collected data are often
reported as non-detect, meaning that the actual data point is known
only to be below the detection limit of a measuring device. In main-
stream statistics, this type of data is known as left-censored data.
In this project, the performance of a variety of substitution methods
will be examined, as well as maximum likelihood estimation and the
Kaplan-Meier method for estimating summary statistics (primarily the
mean) of left-censored data with respect to certain statistical criteria
like bias and mean squared error. The performance of these methods
were also investigated in the context of construction of confidence in-
tervals for mean and upper tolerance limits. After identifying the best
method, the results were applied to a real life environmental data set
provided by Neptune and Company, Inc.

1 Introduction

Environmental scientists are frequently interested in estimating the mean
(or median) contaminant concentration in a particular area. For example,
it may be necessary to estimate the amount of arsenic in ground water or
the amount of sulfur dioxide in air. It is very common in these environ-
mental data sets to have observations that are unable to be detected by the
measuring device, and thus reported as non-detects, or below the detection
limit. In other words, the amount of contaminant present is less than the
detection limit of the measuring device being used. These non-detectable
amounts are also known as censored observations, and they contain limited
information about the actual contaminant concentration in these areas, i.e.
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we only know that the actual concentration is below the detection limit or
reporting limit.

The definition of detection limit varies. According to the US Environ-
mental Protection Agency [2], the detection limit is defined as “the minimum
concentration of a substance that can be measured and reported with 99%
confidence that the analyte concentration is greater than zero.” In other
words, it is ‘the lowest concentration of a chemical that can reliably be
distinguished from a zero concentration’. When a data set includes non-
detectable observations, analysis cannot be done in a traditional manner,
since a number of observations are only known to be below a certain thresh-
old. The purpose of this study is to investigate and discover the best way to
estimate summary statistics using data containing censored observations.

There is currently no singular, preferred method for working with cen-
sored observations when analyzing data. Researchers have debated the best
method for analysis, and have yet to agree on any one technique. Different
studies have come to different conclusions depending on the sample size and
percent of censored observations in the sample. She [9] compared several
methods, and concluded that the Kaplan-Meier method performed best.
Both Lubin et al. [7] and Hewitt and Ganser [4] found that substitution
performed poorly, and that maximum likelihood estimation produced the
best results. However, they did not find the Kaplan-Meier method to be a
well performing method. Antweiler and Taylor [1] observed that the Kaplan-
Meier method did perform well, along with two substitution methods also
providing good results, but the maximum likelihood estimation method did
not produce good estimates in their study. Helsel [3] gives recommendations
of when to use both the Kaplan-Meier and maximum likelihood estimation
methods, depending on the sample size and percent of censored observations,
but discourages the use of substitution altogether. Therefore, it is clear that
there is no universal approach when working with censored data. This re-
search will try to establish which method is most appropriate in a variety
of situations by testing various statistical techniques that can be used when
dealing with such left-censored samples containing a range of percentages of
censored observations.

We define the distributions used in this research in Section 2, different
methods for handling left-censored are presented in Section 3, and various
criteria for assessment or evaluation of efficiency of these methods are dis-
cussed in Section 4. In Section 5, we present the simulation results, followed
by a real life example in Section 6. Finally, some concluding remarks are
given in Section 7.
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2 Distributions

The most well-known and frequently used probability distribution is the
normal (or Gaussian) distribution. The approximate shape of a normal
distribution is symmetrical, unimodal, and bell-shaped.

Definition 1. A random variable X is said to have a normal probability
distribution if and only if, for σ > 0 and −∞ < µ <∞, the density function
of X is

f(x) =
1

σ
√

2π
exp

[
−(x− µ)2

2σ2

]
,−∞ < x <∞. (1)

The normal density function contains two parameters, µ and σ. For X,
a normally distributed random variable with parameters µ and σ, the mean
is E(X) = µ and the variance is V (X) = σ2. The normal distribution is
used widely because of its characteristic of supporting all real values −∞ <
x < ∞ and the fact that the mean of a random sample of size n from any
distribution converges to a normal distribution as n → ∞, which makes it
a suitable approximation for many distributions.

For this research, however, the lognormal distribution will be more ap-
propriate, because it has a positive support (or range). This aligns with
environmental science studies, where the values being measured will be pos-
itive, such as the level of contaminant in a water sample.

Definition 2. A random variable Y has a lognormal probability distribution
with parameters µ and σ if X = lnY has a normal distribution with mean
µ and standard deviation σ. The probability density function f(y) and
cumulative distribution function F (y) of the lognormal distribution are given
by

f(y) =
1

yσ
√

2π
exp

[
−(ln y − µ)2

2σ2

]
, y > 0

F (y) = P (Y ≤ y) =

∫ y

−∞
f(t)dt. (2)

The parameters for the lognormal distribution are the mean and stan-
dard deviation for the corresponding normally distributed random variable
X, where Y = eX . The mean of the lognormal distribution is E(Y ) =
exp

(
µ+ 1

2σ
2
)

and the variance is V (Y ) = exp(2µ+ σ2) ∗ exp(σ2 − 1).
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3 Overview of Methods

Censored observations are not quantified, since we only know that they are
below a detection limit. The problem is how to work with a data set that
includes censored observations. We can not simply discard the censored
observations, as this leads to loss of important information. So, in this
section we explain some existing methods, such as substitution, maximum
likelihood estimation, and the Kaplan-Meier method for analyzing such data
sets.

3.1 Substitution

Multiple studies argue against using substitution because it could be consid-
ered fabrication of data. In other words, substitution is essentially creating
false data, and can be very invasive to a study. However, substitution is a
method that is still widely used in industry because of its simplicity, and is
perhaps acceptable under certain conditions. In this study, six different sub-
stitution methods are investigated, which include replacing the non-detects
with the detection limit (DL), DL/2, DL/

√
2, 0, values evenly spaced be-

tween 0 and DL, and random numbers between 0 and DL.

Example 1

To illustrate these substitution methods, we will use the following sample:

0.8, 1.2, 2.1, 2.7, 3.5, 4.6, 5.3, 6.9, 7.7, 8.2.

The mean of this sample is 4.3. Now suppose the detection limit(DL) is 3,
i.e., all observations below this value were not detected. All that is known
is that these values are less than 3. Therefore, our censored sample becomes

< 3, < 3, < 3, < 3, 3.5, 4.6, 5.3, 6.9, 7.7, 8.2.

The six substitution methods are demonstrated in Table 1.
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Data 0 DL DL/2 DL/
√

2 Evenly spaced Random

< 3 0 3 1.5 2.12 0 0.4
< 3 0 3 1.5 2.12 1 0.9
< 3 0 3 1.5 2.12 2 1.0
< 3 0 3 1.5 2.12 3 2.9
3.5 3.5 3.5 3.5 3.5 3.5 3.5
4.6 4.6 4.6 4.6 4.6 4.6 4.6
5.3 5.3 5.3 5.3 5.3 5.3 5.3
6.9 6.9 6.9 6.9 6.9 6.9 6.9
7.7 7.7 7.7 7.7 7.7 7.7 7.7
8.2 8.2 8.2 8.2 8.2 8.2 8.2

Mean 3.62 4.82 4.22 4.47 4.22 4.14

Table 1: Demonstration of the six substitution methods.

3.2 Maximum Likelihood Estimation

A more generally accepted method is maximum likelihood estimation. De-
scribed by Helsel [3], this method assigns an assumed distribution to the
data—both the detected values and the proportion of censored observa-
tions. Using the assumed distribution, i.e. the lognormal in this case, the
values above the DL and the proportion of data below the DL can be used
to estimate the parameters of interest that best match the data to the dis-
tribution.

Definition 3. Let y1, y2, ..., yn be sample observations taken on correspond-
ing random variables Y1, Y2, ..., Yn whose distribution depends on an un-
known parameter θ. Then, if Y1, Y2, ..., Yn are continuous random vari-
ables, the likelihood function L(θ) = L(θ|y1, y2, ..., yn) is defined to be the
joint density evaluated at y1, y2, ..., yn. This likelihood function is given as
L(θ) = L(θ|y1, y2, ..., yn) =

∏n
i=1 f(yi|θ). Then the maximum likelihood es-

timator (MLE) of θ is the the value that maximizes the likelihood function
L(θ).

Definition 3 describes the likelihood of matching the observed data to
the assumed distribution with parameter θ when all the observations are
detected. However, we will need the likelihood function in such a way that
it accounts for both observed and censored data. Observed data comes into
the likelihood function through the probability density function f(y) and the
censored observations can be accounted for by the cumulative distribution
function F (y) = P (Y ≤ y) =

∫ y
−∞ f(t)dt, as we know the non-detects are
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known to be less than or equal to y. Therefore, the form of the likelihood
function is as follows:

L(θ | y1, y2, ..., yn) =
∏
y∈D

f(y) ·
∏
y∈C

F (y) (3)

where D is the set of all observed or detected values and C is the set of
all left-censored or non-detected values. Instead of maximizing the above
likelihood function, an easier and more common approach is to maximize
the log-likelihood function, which is the natural logarithm of L(θ).

Example 2

Using the left-censored data set from Example 1, we obtain the likelihood
function as follows:

L(µ, σ) = F (3)4 · f(3.5) · f(4.6) · f(5.3) · f(6.9) · f(7.7) · f(8.2) (4)

and the log-likelihood function as

lnL(µ, σ) = ln[F (3)4 · f(3.5) · f(4.6) · f(5.3) · f(6.9) · f(7.7) · f(8.2)]

= 4 · lnF (3) + ln f(3.5) + ln f(4.6) + ln f(5.3) + ln f(6.9)

+ ln f(7.7) + ln f(8.2). (5)

Maximizing the above equation, we obtain the the MLEs for this example
as µ̂ = 1.35 and σ̂ = 0.57. Hence, the MLE of the lognormal mean is
exp(µ̂+ σ̂2/2) = 4.54

3.3 Kaplan-Meier Estimation

The Kaplan-Meier (KM) method is a nonparametric method for dealing
with censored data. It is widely used in survival or lifetime data analysis
to estimate the survival function, which is then used to estimate different
summary statistics. This method requires the use of right-censored data.
Therefore, left-censored data must be transformed into right-censored data
before applying this method.
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Definition 4. The Kaplan-Meier estimator of the survival function S(t) =
P (T ≥ t) is:

Ŝ(t) =
∏
j:tj<t

rj − dj
rj

=
∏
j:tj<t

(
1− dj

rj

)
, (6)

where tj is the set of distinct death times observed in the sample; rj is the
number of individuals “at risk” right before the jth death time tj ; and dj is
the number of deaths at tj .

Then the mean is estimated by computing the following integral:

µ̂KM =

∫ tmax

0
Ŝ(t) dt, (7)

where tmax is the largest observed death time. Since Ŝ(t) is a step function,
we can estimate this integral using a summation, i.e.,

µ̂KM =

∫ tmax

0
Ŝ(t) dt ≈ Σj [Ŝ(tj−1)(tj − tj−1)]. (8)

In order to transform left-censored data into right-censored data, each ob-
servation value must be subtracted from a value greater than the maximum
value in the data set. Once transformed, the Kaplan-Meier method can be
performed on left-censored data.

Example 3

We consider the left-censored data set From Example 1,

< 3, < 3, < 3, < 3, 3.5, 4.6, 5.3, 6.9, 7.7, 8.2

The maximum value in this data set is 8.2. Therefore, the fixed value used
for transformation must be > 8.2. We subtract the values from 9. This gives
the transformed right-censored data set

> 6, > 6, > 6, > 6, 5.5, 4.4, 3.7, 2.1, 1.3, 0.8.

Table 2 summarizes the necessary values to compute the Kaplan-Meier es-
timates.
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j tj rj dj 1− dj
rj

Ŝ(tj) tj − (tj−1) Ŝ(tj−1)(tj − tj−1)

0 0 10 0 1 1 − −
1 0.8 10 1 0.9 0.9 0.8 0.8

2 1.3 9 1 0.889 0.8 0.5 0.45

3 2.1 8 1 0.879 0.7 0.8 0.64

4 3.7 7 1 0.857 0.6 1.6 1.12

5 4.4 6 1 0.833 0.5 0.7 0.42

6 5.5 5 1 0.8 0.4 1.1 0.55

Table 2: Computation of the Kaplan-Meier estimates

Then the estimated mean computed from the transformed right-censored
data set, using the Kaplan-Meier method, is

µ̂KM = Σj [Ŝ(tj−1)(tj − tj−1)]

= 0.8 + 0.45 + 0.64 + 1.12 + 0.42 + 0.55

= 3.98

Therefore, the estimated mean using our original left-censored data is (9−
µ̂KM ) = 5.02.

4 Evaluation Criterion

In this section, we define and discuss different criteria for assessing effective-
ness of the methods presented in the previous section for estimating sum-
mary statistics. Performance of these methods will be assessed in context of
bias, mean squared error, construction of confidence interval for mean, and
upper tolerance limits.

4.1 Bias and Mean Squared Error

Bias is a measure of how far off the estimated parameter is from the true
parameter.

Definition 5. Bias of an estimator θ̂, for estimating the parameter θ, is
defined as B(θ̂) = E(θ̂ − θ) = E(θ̂) − θ. An estimator θ̂ is said to be
unbiased if B(θ̂) = 0 i.e., if E(θ̂) = θ.

Statistical bias of an estimator is the expected amount of over or under-
estimation done by the estimator while estimating a parameter. We want
bias to be at a minimum, or nonexistent, indicating unbiasedness.
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Mean squared error (MSE) of an estimator is the mean of the squared
error.

Definition 6. The mean squared error (MSE) of an estimator θ̂ is defined
as MSE(θ̂) = E[(θ̂ − θ)2] = V (θ̂) + [B(θ̂)]2, where V (θ̂) is variance of the
estimator θ̂.

In other words, mean squared error is a measurement of the amount of
squared deviation, or squared error, the estimator displays on average. We
want MSE to be as small as possible.

4.2 Confidence Intervals

Confidence intervals with a (1−α)100% level of confidence give information
as to where the parameter of interest could be in value. It is expected that
(1−α)100% of random samples will produce confidence intervals that enclose
the desired parameter.

Result 1: Let X1, . . . , Xn be a random sample from normal distribution
with mean µ and standard deviation σ. Then

a) X̄ =
Σn
i=1Xi

n
∼ N(µ, σ√

n
),

b)
(n− 1)S2

x

σ2
=

Σn
i=1(Xi − X̄)2

σ2
∼ χ2

(n−1), and

c) X̄ and S2
x are independently distributed.

Result 2: Let X1, . . . , Xn be a random sample from normal distribution
with mean µ and standard deviation σ. Then an approximate (1− α)100%

confidence interval for β = µ+ σ2

2 is given by

β̂ ± t(n−1);1−α/2 ·
√
V̂ (β̂)(

X̄ +
S2
x

2

)
± t(n−1);1−α/2 ·

√
S2
x

n
+

S4
x

2(n− 1)
, (9)

where tm;ν is the νth percentile of a t-distribution with (n − 1) degrees of
freedom.

Proof: From Result 1, we obtain E(X̄) = µ and E
(

(n−1)S2
x

σ2

)
= (n − 1),

i.e., E(S2
x) = σ2. Thus, E(β̂) = E

(
X̄ + S2

x
2

)
= E(X̄) + E(S2

x)
2 = µ+ σ2

2 = β.
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Hence, β̂ = X̄ + S2
x

2 is an unbiased point estimator of β.

Also from Result 1, we obtain

V (X̄) =
σ2

n
;

V

(
(n− 1)S2

x

σ2

)
= 2(n− 1)

⇒ (n− 1)2

σ4
V (S2

x) = 2(n− 1)

⇒ V (S2
x) =

2σ4

(n− 1)
(10)

Using expression (10) and noting that X̄ and S2
x are independently dis-

tributed, we can easily derive variance of β̂ as:

V (β̂) = V

(
X̄ +

S2
x

2

)
= V (X̄) +

1

4
V (S2

x)

=
σ2

n
+

σ4

2(n− 1)
.

Then the estimated variance of β̂ is given by V̂ (β̂) =
S2
x

n
+

S4
x

2(n− 1)
.

Result 3: Let Y1, . . . , Yn be a random sample from lognormal distribu-
tion with parameters µ and σ. Then X1 = ln(Y1), . . . , Xn = ln(Yn) is a
random sample from normal distribution with mean µ and standard devi-
ation σ. Then an approximate (1 − α)100% confidence interval for mean

of the lognormal distribution E(Y ) = exp
(
µ+ σ2

2

)
= exp(β) is given by

(exp(β̂L), exp(β̂U )), where

β̂L =

(
X̄ +

S2
x

2

)
− t(n−1);1−α/2 ·

√
S2
x

n
+

S4
x

2(n− 1)

β̂U =

(
X̄ +

S2
x

2

)
+ t(n−1);1−α/2 ·

√
S2
x

n
+

S4
x

2(n− 1)

Proof: From Result 2, we obtain an approximate (1 − α)100% confidence
interval for β as (β̂L, β̂U ). Hence, by exponentiating we obtain an approxi-
mate (1− α)100% confidence interval for exp(β) as (exp(β̂L), exp(β̂U )).
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4.3 Upper Tolerance Limit

An Upper Tolerance Limit (UTL) provides more information about a pop-
ulation than confidence intervals. Confidence intervals provide information
about just one population characteristic or parameter. UTLs indicate that
p percent of the population lies below the UTL with confidence level (1−α).

For a normal distribution with mean µ and standard deviation σ, the
100pth percentile (or quantile) is given by

qp = µ+ zpσ,

where zp is 100pth percentile of the standard normal distribution.

Definition 7. A (1 − α)100% upper confidence limit for qp is defined as a
(p, 1−α) one-sided upper tolerance limit (UTL) for the normal population,
where p is the content and (1 − α) is the coverage. In other words, with
(1− α)100% confidence we say that 100p% of the normal population lies at
or below the UTL [5].

Result 4: Let the random variable Z follow a standard normal distribution
and be independent of X, which follows a Chi-square distribution with m
degrees of freedom. Then

T =
Z + δ√
X/m

∼ tm(δ),

i.e, T follows a non-central t distribution with m degrees of freedom and
constant non-centrality parameter δ.
Result 5: Let X1, . . . , Xn be a random sample from normal distribution
with mean µ and standard deviation σ. Then (p, 1 − α) one-sided upper
tolerance limit (UTL) is given by

X̄ +
1√
n
tn−1;1−α(

√
nzp) · Sx, (11)

where tm;ν(δ) is the νth percentile of a non-central t-distribution with non-
centrality parameter δ and (n− 1) degrees of freedom.

Proof: Assume that (p, 1−α) upper tolerance limit is of the form X̄+k ·Sx,
where k is called the tolerance factor and X̄ and Sx are the mean and
standard deviation respectively of the random sample. Then the tolerance
factor k needs to be determined in such a way that at least p proportion
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of the population measurements are less than X̄ + k · Sx with confidence
(1− α). Therefore,

PX̄,Sx{P (X < X̄ + k · Sx | X̄, Sx) ≥ p} = 1− α

⇒ PX̄,Sx

{
P

(
X − µ
σ

<
X̄ − µ
σ

+
k · Sx
σ
| X̄, Sx

)
≥ p
}

= 1− α

⇒ PX̄,Sx

{
P

(
Z <

X̄ − µ
σ

+
k · Sx
σ
| X̄, Sx

)
≥ p
}

= 1− α

⇒ PX̄,Sx

{
Φ

(
X̄ − µ
σ

+
k · Sx
σ

)
≥ p
}

= 1− α,(12)

where Φ(·) is the standard normal cumulative distribution function. Now,

Φ

(
X̄ − µ
σ

+
k · Sx
σ

)
≥ p

⇒
(
X̄ − µ
σ

+
k · Sx
σ

)
≥ zp

⇒ X̄ − µ
σ

− zp ≥ −k · Sx
σ

⇒
X̄−µ
σ − zp
Sx/σ

≥ −k. (13)

So, from equations (12) and (13), we obtain

PX̄,Sx

{
X̄−µ
σ − Zp
Sx/σ

≥ −k

}
= 1− α

⇒ PX̄,Sx

−
(
X̄−µ
σ

)
+ Zp

S/σ
≤ k

 = 1− α. (14)

Note: If X̄ ∼ N(µ, σ√
n

), then −X̄ ∼ N(−µ, σ√
n

). This implies that X̄−µ
σ ∼

N(0, 1√
n

) and −
(
X̂−µ
σ

)
∼ N(0, 1√

n
), i.e., both X̄−µ

σ and −
(
X̄−µ
σ

)
are iden-
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tically distributed. So continuing from equation (14), we get:

PX̄,Sx

{
X̄−µ
σ + zp

Sx/σ
≤ k

}
= 1− α

⇒ PX̄,Sx


√
n
(
X̄−µ
σ

)
+
√
nzp

Sx/σ
≤
√
nk

 = 1− α

⇒ PX̄,Sx


(
X̄−µ
σ/
√
n

)
+
√
nzp

Sx/σ
≤
√
nk

 = 1− α.

(15)

Note: From Result 1, we have that X̄−µ
σ/
√
n
∼ N(0, 1) and S2

x
σ2 ∼

χ2
n−1

n−1 and

they are independently distributed. Hence, from Result 4, we can say that(
X̄−µ
σ/
√
n

)
+
√
nzp

Sx/σ
∼ tn−1(

√
nzp), i.e., it follows a non-central t-distribution with

n − 1 degrees of freedom and non-centrality parameter
√
nzp. Therefore,

equation (15) becomes:

P (tn−1(
√
nzp) ≤

√
nk) = 1− α

⇒
√
nk = tn−1;1−α(

√
nzp)

⇒ k =
1√
n
tn−1;1−α(

√
nzp).

Hence, we get the (p, 1− α) upper tolerance limit of the normal population
as

X̄ +
1√
n
tn−1;1−α(

√
nzp) · Sx. (16)

Result 6: Let Y1, . . . , Yn be a random sample from lognormal distribution
with parameters µ and σ. Then X1 = ln(Y1), . . . , Xn = ln(Yn) is a random
sample from normal distribution with mean µ and standard deviation σ.
Then a (p, 1 − α) upper tolerance limit of the lognormal distribution is
obtained by simply exponentiating the (p, 1 − α) upper tolerance limit for
the corresponding normal distribution, i.e.,

UTLlognormal : exp[X̄ +
1√
n
tn−1;1−α(

√
nzp) · Sx]. (17)
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5 Simulation Results

In this section, we rank different methods for dealing with left-censored data
using various assessment criterion discussed in the previous section. Ideally,
we want the methods being studied to have a bias as close to 0 as possible,
MSE as small as possible, and we want them to produce confidence intervals
and tolerance limits with true/actual coverage very close to the pre-specified
level of confidence.

Simulations for this project were performed in R using the NADA pack-
age [6] with the following algorithm:

1. Generate a random sample of size 50 from a lognormal distribution
with known parameters.

2. Simulate censoring by using a particular theoretical percentile of the
sample data as a detection limit.

3. Transform lognormal sample into normal sample by the natural loga-
rithmic transformation.

4. Perform various methods in order to find point estimates or confidence
interval or upper tolerance limits.

5. Then re transform this quantities by exponentiating them.

6. Repeat steps 1-5 a large number of times (say 10000 times).

7. Then using the known parameters, compute average error or squared
error as estimates of bias and MSE, respectively. Also compute pro-
portion of confidence intervals or upper tolerance limits containing
true value of the parameters to estimate the actual coverage.

When simulating censoring, we used theoretical percentiles of our sample
data. For example, to simulate a dataset with 40% non-detects, we con-
sidered any value falling below the theoretical 40th percentile of the data
as a non-detect. Our simulations cover multiple censored percentages (be-
tween 5% and 60%). These ranges were chosen in accordance with industry
standards.

Figures 1 and 2 display the results of the eight different methods of
working with censored data used on simulated lognormal samples containing
varying percentages of censored observations. Figure 1 shows the estimated
bias and MSE values. The method of substituting with 0 results in nega-
tive bias, while the methods of substituting with DL√

2
and DL, as well as

14



the Kaplan-Meier and Maximum Likelihood Estimation methods result in
positive bias. The methods of substituting with DL

2 , values evenly spaced
between 0 and the DL, and random values result in approximately unbiased
estimates for all percentages of censored values. The graph of the estimated
MSE values display that only the Maximum Likelihood Estimation method
produces undesirable values of MSE. The remaining seven methods all pro-
duced small MSE values up to about 50% of the data containing censored
observations. After this percentage of censored observations, the methods
of substituting with DL

2 , values evenly spaced between 0 and the DL, and
random values between 0 and the DL produce the smallest estimates of
MSE. Figure 2 shows the actual coverage of 95% confidence intervals of the
lognormal mean and (0.9, 0.95) upper tolerance limits. The methods of sub-
stituting with DL

2 and DL√
2

produce the most efficient results in regards to

actual coverage for up to about 30% of the data being made up of non-
detects. These methods produce the most confidence intervals and UTLs
with coverage close to the pre-specified 95% level of confidence. Maximum
Likelihood Estimation and substituting with 0, evenly spaced values, and
random values between 0 and the DL are too conservative, meaning that
the confidence intervals are too wide, and the UTLs are too high to be of
any practical value.
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Figure 1: Estimated Bias and MSE of lognormal mean with varied Percent-
age of non-detects
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Figure 2: Actual coverage of 95% confidence interval of lognormal mean and
(0.9, 0.95) upper tolerance limits.

6 An Example

The following data was provided by Neptune and Company, Inc [8]. These
are measurements for the concentrations of Arsenic in soil samples taken
at different locations across a site that is undergoing clean up after being
polluted. Concentrations are reported in mg/kg. The detection limit of the
measuring device is 5 mg/kg, i.e., concentrations of Arsenic below this value
are not detected. Table 3 displays the 66 observations.

< 5 < 5 5.6 < 5 < 5 6.7 5.5 < 5 9.9 5.3 5.2
6.5 < 5 7.3 5.2 5.5 5.8 < 5 6.7 < 5 < 5 6.4
< 5 5.3 < 5 < 5 5.5 < 5 5.6 5.1 5.2 < 5 < 5
5.4 8.5 < 5 6.3 5.8 5.1 < 5 6.9 5.4 6.1 5.9
5.3 < 5 6.5 8.8 6.8 7.8 6.3 8.8 7.3 7.4 8.5
6.4 6.0 6.7 7.9 < 5 6.4 < 5 < 5 6.3 9.4 8.0

Table 3: Arsenic concentrations in soil samples.

In this sample, about 32% of values are non-detectable, or left-censored.
Now we need to verify if lognormal model is a good fit to the data. To do this,
we use a probability (quantile-quantile) plot, where the sample quantiles are
estimated by the Regression on Order Statistics (ROS) method. From the
probability plot in figure 3, it looks like the data fit a lognormal distribution
reasonably well.
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Figure 3: Probability plot to assess lognormality of the data using ROS
method.

The eight methods were then performed on this data set. The mean,
lower and upper confidence interval limits, and UTLs are displayed in table
4 for each method. In correspondence to the simulated samples, substituting
with 0 results in the smallest mean value (giving negative bias) and substi-
tuting with the DL results in one of the largest mean values (giving positive
bias). Also supporting the information found from the simulated samples,
the UTL for the methods of substituting with 0, evenly spaced and random
values between 0 and the DL are much too conservative, as the values are
even larger than the maximum value in the data set. If this data set’s re-
sults are analyzed using the method of substituting with one of the effective
methods discovered in this project, DL√

2
, the estimate of the mean arsenic

concentration in soil is 5.584mg/kg. Also, 95% of arsenic concentrations in
soil are estimated to be between 5.162mg/kg and 6.0592mg/kg. In addition,
with 95% confidence, 90% of arsenic concentrations in soil are estimated to
be below 8.8184mg/kg.
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Methods Mean Lower limit Upper limit UTL

zero 4.4591 4.0719 6.817 14.5769
DL 6.05 5.7667 6.3371 8.0344
DL/2 5.2545 4.7061 5.9974 10.0265

DL/
√

2 5.584 5.162 6.0592 8.8184
Even 5.2545 4.7199 7.0391 14.0225
Random 5.0973 4.7046 8.2888 18.0703
MLE 5.8179 5.4573 6.2023 8.4625
KM 6.0818 5.805 6.3632 8.0215

Table 4: Results from Arsenic data analysis.

7 Recommendations and Future Work

Based on the four criterion for selecting the most effective method for work-
ing with censored data, it is recommended that the methods of substituting
the non-detects with the values DL

2 and DL√
2

be used for data with a per-

centage of censored observations up to 30%. These are not the expected re-
sults, as the Maximum Likelihood Estimation in general is the most reliable
method for dealing with censored data. However, these results are consistent
with what is often used in the industry or environmental sciences. Methods
of substituting with varying fractions of the DL are commonly used in the
industry, because they produce fairly good results without having to specify
a certain distribution for the sample. Using a parametric method, such as
Maximum Likelihood Estimation, depends on having a sample that is a good
fit for that specified distribution, which is very difficult to do in practice.

This research will be continued to determine the most effective method
when dealing with multiple detection limits, as opposed to a singular DL.
Further explanation as to why the Maximum Likelihood Estimation method
may not have produced the expected results will also be explored. The
analysis of methods when dealing with multiple detection limits will be very
applicable to environmental sciences, as having multiple detection limits is a
common occurrence in the environmental sciences when different measuring
devices are used.
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