
Variable Screening
- via Distance Correlation and Complete Least Squares

Abstract

Variable selection is the process of filtering out irrelevant variables and selecting the relevant
ones. However, when the size of predictors gets much larger than the sample size, which can
be defined to be an ultrahigh dimensional setting, variable selection techniques will give results
that are noisy and unreliable. This thesis considers a new screening technique under this cir-
cumstance. We developed a screening procedure based on distance correlation and complete
least squares (DC-CLS). DC-CLS is an extension of the sure independence screening procedure
based on Pearson correlation proposed by Fan and Lv (2008) [1] and based on distance correla-
tion (DC-SIS) proposed by Li, Zhong and Zhu (2012) [2]. It differs in that DC-CLS takes into con-
sideration the correlations between the response and predictors as well as that within the pre-
dictors. We conducted simulation studies to assess the performance of this proposed method.
While our procedure showed promise in a proof of concept example, our simulation studies re-
vealed it is not competitive for general use.
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1 Introduction

Variable selection, also known as feature selection, is a procedure that selects relevant vari-
ables (features). With large data sets becoming more common, variable selection becomes an
important process to effectively select a subset of relevant variables to produce more accurate
estimations. These techniques include, but are not limited to, LASSO [3] (Tibshirani, 1996), Elas-
tic Net [4] (Zou and Hastie, 2005), the adaptive LASSO (Zou, 2006) [5], and the LARS algorithm
(Tibshirani, Johnston, Hastie, Efron, 2004) [6]. These methods perform well with high dimen-
sional data, under the condition that the number of predictors is on the order of or larger than the
sample size [2].

With the advancement of technology, the data grows to possibly have an ultrahigh dimen-
sion when the number of predictors in the data is much higher than the sample size. Under an
ultrahigh dimensional setting, the variable selection techniques mentioned above may not per-
form very well and may give noisy and inaccurate results due to the challenges including sin-
gularity that is caused by more columns than rows in the design matrix, ill-functioning variance-
covariance matrix, possible decay of estimators to noise level, and inaccurate distributions (Fan
and Lv, 2008) [1]. Using similar simulation conditions as shown by Fan and Lv (2008) [1]:

Let X be the n× p design matrix with the rows consisting of independent realizations from a mul-
tivariate Normal distribution Np(0, 1). We consider (1) n = 60, p = 1000 and (2) n = 60, p = 5000.
Let the response Y ∼ N(0, 2) and independent of X.

Figure 1: Density of maximum magnitude of sample correlation under the circumstance that
the response is independent from the predictor, and the design matrix has a size of (1) n=60,
p=1000 (2) n=60, p=5000 [1]

Replicating the simulation for each set-up above for 500 times and recording the maximum
magnitude of sample correlations, we were able to plot the density of the values. From Figure
1, it can be shown that although during the simulation, the response was set to be independent
from the predictors, the marginal correlations are in the range between 0.3 and 0.6, which is
away from the true value of 0. This condition illustrates the noise introduced under an ultrahigh
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dimensional setting and the challenges faced by the variable selection techniques mentioned
above.

With the challenges introduced and possibility that the techniques mentioned above would
give noisy and inaccurate results, new statistical methods are proposed for ultrahigh dimensional
data. Variable screening is one of the methods that has been developed. Variable screening is a
step that is usually applied to the data prior to variable selection with ultrahigh dimensional data,
and this step conducts a first filter on the predictors in the pool such that the number of potential
predictors can be reduced to be on the order of the sample size. With this reduction in predic-
tor size, the variable selection techniques can be applied to offer less noisy and more accurate
results.

Fan and Lv (2008) [1] proposed Sure Independence Screening (SIS) that ranks each predic-
tor based on the magnitude of its marginal Pearson’s correlation with the response, and selects
a number of top ranked predictors as the relevant predictors for further processing. It is shown
to have a sure screening property that the probability of the important variables selected from
the screening process belonging to the true model tends toward 1 [1]. However, as mentioned by
Fan and Lv (2008) [1] in the paper, using Pearson’s correlation has the drawback that although
it can identify linear relationships very well, it is not able to capture the nonlinear relationship be-
tween response and predictors. For example:
Let the predictor, X, be a sequence of number, such that Xi = 0, 0.5, ..., 15
Let the response, Y , be a nonlinear function of the predictor such that

Yi = sin(Xi) + εi

where εi ∼ N(0, 0.2). Figure 2 shows one realization from this model.

Figure 2: Response vs. Predictor

Both the function above, and the scatter plot generated between response and predictor indi-
cate that there is a strong relationship between the response and predictor. However, Pearson’s
correlation between X and Y is -0.02255. This low correlation computed by Pearson’s correla-
tion indicates that if there exists a nonlinear relationship within the sample, then it is possible that
marginal Pearson’s correlation cannot capture it, which poses a possible shortcoming for SIS.
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With the concerns posed by Pearson’s Correlation, other screening methods have been devel-
oped based on SIS and other correlation measures. Li, Zhong and Zhu (2012) proposed SIS us-
ing distance correlation (DC-SIS) rather than Pearson’s correlation [2] since distance correlation
is able to capture nonlinear relationships. To be specific, using a procedure similar to SIS, DC-
SIS ranks each predictor based on its marginal distance correlation with the response. As shown
by numerical simulations (Li, Zhong and Zhu, 2012) [2], DC-SIS has a much better performance
than SIS in different settings.

However, one potential shortcoming for both SIS and DC-SIS is that both approaches rank
only the marginal correlations, and the correlations between the predictors are not considered,
which may cause an issue in certain models. To be specific, let X1 and X2 be two predictors,
and Y be the response. It is possible that X1 is strongly correlated with Y and X2 is independent
from Y while X1 and X2 are strongly correlated. Under this condition, when considering only the
marginal correlations, it is possible for SIS and DC-SIS to select both variables instead of only
X1. Consider the following example. Suppose that there are two predictors and a response as
follows:

X1 ∼ N(1, 0.5)

X2 ∼

{
N(2, 0.5) X1 ≥ 1

X1 Otherwise

y ∼

{
N(2, 0.5) X1 ≥ 1

N(1, 0.5) Otherwise

Based on the data simulated above, an obvious relationship can be observed through a scatter
plot (as shown below on the left) for response, y, vs. X2, from which either SIS or DC-SIS may
pick X2 as a relevant variable for the response. However, if we group by X1, then, as shown be-
low on the right, no obvious trend can be observed for each group of the variables indicating that
only X1 is relevant to the response. This manifests the potential issue that can be caused by only
considering marginal correlations.

Figure 3: Left: Scatter plot of response vs. predictor without considering groups Right: Scatter
plot of response vs. predictor considering groups
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In this paper, we propose a new feature selection method using distance correlation and com-
plete least squares (DC-CLS) for ultrahigh dimensional data settings. Distance correlation has
been proposed as a new measurement of dependence. It has been shown that if both of the two
random vectors for computation have finite first moments, distance correlation has a range from
0 to 1, and it is 0 if and only if the two vectors are independent [7]. Reyes (2012) proposed Com-
plete Least Squares (CLS) as a new method of estimation and showed the benefits of using CLS
in variable selection and variable screening; namely, it has a higher stability compared to other
techniques. Furthermore, it has been shown by simulation studies that CLS can be generally
competitive with other commonly used approaches [8]. These properties of distance correlation
and CLS motivate us to combine them in our approach.

To assess the performance of DC-CLS, we did a proof of concept, which showed promising
results that it can be generally competitive with SIS and DC-SIS. Further, we conducted simu-
lation studies using different models. Our simulation studies suggested that although DC-CLS
showed promise in a proof of concept example, it is not competitive for general use. However,
further research is needed to fully develop this approach.

In the next section, we introduce feature screening via distance correlation and complete least
squares (DC-CLS). Also, we explain in detail complete least squares (CLS) and distance correla-
tion (DC), and how feature screening should work by the combination of the two methods.
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2 DC-CLS

2.1 Complete Least Squares (CLS)

Let X be a n× p design matrix and y be a n× 1 response that follows a linear model:

y = Xβββ + εεε

where βββ is a p-dimensional vector of parameters, and εεε = (ε1, ε2, ..., εn)T where for i = 1...n,
εi are independently and identically distributed such that they are centered at 0 with a unknown
variance σ2.

Assuming that X and y are scaled and centered, Ordinary Least Squares (OLS) estimator for
βββ

β̂ββOLS = argminβββ||y− Xβββ||2

is well-known to be the best linear unbiased estimator. However, when there exists a high cor-
relation within the predictors, OLS does not preform very well. Moreover, in high dimensional
settings, the OLS estimator is not uniquely defined. Under these conditions, other biased esti-
mators, such as LASSO [3] (Tibshirani, 1996), are preferred. Complete Least Squares (CLS) has
also proved to be a biased estimator that shares similarity with other biased estimators (Reyes,
2012) [8].

As his motivating example for the objective function of CLS, Reyes (2012) used a data set
from a study on 442 diabetic patients. The data set contains three different predictors of each
patient, including the age (x(1)), body mass index (BMI) (x(2)), and average blood pressure (x(3)).
Also, the data contains “a quantitative measure of disease progression one year after baseline”
as the response of interest, y. And the question of interest is to estimate the parameters, {β1, β2, β3},
for each corresponding predictor. Since the relationship between the response and predictors is
unknown before examining the data set, there are multiple possible linear models with different
predictors included. Then, all possible objective functions can be listed as follows [8]:

1-Variable :


||y− X(1)β1||2

||y− X(2)β2||2

||y− X(3)β3||2

2-Variable :


||y− X(1)β1 − X(2)β2||2

||y− X(2)β2 − X(3)β3||2

||y− X(3)β3 − X(1)β1||2

3-Variable : ||y− X(1)β1 − X(2)β2 − X(3)β3||2

With no prior information about which model is correct to pick, Reyes (2012) suggested “de-
termining a value of βββ that is ‘good’ across all seven models”; further, he proposed constructing
an estimator that minimizes the sum of all possible objective functions for different linear models,
which, in particular, is:

Q(βββ) = ||y− X(1)β1||2 + ||y− X(2)β2||2 + ||y− X(2)β2||2

+ ||y− X(1)β1 − X(2)β2||2 + ||y− X(2)β2 − X(3)β3||2 + ||y− X(3)β3 − X(1)β1||2

+ ||y− X(1)β1 − X(2)β2 − X(3)β3||2
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Q(βββ) is defined to be the CLS Objective function and the estimator that minimizes this objective
function is the CLS estimator under this given situation [8].

Reyes (2012) showed the objective function for CLS can be written in a compact form. First,
define

Qp,k =
∑

s∈Sp,k
||y− XDsβ||2

where Sp,k indicates “the set of all p-dimensional vectors with exactly k elements taking value 1,
and exactly p − k elements taking value 0” with 1 ≤ k ≤ p and Ds is a matrix with the diago-
nal being the values of s vector. In the case when k = p, the CLS objective function will turn out
to be the same as the objective function for a full-model OLS as all variables are included inside
of the model with size to be included being exactly p [8]. Moreover, a weight vector can be intro-
duced into the objective function such that different linear models in the summation have differ-
ent emphasis under different cases. Having the weight introduced, he defined the CLS objective
function as

Qp(βββ,ωωω) =
∑p

k=1 ωkQp,k(βββ)

where ωωω = (ω1, ω2, ..., ωp)
T is the weight vector, in which each value in the vector is the weight

for the model size at the corresponding position and the weight is always between 0 and 1. Then,
the objective function can be simplified to

Qp(βββ,ωωω) = λ0yTy− 2λ1yTXβββ + βββT (λ2XTX + (λ1 − λ2)DXT X)βββ

where for i = 0, 1, 2, λi =
∑p

k=1 ωk
(
p−i
k−i
)
, DXT X is a diagonal matrix such that the values on the

diagonal of the matrix is the same as the diagonal of matrix XTX.

From the objective function defined above, the CLS estimator (Reyes, 2012), the value of βββ,
which minimizes the CLS objective function, is

β̂ββCLS = (τXTX + (1− τ)DXT X)
−1

XTy

where τ = λ2/λ1 [8].

A few remarkable properties of CLS motivate us to use it in variable screening. The first one
is the relationship between CLS estimator and univariate marginal estimators and that between
CLS estimator and OLS estimator. With different choices on τ , the CLS estimator tends to move
toward either the full model OLS estimators (τ = 1) or univariate marginal estimators (τ = 0). [8]

The second one is that if the design matrix and response are centered and scaled properly
such that yT1 = 0, yTy = 1, XT1 = 0, and XTX = R, where R is a valid correlation matrix within
the predictors, then the CLS estimator can be rewritten as:

β̂ββCLS = (τR + (1− τ)I)−1RXy

where RXy is a vector of correlations between response and each predictor.

Being able to substitute a part of the estimator to be a valid correlation matrix allows us to
handle both the correlation among the predictors and the correlations between response and
predictors [8].
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2.2 Distance Correlation (DC)

Distance correlation is proposed as a new approach to assess independence between two
random vectors by Szkely, Rizzo and Bakirov (2007). To be specific, the distance correlation
between two random vectors is a weighted Euclidean distance between the two characteristic
functions of the two random vectors. Let gx(t) and gy(s) be the characteristic function of two ran-
dom vectors, x and y, respectively. Let gx,y(t, s) be the joint characteristic function of x and y. Let
dim(x) and dim(y) denote the dimensions of x and y. Then, the distance covariance (dCov) be-
tween x and y with a weight function w(t, s) is

dCov(x,y) = ||gx,y(t, s)− gx(t)gy(s)||2w

=

∫
Rdim(x)+dim(y)

|gx,y(t, s)− gx(t)gy(s)|2w(t, s)dtds

where w(t, s) = [cdim(x)cdim(y)||t||
1+dim(x)
dim(x) ||s||

1+dim(y)
dim(y) ]

−1
, cd = π

1+d
2 [Γ(1+d2 )]

−1 and ||c|| repre-
sents the Euclidean norm of c in the expression. Then the distance correlation between the two
random vectors, x and y, can be defined as [7]

dCorr(x,y) =


dCov(x,y)√

dCov(x,x)dCov(y,y)
dCov(x,x)dCov(y,y) > 0

0 dCov(x,x)dCov(y,y) = 0

Moreover, Szkely, Rizzo and Bakirov (2007) gave a definition of empirical distance covariance

dCov(x,y) = 1
n2

∑n
k,l=1AklBkl

where Akl = akl − ak∗ − a∗l + a∗∗ with akl = |xk − xl|p, ak∗ = 1
n

∑n
l=1 akl, a∗l = 1

n

∑n
k=1 akl,

a∗∗ = 1
n2

∑n
l,k=1 akl, and Bkl shares a similar description with Akl but for y random vector. This

allows the computation of distance correlation without knowing the characteristic functions. Also,
it allows us to find a possible way to extend the existing computation package for our purposes.

A remarkable property of distance correlation motivates us to use it in variable screening. The
property is that if the two random vectors have a finite first moment, then the distance correlation
between the two vectors is between 0 and 1. Moreover, the distance correlation is equal to 0 if
and only if the two vectors are independent. Distance correlation will perform better than Pear-
son’s correlation if there exist nonlinear relationships between the two random vectors [7]. We
demonstrate this property by using two random variables that are non-linearly related. Let X be
a random vector that follows a normal distribution with mean of 0 and variance of 1. Let Y be an-
other random vector that follows: Y = X2 + εεε, where εεε is an error term. Figure 4 illustrates the
relationship.

We computed both Pearson’s correlation and distance correlation between the two vectors
and obtained a Pearson’s correlation of -0.06415 and a distance correlation of 0.54625. The
Pearson’s correlation has a magnitude that is close to zero indicating a very weak or no rela-
tionship between the two vectors. However, the distance correlation gives a stronger magnitude
suggesting the existence of relationship between the two random vectors.

In the next section, we will demonstrate a DC-and-CLS-based variable screening technique.
Via two small simulations as proof of concept, we will illustrate how a DC-CLS can have a poten-
tial to perform better than DC-based and general sure screening techniques.

7



Figure 4: Relationship for Y ∼ X, when Y = X2 + εεε

2.3 DC-CLS

2.3.1 Screening Procedure

In this section, we propose a variable screening procedure that is based on DC and CLS. Let
y = (y1, y2, ..., yn)T be the response vector. Let X = (X(1),X(2), ...,X(p))

T be the design matrix,
where X(i), for i = 1, 2, ..., p, denotes each predictor column with a size of n × 1 of the design
matrix. With an ultrahigh-dimensional setting, the total number of predictor columns, p, is much
greater than the sample size, n. Assuming that there is a small number of predictors that are ac-
tually relevant and important to the response, then we can define two categories of variables. Let
SI denote the set of relevant predictors and SU denote the set of irrelevant predictors. Hence,

X(i) ∈ SI if y depends on X(i)

X(i) ∈ SU if y is independent from X(i)

To find the set of relevant predictors in the screening, we use the CLS estimator mentioned
earlier so that both the relationship among the predictors and that between the response and
predictors are captured.

β̂ββCLS = (τRXX + (1− τ)I)−1RXy

where RXX and RXy are substituted with the corresponding distance correlation matrices.

Since CLS estimator allows both positive and negative values, we assume that the estimator
is symmetric about zero so that larger magnitude indicates a higher importance while smaller
magnitude (i.e. close to 0) suggests weak or no relevance to the model. Hence, we consider
ranking the relevance of each predictor by using the magnitude of the CLS estimators. Then, we
can choose a set of relevant predictors whose magnitude of CLS estimators are ranked at the
top n − 1. In the next section, we will illustrate our proposed approach using two small simula-
tions as proof of concepts.
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2.3.2 Proof of Concepts

To illustrate our proposed approach and assess whether this approach can possibly perform
better than the other screening procedures, we performed two simulations as proof of concept.

Case 1:

The first case is a similar case as mentioned in the introduction. Let X1, X2 and X3 be three
predictors with size 1000× 1, and Y be a 1000× 1 response such that

X1 ∼ N(1, 0.5)
X2 ∼ N(1(X1 ≥ 0) + [1− 1(X1 ≥ 0)](−1), 1)

X3 ∼ N(0, 1)
Y ∼ X1 +N(0, 0.5)

Based on the simulation data above, we computed the estimators using all three screening
techniques, including SIS, DC-SIS, and DC-CLS (using τ = 0.7).

Table 1: Relevance From Three Screening Methods (Proof of Concept 1)
SIS DC SIS DC CLS

x1 0.691 0.702 0.607
x2 0.478 0.493 0.187
x3 0.003 0.054 0.030

As shown in the table above, it can be seen that all three approaches pick up X1 with a large
relevance level from 0.691 to 0.702. Also, all three approaches have a small relevance level (i.e.
close to zero) for X3, which indicates that the response shares a weak or no relationship with X3.
This is a reasonable selection since X3 is neither directly related to other predictors nor directly
related to the response. However, for X2, SIS and DC-SIS show a relevance level at around
0.478 to 0.493, which suggests that X2 is a fairly important and promising variable in the model.
Compared with the relevance levels obtained from SIS and DC-SIS, the relevance level obtained
from DC-CLS is relatively smaller and closer to zero at around 0.187.

From the original model indicated above, it can be seen that response Y is directly a function
of X1, which suggests that Y functionally depends on X1. However, X2 is a function of X1 but
not directly related to the response, as illustrated in Figure 5.

Although it can be observed that there exists a marginal relationship between response Y and
X2 from the plot on the left, if we group X2 by X1, no obvious trends can be observed for each
group of X2 indicating that the trend seen may be driven by X1 and only X1 is relevant to the re-
sponse.

Intuitively, DC-CLS is similar to a regression analysis, which determines importance condi-
tional on the remaining terms in the model. Using a linear model fit of the response vs. the three
predictors, we found that only X1 is relevant to the response with a significance level of 0.05.

According to the analysis above, the results from SIS and DC-SIS can be misleading since it
indicates that X2 is a fairly promising predictor in the model by giving a level around 0.5. How-
ever, DC-CLS gave a relevance result that is much smaller than given by the other two to be
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Figure 5: Proof of Concept 1: left: response Y vs. X2 without grouping by X1, right: response Y
vs. X2 with grouping by X1

Table 2: Summary of Linear Model Fit
Estimate Std. Error t value P-value

x1 0.9813 0.0449 21.85 0.0000
x2 -0.0116 0.0159 -0.73 0.4646
x3 0.0338 0.0323 1.05 0.2954

around 0.2, which indicates the relationship is fairly weak between the response and X2. Al-
though the rank of each predictor from each approach is the same, DC-CLS gave a more reliable
estimation of the importance level of X2.

Case 2:

The second case uses a model that contains both nonlinear relationships and correlations
within predictors. Let X1, X2 and X3 be three predictors with size 1000 × 1, and Y be a 1000 × 1
response such that

X1 ∼ N(0, 1)
X2 ∼ −sin(X1) +N(0, 0.5)

X3 ∼ N(0, 1)
Y ∼ sin(X1) +X2 +N(0, 0.5)

Again, based on the simulation data above, we computed the estimators using all three screen-
ing techniques, including SIS, DC-SIS, and DC-CLS (using τ = 0.7).

Table 3: Relevance From Three Screening Methods (Proof of Concept 2)
SIS DC SIS DC CLS

v1 0.037 0.051 0.213
v2 0.437 0.375 0.488
v3 0.004 0.050 0.044

As shown in the table above, it can be seen that all three approaches pick up X2 with a large
relevance level from 0.375 to 0.488. Also, all three approaches have a small relevance level (i.e.
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close to zero) for X3, which indicates that the response shares a weak or no relationship with X3.
This is a reasonable selection since X3 is neither directly related to other predictors nor directly
related to the response. However, for X1, SIS and DC-SIS show a close-to-zero relevance level
indicating that X1 should not be in the model. Compared with the relevance levels obtained from
SIS and DC-SIS, the relevance level obtained from DC-CLS is relatively larger at around 0.213.

From the original model indicated above, it can be seen that response Y is directly a func-
tion of X2, which suggests that Y functionally depends on X2. Moreover, since the response
depends on X1 with a sine function, the response also functionally depends on X1. However,
E(Y |X1) = 0 suggesting that only considering the marginal relationship would be misleading.
This is shown in Figure 6.

Figure 6: Proof of Concept 1: left: response Y vs. X1 with grouping by X1, right: X1 vs. X2

It can be observed that there is no obvious trend between the response and X1. However,
there is a strong correlation between X2 and X1. Considering the conditional relationship allows
us to detect both variables.

Moreover, using a linear model fit of the response vs. the three predictors (Table 4), we found
that both X1 and X2 are relevant to the response at a significance level of 0.05.

Table 4: Summary of Linear Model Fit
Estimate Std. Error t value P-value

x1 0.4401 0.0255 17.26 0.0000
x2 0.7723 0.0315 24.52 0.0000
x3 -0.0040 0.0166 -0.24 0.8090

Based on the analysis above, the relevance results from SIS and DC-SIS can be misleading
since it indicates that X1 should not be included in the model. However, DC-CLS gave a rele-
vance result that is relatively larger at around 0.2, which indicates a possibility that X1 should be
included. DC-CLS gave a more reliable estimation of the importance level of X1.

Through the simulations as proof of concept above, we conclude that DC-CLS can perform
better than the other screening procedures under certain given models. Hence, we further con-
ducted simulation studies on different models. In the next section, we will demonstrate our re-
sults from the simulation studies.
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3 Simulation Studies

In this section, we assess the performance of DC-CLS by conducting simulation studies.

In the simulation studies, we generated a design matrix (X) having a size of n × p, where n
is the number of rows and p is the number of columns. Each row of X is generated such that XTi
follows a multivariate normal distribution with zero mean and variance-covariance matrix Σ =
(σi,j)p×p, where, for all 1 ≤ i ≤ p and 1 ≤ j ≤ p,

(Σ)ij = ρ1(i 6=j)

where ρ is a given constant correlation, and 1(u) is an indicator for taking value 1 if event u oc-
curs and is 0 otherwise.

With the design matrix, X, generated, we obtained the response, y, based on the three mod-
els as follows with an error term εεε following a N(0, σ2y), where σ2y is computed based on a given
R2 value. Consider the case that yi = XTi βββ + εi. Then,

V ar(yi) = V ar(XTi βββ) + V ar(εi)

= βββTΣXβββ + σ2y

Since R2 is defined as

R2 = SSR
SST = SST−SSE

SST = 1− SSE
SST ,

the theoretical R2 value can be represented as

R2 = 1− σ2
y

βββT ΣXβββ+σ2
y
.

Then, given constant R2, the variance, σ2y , for the error term in the response can be computed.

The three models are chosen to assess the performance of DC-CLS under different cases
that contain nonlinear terms. The idea of these models are similar to the models tested in DC-
SIS [2]. To be specific, Model(1) has the nonlinear term on X12. Model(2) contains both an inter-
action term X1X2 and a nonlinear-interaction term 1(X12 > 0)X22. Model(3) contains nonlinear
term on X12 and X22 as well as an interaction term X1X2.

Model(1): E(y|X) = β0 + β1X1 + β2X2 + β31(X12 > 0) + β4X22

Model(2): E(y|X) = β0 + β1X1X2 + β21(X12 > 0)X22

where (β0, β1, β2, β3, β4) = (1, 4, 2, 2, 1), and R2 = 0.6. For each model, we considered two differ-
ent covariance matrices defined by ρ = 0, 0.5 with n = 60, 200 and p = 1000, 3000.

For each replication, we computed the SIS, DC-SIS, and DC-CLS (τ = 0.5, τ = 0.9) esti-
mators. Then, the predictors were ranked by their magnitudes. To assess how well each method
evaluates each predictor in the design matrix, we computed the minimum model size that is re-
quired to contain all important predictors, and found the 5th, 25th, 50th, 75th, 95th percentile of the
set of minimum model sizes out of 500 replications for each model.

For Model(1), the result quantiles are given below.
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Table 5: Model 1: n = 60, p = 1000
ρ = 0

5% 25% 50% 75% 95%
SIS 88.00 304.75 521.00 735.00 953.15

DC SIS 112.00 345.75 579.00 779.25 965.10
DC CLS 0.5 496.60 691.75 838.00 931.25 988.00
DC CLS 0.9 458.85 707.75 839.50 929.25 984.05

ρ = 0.5

5% 25% 50% 75% 95%
113.75 290.50 481.50 686.25 890.00
119.95 299.00 476.00 688.00 906.05
211.95 496.75 706.00 864.00 978.05
491.10 697.75 832.00 926.25 985.00

Table 6: Model 1: n = 60, p = 3000
ρ = 0

5% 25% 50% 75% 95%
SIS 278.75 854.50 1465.00 2221.25 2842.00

DC SIS 303.55 955.25 1611.00 2221.00 2839.30
DC CLS 0.5 1388.80 2146.50 2538.50 2777.25 2970.00
DC CLS 0.9 1387.90 2070.00 2501.00 2796.75 2960.25

ρ = 0.5

5% 25% 50% 75% 95%
342.00 998.50 1477.50 2075.00 2655.55
339.00 907.75 1431.00 2078.50 2667.25

1359.55 2069.75 2463.00 2756.25 2965.00
1371.35 2098.75 2558.50 2789.00 2953.05

Table 7: Model 1: n = 200, p = 1000
ρ = 0

5% 25% 50% 75% 95%
SIS 9.95 46.00 138.50 312.00 797.05

DC SIS 9.95 50.00 153.50 381.25 816.65
DC CLS 0.5 9.95 61.00 256.00 595.25 936.00
DC CLS 0.9 435.35 692.00 813.00 915.25 977.00

ρ = 0.5

5% 25% 50% 75% 95%
33.95 126.75 273.50 482.25 749.10
34.95 124.25 252.50 459.25 733.00
40.95 181.00 393.00 723.50 950.10

122.90 375.50 609.00 837.25 975.00

Table 8: Model 1: n = 200, p = 3000
ρ = 0

5% 25% 50% 75% 95%
SIS 26.95 143.00 413.50 963.25 2097.15

DC SIS 24.00 163.50 433.00 1087.50 2493.95
DC CLS 0.5 1479.30 2125.25 2532.50 2799.50 2964.00
DC CLS 0.9 1258.80 2006.25 2475.00 2774.50 2952.15

ρ = 0.5

5% 25% 50% 75% 95%
105.95 369.75 792.50 1402.75 2381.15
115.95 371.50 790.00 1400.00 2251.20
160.95 671.50 1394.50 2255.00 2868.10

1425.35 2121.75 2510.00 2795.00 2956.15

From the tables above, it can be seen that the minimum model size for DC-CLS that is re-
quired to contain all important predictors can be much larger than that required for SIS and DC-
SIS, which indicates that DC-CLS is not as efficient as SIS and DC-SIS under this model setting.
However, note that when the sample size increases, all three procedures tend to perform better
for different number of predictors. This is also verified with a density plot of minimum model size.

Figure 7: Model 1: density of minimum model size left: with ρ = 0, right: with ρ = 0.5

From the plot above, we can see that under Model(1), the blue and purple curves, the curves
for SIS and DC-SIS respectively, are always farthest to the left and farther left than the curve for
DC-CLS, which indicates that DC-CLS is not as efficient as the other two procedures. This corre-
sponds well with the results from the results percentile tables above.
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For Model(2), the density plot for the minimum model size and result quantiles tables are given
below.

Figure 8: Model 2: density of minimum model size left: with ρ = 0, right: with ρ = 0.5

Table 9: Model 2: n = 60, p = 1000
ρ = 0

5% 25% 50% 75% 95%
SIS 306.95 614.00 778.50 903.00 980.05

DC SIS 252.95 474.75 683.50 838.75 962.00
DC CLS 0.5 482.80 687.50 830.50 928.25 988.05
DC CLS 0.9 464.90 706.00 846.50 922.00 985.05

ρ = 0.5

5% 25% 50% 75% 95%
405.85 677.00 824.50 923.00 987.00
208.00 432.75 640.00 827.25 954.00
374.90 621.00 798.00 912.25 984.05
470.95 721.75 844.00 930.00 986.00

Table 10: Model 2: n = 60, p = 3000
ρ = 0

5% 25% 50% 75% 95%
SIS 859.95 1759.00 2258.50 2674.00 2915.30

DC SIS 647.65 1325.00 1961.50 2482.00 2854.10
DC CLS 0.5 1448.40 2127.00 2562.50 2812.25 2961.00
DC CLS 0.9 1411.65 2122.25 2501.50 2799.50 2965.05

ρ = 0.5

5% 25% 50% 75% 95%
1233.25 1935.50 2394.50 2744.25 2953.15
539.05 1316.00 1890.00 2481.50 2862.40

1223.35 2040.75 2474.00 2762.75 2960.15
1434.85 2148.75 2515.50 2805.00 2960.05

Table 11: Model 2: n = 200, p = 1000
ρ = 0

5% 25% 50% 75% 95%
SIS 312.85 580.00 773.00 898.25 986.00

DC SIS 110.00 324.75 532.00 748.50 956.10
DC CLS 0.5 165.65 419.25 661.50 834.00 971.00
DC CLS 0.9 476.75 698.00 834.00 925.00 986.00

ρ = 0.5

5% 25% 50% 75% 95%
301.40 592.50 776.50 886.50 975.00

80.95 251.75 483.00 708.50 919.20
165.80 379.50 651.00 834.75 957.15
256.85 525.25 710.00 872.00 977.00

Table 12: Model 2: n = 200, p = 3000
ρ = 0

5% 25% 50% 75% 95%
SIS 813.60 1681.50 2212.50 2667.25 2932.10

DC SIS 359.80 951.50 1537.50 2250.50 2845.05
DC CLS 0.5 1382.75 2144.00 2522.50 2784.50 2965.10
DC CLS 0.9 1370.75 2157.00 2564.50 2803.00 2966.05

ρ = 0.5

5% 25% 50% 75% 95%
1034.35 1728.50 2364.50 2696.00 2944.05
229.95 847.00 1435.50 2116.75 2796.00
433.75 1182.25 1998.50 2502.25 2906.15

1548.30 2211.25 2514.00 2782.25 2937.05

From the density plot above in Figure 8, we can see that although DC-CLS is not perform-
ing the best, DC-CLS can perform better than SIS under certain circumstances, especially when
the correlation within the predictors is nonzero. This can also be verified through the result per-
centiles table below. From the table below, we can find that for all cases, DC-SIS performs the
best through all three procedures. DC-CLS with τ = 0.5 can possibly perform better than SIS but
not as well as DC-SIS.
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In all, based on the simulation studies above, although DC-CLS shows promising results in
the proof of concept, it is not competitive for general uses.

4 Discussion

In this paper, we proposed a new screening procedure that is based on distance correlation
and complete least squares. However, our simulation studies reveal that this procedure is not
effective for general use. But since the proof of concept shows promising results, we consider
a couple reasons that can vary the results of the simulation. In this section, we will demonstrate
how two different factors could possibly lead to different results, including selection of τ and whether
to use the magnitude of CLS estimator.

4.1 Selection of τ

To assess how different τ produces different result, we chose to use Model(2) with a correla-
tion of 0.8 within the design matrix and computed the CLS estimators for different τ value so that
τ = 0, 0.1, 0.2, ..., 0.9.

Figure 9: density of minimum model size for Model(2) with ρ = 0.8 and various τ values

As shown in the plot above, we can see that with different τ values, the curve for the density
of minimum model size shifts from left to right and back and forth, which indicates that the se-
lection of τ can be critical for the CLS estimator so that it directly changes the ranking of each
predictor that is in the pool.

Reyes (2012) defined the τ in the CLS estimator to be

τ = λ2/λ1 =
∑p

k=1 ωk
(
p−2
k−2
)
/
∑p

k=1 ωk
(
p−1
k−1
)

[8]

where k is an integer such that 1 ≤ k ≤ p, p is the size of the predictors in the data set and ωk
is a pre-specified model weight for the k-th model. However, in our simulation study, we arbitrar-
ily selected the τ values to be 0.5 or 0.9 for the CLS estimators, which do not exactly follow the
given definition of CLS estimator. Hence, it is probable that using arbitrary τ values in our sim-
ulation studies can lead to CLS estimators that do not actually minimize the corresponding CLS
objective function.
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Moreover, for each different model and correlation structure of design matrices, τ values might
vary to minimize the corresponding CLS objective functions. As mentioned by Reyes (2012), with
different τ values, the CLS estimator can be tending toward either univariate marginal estimates
or full OLS estimates. Hence, τ values can vary the CLS estimators largely [8]. However, in our
simulation study, τ values are selected to be the same for all models with all possible correlation
structures in the design matrix, which can possibly cause CLS not to estimate the best results.

According to the discussion regarding to the selection of τ above, to fully assess the CLS es-
timator, future work may need to be done on selecting the appropriate τ value for its correspond-
ing model.

4.2 Magnitude of CLS Estimator

The process of converting the estimator to a ranking may also influence results. Consider
Model(1) with a correlation of 0.5 within the design matrix. We used the case used in the previ-
ous section. Then, we generated the density plots of minimum model size for the two cases.

Figure 10: density of minimum model size for Model(1) with ρ = 0.5 ranking by left: raw estima-
tors, right: magnitude of estimators

Figure 11: density of minimum model size for case in previous section ranking by left: raw esti-
mators, right: magnitude of estimators
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From the plot above, we can see that using the magnitude of the CLS estimators, the curves
for the density plot are shifted from the ones that use the raw CLS estimators. And it can be seen
that the selection can be more effective sometime when using the raw estimators for the ranking.
Although we were able to learn about the properties of distance correlation and complete least
squares separately, we were not able to investigate how distance correlation has affected CLS
estimator for the screening procedure.

To be specific, it is possible that the estimators are not distributed symmetrically about zero so
that taking the magnitude of the estimators can be inappropriate.

According to the discussion regarding the magnitude of CLS estimators, to better assess the
CLS estimator with distance correlation, future work is required investigating the properties of the
CLS estimator that uses distance correlation matrix inside.

5 Conclusion

In this paper, we proposed a new feature screening procedure using distance correlation and
complete least squares. We used a new estimator based on the original CLS estimator to rank
the importance of each predictor within the design matrix. In the proof of concept, we used small
simulations to show how this screening procedure can potentially perform better and capture the
predictors that are marginally independent of the response under certain given circumstances.
However, through the simulation studies, it can be shown that our proposed screening is not
as effective as the other two screening procedures, SIS and DC-SIS. To reveal the full poten-
tial of this new feature screening procedure, DC-CLS, further study on theoretical analysis of the
method and estimators needs to be conducted.
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