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Abstract 

 

The Internet self-evolves rapidly and its dynamic structure poses many interesting questions for 
researchers in network analysis. In this paper I show how we can simplify the entire Internet as 
a mathematical graph and then extract its structural characteristics; these characteristics in turn 
help us build statistical models that can predict how the Internet will evolve. The data describing 
the Internet structure are both clustered and unbalanced. I hence test various models, including 
lasso logistic regression, gradient-boosted decision trees and random forest decision trees, to 
see how well they cope with unbalanced and clustered data. The best performing model was 
created through a gradient-boosted decision tree that balances flexibility in fitting with 
robustness in prediction. I show that we can achieve good predicting power using fairly simple 
explanatory variables, but I also discuss how we can extract more sophisticated variables to 
improve the models’ performance. 
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Figure 1: Graphical 
representation of the Internet 
in one snapshot of time. 

Table 1: Raw data 

1. Background and significance: 

Networks are in every corner of our lives. Our brains are a network of neurons and our 
biological traits are the results of interactions in our genetic network. We participate actively in 
social networks and advance knowledge by contributing to research/patent networks.  

As a result, researchers have placed a strong interest in understanding networks. In this paper, I 
build statistical models to study one of the most important networks: the Internet. Although 
humans created the Internet, it has since evolved so freely that we are still exploring its dynamic 
structure. Collecting data to map the Internet always poses a challenge and it is only recently 
that we can study empirical models of the Internet.1 Previously, researchers were interested in 
studying the Internet as a static network. Currently, the focus has moved to modeling how the 
Internet evolves.2 My work furthers this effort by developing and evaluating models to predict 
the Internet’s evolution over time.  

2. Methods 

a. Data collection & graphical representation of network 

Data for this project were collected by The Cooperative 
Association for Internet Data Analysis (CAIDA). A node is a 
local network of computers under control of one administrator 
(called an Autonomous System, AS). For instance, CAIDA sees 
Dordt College as one node.  

Each edge connects two nodes, and its direction (FromNodeID, 
ToNodeID) shows how information flows. Each edge has a 
weight of either 0 or 1, meaning the connection is either free 
(peer-to-peer) or has a cost (provider-customer).3 The first row 
in Table 1, 2-9-1, represents a connection going from node 2 
(N2) to node 9 (N9) and its weight is 1.  

This data set contains information on 49,083 edges and 21,861 
nodes for 42 distinct snapshots. Each snapshot represents one 
time period during 2004-2006. Each snapshot at period t 
consists of three columns of data that can be modeled as a 
mathematical graph Gt, t = 1,2,...42. 

My hypothesis is that prior behavior of the Internet’s structure 
signals us how it will likely behave in the future. Specifically, let 
GT denote the graph of Internet at time t = T; we can use 
historical characteristics of edges in G1, G2...GT-1 to predict 
whether those edges remain in GT. In other words, we can 
predict how the Internet evolves into GT by using the edges’ 
historical characteristics as explanatory variables. 

 

 

T = 1    T = 2     … T = 40 T = 41 T = 42

Figure 2: The Internet’s evolution as a series of graphs. 
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b. Variable creation 

Applying graph theory, I extracted multiple characteristics of the Internet for a specific time 
period. For example, if our goal is to predict the structure of the network at t = 41, the dependent 
variable Y is binary and indicates whether a given edge that existed in G40 survives into G41. Our 
purpose is to predict Y from all explanatory variables Xi.  

When predicting the structure of G41, we used 56 explanatory variables Xi, i=1…56. Variables 
(Xi, i=1…39) indicate whether an edge exists in the first 39 graphs . For instance, if the edge 2-9 
exists in G39 but not in G38, then X39=1 and X38=0.4 The variable X40 is the weight of each edge 
that exists at t = 40.5  This process results in 40 explanatory variables (columns) where each 
row represents a particular edge that existed in G40.6 

More complex quantitative explanatory variables were also created. Variables X41 to X44 indicate 
the in- and out-degrees of the two nodes associated with each edge. An edge always has a 
From-Node and a To-Node; for example, edge 5-4 in figure 1 has node N5 as From-Node and 
node N4 as To-Node. For the From-Node N5, two edges come in and two edges come out, so it 
has an in-degree X41 = 2 and an out-degree X42 = 2. For the To-Node N4, one edge comes in 
and one edge comes out, so it has an in-degree X43 = 1 and an out-degree X44 = 1. Variables 
X41 to X44 are calculated based on data in G40. Variables X45-X48 are calculated similarly to X41-
X44, but use lagged data in G39 instead of G40. 

Variable X49 is the percentage of the number of ‘1’s in series X1…X39 of each observation. 
Variable X50 counts how many times the binary series X1 to X39 switches between 0 and 1. 
Variable X51 looks backward from X39 to X1 until it reaches the last “1” in the series.7 Variables 
X52 and X53 represent the Closeness of From-Node and To-Node of an edge. Closeness 
measures how close a node is relative to the center of the graph. Variable X54 indicates each 
edge’s Betweeness in the graph by counting how many shortest paths cross it. Variables X55-
X56 are the “ranks” of From-Node and To-Node in the network.8 

In summary, I used the given 40 three-column tables (similar to Table 1), representing the 
internet at 40 time periods to create a dataset consisting of 56 explanatory variables. This new 
dataset was then used to predict the existence of an edge at G41. 

c. Methodology: cluster analysis and model selection 

While I was analyzing the data, scatter plots showed multiple clusters in the data. I also noticed 
that edges have a strong tendency to continue to exist. In other words, P(Y=1) was always 
much higher than P(Y=0). In fact, 94% of the edges in G40 survive into G41. Samples of these 
plots are included in Appendix 1 and stress the two main problems of my data: 1) the Xi space 
has many clusters and 2) the response Y is very unbalanced.  

To predict the existence of an edge in G41, I built predictive models in three main classes:  

• LASSO logistic regression9: LASSO logistic regression is a variable selection method 
that is used to select a parsimonious set of explanatory variables for the efficient 
prediction of a response variable. It minimizes the residual sum of squares subject to the 
condition that the sum of the absolute value of the coefficients is less than a constant.  

• Gradient Boosting Machine (GBM) decision trees: GBM is a series of trees built 
consecutively to capture the signal in Xi slowly but robustly.  
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AUC Logistic GBM 
tree

RF 
tree

Training 0.75 0.83 0.98
Testing 0.73 0.76 0.73

Table 3: Models performance 

• Random Forest (RF) decision trees: RF is an aggregation of many parallel, de-correlated 
trees (hence the name “forest”) that favors stronger predictors.10  

3. Results 

Table 2 demonstrates that the survivor nodes (Y=1) have a higher weight, percentage of ‘1’, to-
indegree and a lower count of switches, from-indegree, to-indegree and to-outdegree. In logistic 
regression, the pseudo McFadden R2 is 13%. The model is statistically significant at 1%. Among 
the explanatory variables, all in-, out-degrees (X41 to X44) and their lagged (X41 to X44) are 
significant. Weight (X40), percent of ‘1’ (X49), count of switches (X50), time until last 1 (X51) and 
ranks (X55 & X56) are also significant. Most of the predictors from X1 to X37 are not significant. In 
tree models, an analysis of relative importance also confirms that in-, out-degrees, percent of 
‘1’, count of switches, time until last 1 and ranks are strong predictor. Appendices 3 and 4 show 
selective outputs of the logistic and tree models.  

 

After creating prediction models, I divided my data into training data and testing data. I fit the 
models using training data and assess the performance of these fitted models using testing 
data.11 I use the Area Under the receiver operating characteristic Curve (AUC) as my main 
criteria to select models. A detail explanation of AUC is included in Appendix 2. AUC is similar 
to R2 for a linear model as it can tell us how well the models capture the variation in the data. 
The main advantage of AUC is that it allows us to compare linear to non-linear models, a 
feature R2 lacks. 

Table 3 represents the AUC scores of my models. For the 
training scores, the logistic model performs most poorly, 
suggesting that its linearity is rather rigid and cannot explain 
the variation in the data very well. Random Forest tree 
performs the best with an AUC of 0.98, indicating that this 
model captures the variation quite well. However, an almost-
perfect AUC score (near 1) may also signal that it might over-
fit to the noise of the training data.  

Testing data is used to re-assess the performance of the models. After I fit my models on 
training data, the testing scores indicate how well these fitted models perform on a different 
dataset. Logistic model’s AUC drops from 0.75 to 0.73, predicting quite consistently with new 
data. In contrast, the AUC of RF tree drops dramatically from 0.98 to 0.73 – a strong indicator 
that it over-fits to the noise in training data. Among the three models, GBM tree offers the best 
balance: it fits training data well (training AUC=0.83) but also predicts robustly on new testing 
data (testing AUC=0.76). 

Y Stats 
Weight 

(X40) 

Percent 
of "1" 
(X49) 

Count of 
Switches 

(X50) 

from-In-
degree 

(X41) 

from-out-
degree 

(X42) 

to-In-
degree 

(X43) 

to-out-
degree 

(X44) 
Y=0 Mean 0.7 0.5 3.2 61.6 36.3 289.3 47.6 
  (2087 obs.) S.d. 0.5 0.3 3.0 145.7 81.1 535.9 85.0 
Y=1 Mean 0.8 0.7 2.1 37.3 19.0 487.0 37.9 
  (46996 obs.) S.d. 0.4 0.3 2.3 141.2 63.7 696.1 71.5 

Table 2: Summary Statistics of Several Explanatory Variables 
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4. Discussion 

In this paper I compare three methods of predicting the survivorship of edges in the graphs of 
the Internet. Each of these models can be used to predict the future structure of the Internet. In 
Table 3, we observe an interesting trade-off between flexibility (training AUC) and robustness 
(testing AUC). Moreover, the Gradient-Boosted tree model has the best balance of flexibility and 
robustness when dealing with unbalanced and clustered data. 

However, my findings are subject to several limitations. My best testing AUC is 0.76, which is an 
encouraging result but still needs improvement. Any model with AUC > 0.5 has prediction 
power, but future work could include more snapshots and more explanatory variables to 
improve the predictive power of my models. I created only 56 simple predictors, but my data has 
N = 49,083 samples. Clearly there are enough degrees of freedom to extract and use more 
sophisticated predictors from the historical graphs. Extracting more sophisticated predictors, 
however, requires a deeper understanding of graph theory and computer network theory. While 
my results are limited, there is tremendous opportunity for further research in this area, research 
that could dramatically increase our ability to make predictions in complex networks. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Gao (2001), Xia & Gao (2004) and Lyon (2003). 
2 Leskovec et al. (2005 & 2007). 
3 Gao (2001), Xia & Gao (2004) explains how they collect the AS dataset using the Border Gateway Protocol method. 
4 Edge names are unique in the AS-CAIDA data set, so a simple search suffices to create X1 to X39. 
5 I use the R package igraph, Csardi & Nepusz (2006) to extract these explanatory variables. 
6 In creating our predictive models, we made the assumption that the previous 40 time periods were sufficient to 
model the next time periods. To predict G41 we used G1 through G40. If we were to predict G101 we would use G61 
through G100. 
7 For example, a simple series: 0, 0, 0,…, 1, 1  has X51 = 2. 
8 Closeness, betweeness and page rank are explained in Freeman (1979) and Csardi & Nepusz (2006). 
9 See Tibshirani (1996) for a full description. When I apply the LASSO technique, it suggests neglecting variables 
from X1-X37. A possible explanation is that percent of ‘1’ (X49), count of switches (X50) and time until last 1 (X51) have 
already capture most of the variations in X1-X37. 
10 Details of GBM and RF are explained in Hastie et al. (2013), Ch. 10 and implemented in Ridgeway (2007). 
11 Hastie et al. (2013), Ch. 7 reviews model assessment using separate training and testing data. 
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Appendix 1: Selective pair plots of explanatory variables 

 

Response:  

Green: Y=0 

Yellow: Y=1 
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Appendix 2: Area Under the receiving operator Curve (AUC) 

AUC is a commonly used evaluation method for binary choice problems, which involve 
classifying an instance as either positive or negative. Its main advantages over other evaluation 
methods, such as the simpler misclassification error, are: 

 1. It is insensitive to unbalanced datasets. 

 2. For other evaluation methods, a user has to choose a cut-off point above which the 
target variable is part of the positive class (e.g. a logistic regression model returns any 
real number between 0 and 1 - the modeler might decide that predictions greater than 
0.5 mean a positive class prediction while a prediction of less than 0.5 mean a negative 
class prediction). AUC evaluates entries at all cut-off points, giving better insight into 
how well the classifier is able to separate the two classes. 

Understanding AUC 

To understand the calculation of AUC, a few basic 
concepts must be introduced. For a binary choice 
prediction, there are four possible outcomes: 

 • True positive - a positive instance that is 
correctly classified as positive; 

 • False positive - a negative instance that is 
incorrectly classified as positive; 

 • True negative - a negative instance that is 
correctly classified as negative; 

 • False negative - a positive instance that is 
incorrectly classified as negative); 

The true positive rate (sensitivity or recall), is calculated as the number of true positives divided 
by the total number of positives. When identifying aircraft from radar signals, it is proportion that 
is correctly identified. 

The false positive rate (equivalent to 1 - specificity) is calculated as the number of false 
positives divided by the total number of negatives. When identifying aircraft from radar signals, it 
is the rate of false alarms. If somebody makes random guesses, the ROC curve will be a 
diagonal line from (0,0) to (1,1) - see the blue line in the figure below.  

For example: somebody who randomly guesses that 10 per cent of all radar signals point to 
planes. The false positive rate and the false alarm rate will be 10 per cent. Somebody who 
randomly guesses that 90 per cent of all radar signals point to planes. The false positive rate 
and the false alarm rate will be 90 per cent. Meanwhile a perfect model will achieve a true 
positive rate of 1 and a false positive rate of 0. 

While ROC is a two-dimensional representation of a model's performance, the AUC distils this 
information into a single scalar. As the name implies, it is calculated as the area under the ROC 
curve. A perfect model will score an AUC of 1, while random guessing will score an AUC of 
around of 0.5. In practice, almost all models will fit somewhere in between.  
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Appendix 3: Selective regression outputs from logistic regression 
Call: glm(formula = Y ~ . - X1, family = binomial, data = train) 
Coefficients: 

 Estimate Std. Error z value Pr(>|z|) Significance 
(Intercept) 0.824 0.116 7.080 0.000 *** 
X38 0.390 0.159 2.443 0.015 * 
X39 0.333 0.159 2.095 0.036 * 
weight 0.716 0.079 9.073 < 2e-16 *** 
fromInDegree 0.022 0.006 3.413 0.001 *** 
fromOutDegree -0.031 0.009 -3.395 0.001 *** 
toInDegree 0.010 0.003 3.577 0.000 *** 
toOutDegree -0.012 0.004 -3.078 0.002 ** 
fromCloseness 0.029 0.014 2.062 0.039 * 
toCloseness -0.004 0.024 -0.172 0.864 

 betweeness -0.011 0.020 -0.540 0.590 
 percentOf.1. 3.821 5.240 0.729 0.466 
 countOfSwitch -0.092 0.011 -8.631 < 2e-16 *** 

timeUntilLast1 0.018 0.004 4.790 0.000 *** 
fromInDegreeLag1 -0.023 0.006 -3.610 0.000 *** 
fromOutDegreeLag1 0.026 0.009 3.004 0.003 ** 
toInDegreeLag1 -0.010 0.003 -3.757 0.000 *** 
toOutDegreeLag1 0.009 0.004 2.519 0.012 * 
fromrank 0.472 9.790 4.818 0.000 *** 
torank 63.930 12.800 4.995 0.000 *** 

 
--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1) 

    Null deviance: 17265  on 49082  degrees of freedom 

Residual deviance: 15060  on 49027  degrees of freedom 

AIC: 15172 
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Appendix 4: Selective outputs from Gradient Boosted tree 
> summary (GBM.model.final) 

varriables	  
relative	  
importance	  

percentOf.1.	   13.30	  
fromInDegreeLag1	   8.68	  
betweeness	   8.30	  
countOfSwitch	   6.16	  
timeUntilLast1	   5.88	  
torank 5.42	  
toInDegree	   5.28	  
fromInDegree	   4.68	  
toOutDegree	   4.39	  
toOutDegreeLag1	   4.33	  
fromrank 4.09	  
toInDegreeLag1	   3.52	  
fromOutDegreeLag1	   2.93	  
fromCloseness	   2.27	  
toCloseness	   1.84	  
X38	   1.76	  
fromOutDegree	   1.72	  

 


