
Evaluating basic approaches to post-hoc analysis for commonly used, 

gene-based rare variant tests of association 

To date, gene-based rare variant testing approaches have focused on maximizing statistical 

power to identify genes showing significant association with disease. The test statistics can 

accommodate a combination of risk-increasing, risk-reducing, and non-causal variants and can 

weight each variant. Increasingly complex test statistics and weighting strategies may improve 

power, but may also hinder interpretation of a significant association. Identifying causal 

variant(s) in the gene and estimating their effect is crucial for planning replication studies and 

characterizing the genetic architecture of the locus. Recent work by our group has classified 

general characteristics of two classes of gene-based rare variant tests. Using this framework, 

we have explored the ramifications of choice of gene-based test on post-hoc analyses 

attempting to identify causal variants. Furthermore, we have evaluated the overall quality and 

consistency of different single-marker association statistics in identifying causal variants within a 

gene. To conclude, we offer suggestions regarding the future use of post-hoc analysis methods.  
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Introduction 

In 2003, the Human Genome Project accomplished what had never been done before: the 

sequencing of the entire human genome. Since then, sequencing technology has advanced 

rapidly and brought with it a vast amount of complicated data, necessitating the development of 

new statistical methodology. The possibilities presented by this quantity of data and its potential 

for broader impacts are fascinating. These data can be used to attack complex problems such 

as heart disease, cancer, and mental illness that affect the life of nearly every human being.  

An early approach to analyzing this genotypic data, genome-wide association studies (GWAS), 

uses single-marker tests to identify common genetic single nucleotide variants (SNVs) 

associated with diseases (otherwise known as causal variants). However, studies have shown 

that these identified common variants do not account for all heritability known to be associated 

with many of the complex diseases that have been studied [Schork et al., 2009; Manolio et al., 

2009; Eichler et al., 2010]. This has given rise to the search for rare variants which are, 

unsurprisingly, difficult to find. In recent years, various gene-based association tests have been 

proposed that combine signals across rare variants within the same gene in order to improve 

power [Morgenthaler and Thilly, 2007; Li and Leal, 2008; Madsen and Browning, 2009; Han and 

Pan, 2010; Morris and Zeggini, 2010; Price et al., 2010; Zawistowski et al., 2010; Basu and Pan, 

2011; Feng et al., 2011; Ionita-Laza et al., 2011; Lin and Tang, 2011; Neale et al., 2011; Pan 

and Shen, 2011; Sul et al., 2011; Wu et al., 2011; Zhang et al., 2011; Dai et al., 2012]. Previous 

work has used a geometric framework to classify these gene-based tests into two categories: 

length and joint tests [Liu et al., 2013].  

The goal of gene-based, rare variant tests is to reduce the multiple testing penalties associated 

with performing single-marker tests across the entire genome and improve power in the 

identification of causal rare variants. In case-control studies, most of these gene-based tests 

consider the null hypothesis that there is no significant difference in the number of minor alleles 

observed among the cases versus the controls. In other words, they test the null hypothesis that 

no variant within the gene is significantly associated with the phenotype. Thus a significant 

gene-based rare variant test result informs you that at least one variant in the gene is 

significantly associated with the disease phenotype.  

It is important to note, however, that a significant gene-based test result does not tell you 

precisely which variant(s) are associated. A very natural follow-up question, and the principal 

question of this research project, is: Which of these variants is most likely to be associated with 

the disease phenotype? This situation is in many ways analogous to a one-way ANOVA from 

which one can conclude that at least one group mean differs from the others and its post-hoc 

tests to determine precisely which of those group means is different.  

Approaches to post-hoc analysis for gene-based rare variant tests vary greatly. In this paper we 

(1) review existing post-hoc analysis methods and use a comprehensive simulation study to (2) 

evaluate the overall quality and consistency of different single-marker association statistics in 

identifying the most likely causal variants within a gene and (3) explore the ramifications of the 

choice of initial gene-based test on results of post-hoc analysis. 
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Background 

When there is evidence that at least one variant in a gene is significantly associated with the 

phenotype, it seems straightforward to conclude that the variant with the strongest single-

marker association statistic (difference in minor allele counts (d) between cases and controls, 

relative risk (r), Permutation Test with test statistic d, or Fisher’s Exact Test statistic, for 

example) is the most likely of these variants to be associated with the disease phenotype. 

However, using this approach researchers have often been able to identify only a single, 

reasonably common variant and struggle to identify causal variants with low minor allele 

frequency (MAF) [Tintle et al., 2011]. Alternatively, many individuals attempt to incorporate 

biological information into analysis by, for example, filtering non-synonymous variants or 

variants in a certain location [Khetarpal et al., 2011; Stitziel et al., 2011; Bick et al., 2012; 

Kathiresan and Srivastava, 2012]. This provides further information about which variants or set 

of variants are the most plausible candidates for disease phenotype association. Other 

researchers have proposed Bayesian methods which attempt to incorporate prior biological 

information via prior distributions [Maller et al., 2012; Zhang et al., 2012]. Continued research is 

underway to develop methods to best identify the one variant most likely to be causal or to 

better identify the entire subset of causal variants. 

Unfortunately, success in post-hoc analysis has been limited, and based on a comprehensive 

literature review (details not provided here) it is clear that there is a general lack of consensus 

about best practices for identification of the most likely causal variant(s) in post-hoc analysis. 

Identification of rare causal variants has the potential to improve our understanding of complex 

diseases such as heart disease, cancer, and depression and can lead to improvements in 

personalized medicine. Thus it becomes very important to improve upon existing methods of 

post-hoc analysis. This, along with the limited success and lack of consensus regarding best 

practices for post-hoc analysis, motivates our work.  

Methods 

Tests used 

We break our rare variant association testing procedure into two stages. For each gene, we 

begin at Stage 1 with a gene-based test for association between the gene and disease 

phenotype. If a significant result is achieved at Stage 1 (p-value < 0.05), we proceed to Stage 2: 

post-hoc analysis. If a significant result is not achieved at Stage 1, we do not conduct post-hoc 

analysis. 

Stage 1: Gene-based tests 

As noted earlier, most gene-based rare variant tests of association can be classified into one of 

two broad classes of tests: length or joint [Liu et al., 2013]. This means that most rare variant 

test statistics can be written as functions of the generally stated test statistics as defined 

immediately below: 
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We define m to be the number of single nucleotide variants within the gene; N+ and N− indicate 

the number of cases and controls, respectively; ci
+ and ci

− are the observed number of minor 

alleles at variant i = 1,…, m, within the case and control samples, respectively; and p reflects 

the choice of Lp norm. Thus, in light of the geometric framework introduced by Liu et al. [2013], 

length tests compare the lengths (or magnitudes) of the m-long vector of minor allele frequency 

estimates for the cases and controls, while joint tests compare both the lengths of these minor 

allele frequency vectors and the angle between them. 

To date, most published length tests use p=1, while most joint tests use p=2. In our first set of 

simulations we conduct Proportion Regression (PR) [Morris and Zeggini, 2010] and Sequence 

Kernel Association Test [Wu et al., 2011] on each gene. These two gene-based rare variant 

tests are approximately equivalent to the generic length test with p=1 and a joint test with p=2, 

respectively [Liu et al., 2013]. In our second set of simulations we consider generic versions of 

length and joint tests with p=1, 2, 4, and Infinity. 

Additionally, for each simulation setting we keep track of Stage 1 test results so that we may 

calculate Stage 1 power, or the percent of the 10,000 simulated data sets under a particular 

simulation setting that yield a p-value smaller than 0.05 for each Stage 1 test.  

Stage 2: Post-hoc analysis  

Post-hoc analysis is carried out on all variants within significant Stage 1 genes (p-value < 0.05) 

using four straightforward methods. For each iteration of each simulation setting, we calculate 

the difference in minor allele counts between cases and controls (d = ci
+ − ci

−), relative risk (r = 

ci
+ / ci

−), and p-value for a permutation test (1,000 permutations) with test statistic d (pp) and 

Fisher’s Exact Test (fp). Variants are then ranked from most likely causal variant to least likely, 

or from largest to smallest by d and r and smallest to largest by value of pp and fp. 

It is important to note limitations with the calculation of r. In the simulation of rare variants, it is 

not uncommon to observe values of ci
− = 0, which causes a major issue for the computation of r 

= ci
+ / ci

−. One way of avoiding this issue is to instead calculate rt = (ci
+ + 0.001) / (ci

− + 0.001). In 

the calculation of rt we are able to avoid the issue of division by zero. However, it could be 

argued that this transformation is still not ideal (see discussion, below). 

Simulations 

We use two simulation studies to evaluate the overall quality and consistency of different single-

marker association statistics in identifying the most likely causal variants within a gene and 

explore the ramifications of the choice of initial gene-based test on results of post-hoc analysis. 
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Simulation settings: Initial study 

In the first simulation study, we simulate case-control data for 1,000 cases and 1,000 controls. 

Each simulated gene contains either eight or sixteen variants. There are four distributions of 

risk-increasing, risk-neutral, and risk-reducing variants with ratios (1) 25:75:0, (2) 50:50:0, (3) 

75:25:0, and (4) 25:50:25. In half of the simulations, relative risk is minor allele frequency 

(MAF)-independent: risk-increasing variants have a constant relative risk of 1.5 and risk-

reducing variants have a constant relative risk of 0.67. The other half of simulations use an 

MAF-dependent relative risk: (1) causal variants with MAF=0.01% have a relative risk of 5 (risk-

increasing) or 0.2 (risk-reducing), (2) causal variants with MAF=0.1% have a relative risk of 3 

(risk-increasing) or 0.33 (risk-reducing), and (3) causal variants with MAF=1% have a relative 

risk of 1.5 (risk-increasing) or 0.67 (risk-reducing). Finally, the distribution of MAF of the variants 

within each gene vary: either (1) all MAF are constant at (a) 0.01%, (b) 0.1%, or (c) 1% or (2) 

MAF varies at a 3:1 or 7:1 ratio of (a) 0.01% to 0.1%, (b) 0.01% to 1%, or (c) 0.1% to 1%. Note 

that in the case of a 7:1 ratio of low to high MAF, all high MAF variants are neutral. All 

combinations of number of variants (2), risk distributions (8), and MAF distributions (9) are 

considered for a total of 144 simulation settings. We simulate 10,000 sets of genotype-

phenotype data for each setting. One length test (PR) and one joint test (SKAT) are applied to 

the simulated genotype-phenotype matrices. 

Simulation settings: Follow-up study 

In the follow-up simulation study we consider additional gene-based rare variant tests in order to 

explore the impact of the choice of norm p on post-hoc analysis. In this study, we again simulate 

1,000 cases and 1,000 controls. Genes contain either eight or thirty-two variants. Relative risks 

are constant at 1.5 for risk-increasing variants, 1 for neutral variants, and 0.67 for risk-reducing 

variants. Ratios of risk-increasing, neutral and risk-reducing variants are (1) 25:75:0, (2) 

50:50:0, (3) 75:25:0, (4) 25:50:25, and (5) 50:25:25. The distribution of MAF of the variants is 

either (1) constant at 0.5% or 0.05%, (2) distributed at a 3:1 ratio of low (0.05% or 0.5%) to high 

(1% or 20%) MAF among risk-increasing, neutral, and risk-reducing variants, or (3) low for all 

variants except one neutral variant. All combinations of number of variants (2), risk distributions 

(5), and MAF distributions (10) are considered for a total of 100 simulation settings. Again, we 

simulate 10,000 data sets at each setting. Four length tests (p=1, 2, 4, and Infinity) and four joint 

tests (p=1, 2, 4, and Infinity) are applied to each simulated genotype-phenotype matrix. 

Results 

Evaluation of ability to rank causal variants 

Overall, performance of all considered post-hoc methods was unsatisfying. Before detailing the 

results of this analysis, it is important to mention the way in which we have evaluated the 

“performance” of post-hoc analysis methods. There are many methods of comparison that might 

have been used. However, our group has decided to focus first on the ability of each method to 

correctly identify a causal variant as the top-ranked (largest d or r, smallest fp or pp) variant. We 

feel this method of evaluation is justified in that a significant Stage 1 test result tells us that at 

least one variant within that gene is associated with the disease phenotype, and thus any 
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successful post-hoc method should at least be able to identify one variant most likely to be 

causal. Later we also consider the ability of each method to correctly identify a causal variant as 

the second, third, etc. most likely to be causal, depending on the true number of causal variants 

in the gene. 

 

The poor performance of simple single-marker association statistics d and r is not entirely 

surprising. Alone, these statistics do not capture all necessary information. For example, an 

observed number of minor allele counts for cases-controls of 0-2 and 8-10 have the same value 

of d = -2, but represent two situations that we might in reality want to distinguish between. 

Similarly, an observation of 1-2 or 5-10 represents the same value of r = 0.5, but again 

represents two distinct situations that do not provide the same amount of evidence for 

association with disease phenotype. We might, for example, consider an observation of minor 

allele counts in cases-controls of 5-10 to be more convincing evidence of a true relative risk of 

0.5, while an observation of 1-2 is more likely to have happened by chance under the null 

hypothesis of no association with disease phenotype. With this in mind, it is not surprising to 

note the relatively poor performance of these single-marker post-hoc methods in ranking causal 

variants. We find that under some simulation settings d proves effective in identifying the top-

ranked variant, and transformed relative risk (rt) in others (Table 1, Fig. 1). However, both d and 

rt struggle when it comes to the identification of any causal variants beyond the most common 

(Fig. 2). 

 

Furthermore, even other, slightly more sophisticated methods—such as single-marker p-values 

from Fisher’s Exact Test or a permutation test that rely on d as their test statistic but incorporate 

additional information, such as variability, in hopes of better post-hoc analysis results—still 

struggle in the identification of causal variants. We see that these methods perform best when 

all variants within the gene have the same low MAF (Table 1, Fig. 3). However, the methods 

struggle in other settings and do not always out-perform simpler methods such as d and r, as 

we might have hoped (Table 1, Fig. 1). 

 

It is clear from Table 1 that none of the post-hoc methods evaluated here is ideal across all 

genetic architectures in the correct identification of the most likely causal variant. We have 

broken down our 144 simulation settings into three main categories that seem to have the 

greatest impact on which test is most effective at identifying a risk-increasing variant.  The first 

category includes all simulation settings for which all variants have the same minor allele 

frequency. Under this condition, d is the single method that most often correctly identifies the 

most likely causal variant better than the other methods, though pp performs relatively well 

under this condition also.  The second condition is a 3:1 ratio of low MAF to high MAF variants, 

spread across both causal and non-causal variants. Again under this condition d performs best 

most often, and pp performs best less often than in the category. Finally, the third category 

represents simulation settings with a 7:1 ratio of low to high MAF variants in which only risk-

neutral variants have the high MAF. In this category of simulation settings, rt performs best most 

often and d never performs best.  
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Type of 
Gene 

Stage 1 Test Difference in 
minor allele 
counts (d) 

Transformed 
relative risk 

(rt) 

Permutation 
Test p-value 

(pp) 

Fisher’s 
Exact Test p-

value 

Constant 
MAF 

SKAT 54.2% 0.0% 37.5% 8.3% 

PR 62.5% 0.0% 33.3% 4.2% 

3:1 Low:High 
MAF 

SKAT 87.5% 0.0% 12.5% 0.0% 

PR 54.2% 4.2% 25.0% 16.7% 

7:1 Low:High 
MAF 

SKAT 0.0% 83.3% 16.7% 0.0% 

PR 0.0% 83.3% 16.7% 0.0% 
Table 1. Percent of simulation settings under which each of the post-hoc methods (difference in minor allele counts, 

relative risk, and permutation test p-value) identified a causal variant as the top-ranked variant more frequently than 

the other post-hoc methods. 

The results summarized in Table 1 are also supported by Figure 1. This figure shows that none 

of the methods consistently has the best power in terms of correct identification of a causal 

variant as the top-ranked variant. It is interesting to note that when SKAT was the Stage 1 test, 

the permutation test p-values are consistently within five percent or greater power in comparison 

to difference in minor allele counts. This pattern, however, does not hold when we conducted 

PR at Stage 1.  

What's more, Figure 2 shows that identification of causal variants beyond the most likely 

becomes even more complicated. In Figure 2 we see that a vast majority of the time the neutral 

variant with MAF=1% has a larger value of d than the three causal variants with MAF=0.05%. 

Thus a ranking strategy based on d often incorrectly ranks the common, neutral variant as the 

second-most likely causal variant. This pattern holds across many other simulation settings and 

post-hoc methods, although details are not provided here. 

 

Understanding why performance is poor 

Winner’s curse is a well-known phenomenon in the analysis of single-marker data (for example, 

in GWAS) [Lohmueller et al., 2003; Zollner and Pritchard, 2007; Xiao and Boehnke, 2009], 

whereby the estimated effects of causal markers are substantially upwardly biased. In other 

words, the estimated effects of significant markers tend to over-estimate the true effects of 

these markers. The extent of the impact of winner’s curse has been shown to be directly related 

to the power of the study, with more powerful study designs exhibiting fewer problems with 

winner’s curse. 

We have found that winner’s curse has a substantial impact on post-hoc analysis methods. The 

distribution of causal markers r and d are substantially higher than in the population, especially 

for variants with relatively large MAF. But this problem is not only observed among causal 

variants. Common, neutral variants also have distributions of r  that are centered at numbers 

further from 1, and distributions of d centered at numbers further from 0 than would be expected 

under the null hypothesis of no association with disease phenotype. This could explain the poor 

performance of post-hoc analysis methods. Consider the example of a Fisher’s Exact Test or 

permutation test that test the null hypothesis that d = 0, when in fact we have discovered that in 

many cases d ≠ 0 under the null hypothesis of no association with disease phenotype. 
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Figure 1. Pairwise comparisons of single-marker association statistics d, r, and pp, comparing the percent of times 

that the methods correctly identified a causal variant as the top-ranked variant for each simulation setting. 
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Figure 2. Empirical cumulative distribution function for difference in minor allele counts (d)  for each variant for the 

simulation setting with eight variants, a 50:50:0 ratio of risk-increasing to neutral to risk-reducing variants, and a 3:1 
ratio of low (0.05%) to high (1%) MAF. Results are shown after PR (Length Test) and SKAT (Joint Test) were 
conducted at Stage 1. The green ECDF represents the risk-increasing variant with MAF=1%, red represents the 
neutral variant with MAF=1%, blue represents the risk-increasing variants with MAF=0.05%, and orange represents 
the neutral variants with MAF=0.05%. 

 
Bias is introduced when we condition post-hoc analysis on Stage 1 significance. We refer to this 

bias as “Stage 1 bias.” Figure 2 shows the impact that winner’s curse has on post-hoc methods. 

We see that, especially when a length test with norm 1 (PR) is conducted at Stage 1, a common 

neutral variant exhibits a larger value of d than a rare causal variant almost eighty-five percent 

of the time. We would expect, based on the distributional properties of d, that in an un-biased 

situation this should only occur fifty percent of the time (and in the ideal post-hoc analysis 

situation it would never occur). This bias severely affects our ability to correctly identify causal 

variants for all post-hoc methods based on d or r as their test statistic.  

Under simulation settings where Stage 1 bias is not as present, we see that post-hoc 

performance is better. From Table 1 we see that pp and fp are best at identifying the top-ranked 

variant as causal when all variants have a constant, low MAF. Under this condition, these 

methods also do a better job of identifying causal variants beyond just the one most likely (Fig. 

3). We see in Figure that 3 that after both a length test (p=1) and a joint test (p=2), we are able 

to see a separation of the causal variants (blue and green) and neutral variants (red and 

orange). Although pp is not often smaller than 0.05 even for truly causal variants, it is at least 

the case that pp tends to be smaller for causal variants relative to non-causal variants. 

 

Figure 3. Empirical cumulative distribution function for 

permutation test p-values at each variant for the 
simulation setting with eight variants, constant MAF and a 
50:50:0 ratio of risk-increasing to neutral to risk-reducing 
variants. As in Fig. 2, the green and blue ECDs represent 
the risk-increasing variants and the orange and red 
ECDFs represent the neutral variants. 
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Implications of Stage 1 significance 

The Figures and Table above show that post-hoc analysis performance varies depending on 

which Stage 1 test was conducted (PR or SKAT). Particularly, we notice that length tests appear 

to be more affected by Stage 1 bias (winner’s curse) than joint tests. In Figure 2 we see that the 

common, neutral variant is ranked as second most likely to be causal based on difference in 

minor allele counts (d) almost eighty-five percent of the time when a length test with norm 1 

(PR) was conducted at Stage 1, versus only fifty percent of the time when a joint test with norm 

2 (SKAT) was conducted at Stage 1.  

Observing this difference in post-hoc performance after distinct Stage 1 tests motivates our 

follow-up simulation study, which was developed to explore the impact of choice of norm on 

post-hoc results. In general, we observe that higher norms tend to be less affected by Stage 1 

bias. Across various simulation settings considered below in Table 2, the length test with 

p=Infinity is, of the length tests, least affected by Stage 1 bias, but it is still more affected by bias 

than joint tests. For example, we see from Table 2 that for a gene with eight variants, a 50:50:0 

ratio of risk-increasing to neutral to risk-reducing variants, and low MAF (0.5%) for all variants 

except one neutral variant with higher MAF (1%), relative risk of the neutral variant with higher 

MAF is overestimated as often as sixty-four percent of the time after a length test with norm 1, 

versus closer to fifty percent of the time for the other Stage 1 tests considered. In an unbiased 

situation we would expect this to happen, on average, fifty percent of the time. 

Simulation Setting 

Joint, p=2 Joint, p=Inf Length, p=1 Length, p=Inf Relative risk 
distribution 

MAF 
distribution 

50:50:0 3:1, .05% to 1% 0.4889 
 

0.4792 
 

0.515 
 

0.4388 

   
 

50:50:0 3:1, .5% to 1% 0.4774 
 

0.467 
 

0.6082 
 

0.4857 
 

25:75:0 3:1, .05% to 1% 0.4945 
 

0.4841 
 

0.5323 
 

0.4578 
 

50:50:0 7:1, .5% to 1% 0.4896 
 

0.4774 
 

0.6433 
 

0.5043 
 

50:50:0 7:1, .05% to 1% 0.5348 
 

0.5282 
 

0.5741 
 

0.4993 

 
 

Table 2. The proportion of the data sets simulated under each genetic architecture (and significant at each specified 

Stage 1 test) in which the empirical relative risk for the high MAF, neutral variant is larger than 1. All simulated genes 
considered here have eight variants. 

Discussion 

The identification of rare variants could lead to improvements in our understanding of complex 

diseases and developments in personalized medicine. Unfortunately, the task of identifying 

these variants, which by definition are so difficult to find, is a challenging one. Numerous 

methods have been proposed to combine signals across multiple single nucleotide variants in 

order to create one gene-based test statistic, reduce multiple testing penalties, and improve 

power. However, there is no consensus as to which methods should then be used to identify 

precisely which variants within these genes are associated with the disease phenotype. We 

have evaluated four straightforward post-hoc analysis methods and have identified various 

issues that are presented by the task of post-hoc analysis. 
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Across a variety of genetic architectures, there is no one post-hoc method that consistently 

outperforms the others. The four single-marker association statistics we evaluated in this study 

(d, r, fp, and pp) often exhibit low power even in the detection of the most likely causal variant 

(Fig. 1). Identification of any causal variant beyond the most likely quickly becomes even more 

problematic.  

We have briefly discussed above that there are limitations to simply using the difference in 

minor allele counts (d ) or relative risk (r ) as the single-marker association statistic, given that 

each of these statistics alones fails to capture all the necessary information (such as variability) 

about the difference between the case and control groups. Single-marker association tests that 

do account for some of this missing information such as Fisher’s Exact Test or a permutation 

test, still struggle to identify the correct subset of causal variants across many genetic 

architectures. We hypothesize that this poor performance is in many ways a result of a 

phenomenon similar to winner’s curse which we have called Stage 1 bias. 

In retrospect, it is not surprising that Stage 1 bias plays a role in post-hoc analysis. Since we are 

conducting post-hoc analysis on genes that have significant Stage 1 test results, we actually 

already know some information about the gene and its variants that we are testing. In particular, 

these Stage 1 tests use a test statistic that incorporates ci
+ and ci

− for each i=1,…,m. So when 

considering post-hoc single-marker association statistics that also incorporate ci
+ and ci

−, the 

distributions of these post-hoc statistics will be conditional upon Stage 1 significance. Correctly 

conditioning upon Stage 1 significance when conducting post-hoc analysis could improve 

performance. We have already seen that in scenarios when Stage 1 bias is not as present, 

post-hoc performance improves: we are able to correctly identify the top-ranked variant as 

causal and better separate causal variants from non-causal.  

Knowing that most Stage 1 tests can be classified either as joint or length tests [Liu et al., 2013] 

that incorporate minor allele counts for cases and controls into their test statistic, it is not 

surprising that we found evidence of Stage 1 bias across all simulation settings and Stage 1 

tests. However, it does seem that post-hoc analysis is often less problematic for joint tests 

versus length tests, and for tests with higher norms. This raises the question of whether Stage 1 

bias is directly related to Stage 1 test power, as is the case for winner’s curse. 

It is also important to discuss the over-arching goal of post-hoc analysis. The question of post-

hoc analysis has been considered extensively in the context of one-way ANOVA. Saville [1990] 

argues that there is an inherent problem with conducting post-hoc analysis in that it attempts to 

formulate and test hypotheses in the same study simultaneously. In other words, he might argue 

in the context of gene-based rare variant tests that we should not use post-hoc analysis to both 

generate hypotheses regarding which variants are most likely to be causal and to test those 

variants to discover whether they are causal. Rather, we should use post-hoc analysis to 

generate hypotheses about which variants are causal and future replication studies to see if we 

can confirm those hypotheses. O’Neill and Wetherill discuss further issues with multiple 

comparison methods post-one-way ANOVA that discourage the idea of trying to identify the 

exact subset of causal variants in the gene. Thus we may need to shift our view of post-hoc 
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analysis not as a means to an end, but as an exploratory process in search of evidence of 

causality that can only be confirmed through further experimentation. 

Our study has some limitations. First, we only considered single-marker testing approaches in 

our evaluation of post-hoc analysis and there are many other single-marker tests that we might 

have explored. The post-hoc methods that we considered are quite basic and straightforward. 

We feel, however, that our focus on these straightforward methods has allow us to better 

understand the basic issue of Stage 1 bias that we believe would affect any post-hoc method, 

although future work is needed to confirm this.  

We have already briefly mentioned an additional limitation in our calculation of relative risk (r), 

given the many instances in which we are dividing by zero. We attempted to correct for this 

limitation via transformation of relative risk (rt = (ci
+ + 0.001) / (ci

− + 0.001)), but this 

transformation is not ideal. Suppose for a particular variant there is one minor allele observed 

among the cases and zero among the controls. Then rt = 1.0001/0.001 = 1001. This is a very 

high relative risk for a situation that could easily have been a false positive. Future work needs 

to consider more carefully how best to transform relative risk to avoid the issue of dividing by 

zero. 

Another limitation of our study is our choice of simulation settings. We did our best to consider 

as many genetic architectures as possible, but it is possible that we have failed to consider a 

various genetic architectures, under some of which the patterns we observed in our analysis 

may not exactly hold. The difficulty with generating simulated genotype data is that we still no so 

little about which genetic architectures are actually observed in nature that it is difficult to 

simulate “life-like,” realistic data. 

Future work might consider more complicated methods that incorporate prior biological 

information or involve more complicated test statistics. We hypothesize that any method that 

conditions on the correct biological information, such as dropping out variants that are not 

expected to be associated with the disease based on biological information, could improve post-

hoc performance (especially if the variants that are dropped out are common, neutral variants 

that are often affected by Stage 1 bias). However, we also believe these more sophisticated 

methods will still be affected by Stage 1 bias provided their test statistic is based on the 

difference in minor allele counts between cases and controls (or relative risk, though this is not 

as often chosen as a test statistic). Future work could be conducted to confirm these 

hypotheses. 

Future work might also explore whether Stage 1 bias is really just a question of Stage 1 power. 

For example, we might explore the impact of increased sample size on post-hoc analysis 

performance. We could also explore methods that have been developed for correction of 

winner’s curse, or methods used in one-way ANOVA post-hoc analysis to see how similar 

problems have been addressed in other fields. 

This summer I plan to continue my work with this project. I hope to begin by quantifying the 

effect of different factors such as minor allele frequency and relative risk on Stage 1 bias. From 

there, I will develop an empirical correction for this bias and eventually quantify the conditional 
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distribution of minor allele counts given Stage 1 significance. Once I have completed this task, I 

will incorporate this incorporate this information into methodology. I will apply any correction 

developed during the first stage of my research into existing post-hoc methods which depend on 

minor allele counts. Eventually I will work toward developing new methods specifically designed 

to account for Stage 1 bias.  

Once I develop these methods, I will test them against existing methods on simulated genotype 

data in order to compare power and false positive rates. I will then apply any tests that produce 

promising results when applied to simulated data to real genotypic data.  

Future work in this area has the potential for great impact. The wide dissemination of improved 

methods for post-hoc analysis will lead to the identification of more rare variants associated with 

complex diseases and further understanding of these diseases. Educational and training 

initiatives will inform people of the new understanding of these diseases, which will lead to more 

effective genetic counseling, personalized health care, and even decreased stigma associated 

with diseases such as obesity, heart disease, diabetes, and mental disorders which affect every 

one of our lives. 
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