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Modelling Assessment Data with a 
Hierarchical Approach 

 

Abstract 
Assessment data were collected from multiple institutions in fall 2013 and winter 2014 to 
measure the conceptual understanding and perspectives of statistics for students taught under 
a randomization-based curriculum.  We concentrated on identifying student and instructor 
characteristics that were associated with student gains and determining whether there was a 
disparity in student gains based on level of instructor’s experience with the curriculum.  A 
hierarchical modelling approach was employed to analyze the data, because multiple students 
were in each section taught by the same instructor and variables were collected on students 
and instructors.  Our exploratory data analysis included graphical analysis and instructor 
classification based on their experience with the curriculum, teaching and school background, 
and the idiosyncrasies of their students.  Subsequently, we ran hierarchical models to model 
student improvements in their conceptual understanding of statistics with student-level and 
instructor-level predictors.   
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Research Goals 
The primary goals of our research were: 

§ To distinguish the characteristics of students and instructors that are linked to student 
success in an introductory statistics course under a randomization-based curriculum. 

§ To detect whether there was a disparity in student success based on the instructors’ 
experience with the curriculum. 

The secondary goals were: 

§ To understand and apply hierarchical models for hierarchical data. 

§ To program in R for performing analyses and producing relevant graphics. 

 

Background and Significance of Research 
Recent educational research found that implementing a randomization-based curriculum in an 
introductory statistics course can provide a more enriching experience for students compared to 
learning under a traditional curriculum (Tintle, VanderStoep, Holmes, Quisenberry, and 
Swanson, 2011).  Students are able to focus on being trained to think and reason statistically 
rather than memorizing formulas to calculate statistics such as standard deviations or 
correlation coefficients.  The benefits of being able to merely memorize a formula are not as 
impactful as being able to interpret results and relate to practicality (Garfield, 1992).   

Reformers in statistics education have been developing randomization-based web applets that 
helped facilitate the new curriculum (Rossman and Chance 2008).  These reformers are 
deliberate in transforming the traditional statistics classroom into a dynamic learning 
environment.  Currently, there are textbooks developed that encompass the idea of performing 
randomization tests for statistical inference as opposed to parametric tests (e.g., ISCAM; 
Chance and Rossman, 2014; Unlocking the Power of Statistics, Lock et al, 2014).  Studies have 
suggested that promoting learning through the use of activities and technology can encourage 
students to share insights with their peers and exchange feedback with their instructors 
(Garfield and Ben-Zvi, 2009).  These elements are important to students’ success because 
students have the opportunities to construct their own knowledge during the process of learning 
statistics, e.g., through the web applets, instead of being presented the theoretical results.  In 
contrast, the previously described elements do not appear to exist in a traditional statistics 
classroom with the instructor lecturing each session rather than facilitating students’ learning. 

In assessing the effectiveness of a randomization-based curriculum, students who were 
instructed through the randomization-based curriculum at Hope College were compared to 
student performance in prior years with a more traditional curriculum.  They were also measured 
on their retention of statistical concepts after having taken the course.  It was evident that 
students at Hope College who followed a randomization-based curriculum tended to perform 
better on the topics of data collection, data design, and tests of significance from the CAOS test 
than students who were under the previous curriculum; a follow-up study suggested these 
students also retained more statistical knowledge (Tintle, Topliff, Vanderstoep, Holmes & 
Swanson, 2012).  The current study aims to delve deeper into the specific attributes of students 
and instructors who will prosper the most by using this type of curriculum.   
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Data Analysis Methods 

RStudio version 0.98.507 was the primary statistical software used in running our hierarchical 
models, producing graphical displays, and cleaning our data.  Our entire data analysis was 
divided into two stages that were exploratory and confirmatory.  However, we actively shifted 
between the two stages as we constantly continued to explore relationships of variables to 
make sense of the results that we found.   
 
Stage 1: Exploratory data analysis 

Graphical displays 
During the exploratory data analysis stage, the main R packages that we used were ggplot2 and 
gridExtra. We generated multi-dimensional graphs to observe how variables were associated 
and interacted with each other in predicting student gains on a concept inventory modeled after 
the CAOS test.  These graphs provided us some insights of the results to expect in the latter 
data analysis stage.  Examples of such graphs were boxplots conditional on a third variable and 
scatterplots with regression lines imposed and color coded based on a third variable.  The R 
codes required to create these graphs were an extension to existing functions, because we 
aimed to create displays that were intriguing and original while still informational.  With the 
graphs that we generated, we used the package gridExtra to properly combine related graphs 
to a single cohesive graph when we wanted to illustrate the idea of unconditional versus 
conditional associations.  These combined graphs were then saved to jpeg files so we can 
access them directly in the future for presentations and project write-ups. 
  
Cluster analysis 
In the latter part of first stage, we decided to perform cluster analyses to obtain two latent 
variables that grouped instructors based on the observed student-level variables and instructor-
level variables, respectively.  These two latent variables were treated as instructor level 
predictors when we later ran hierarchical models.  We then compared the within and between 
sum of squares for differing number of clusters and settled that the most optimal number of 
clusters to use was four.  The practical characterization of each cluster was based on the 
means of each cluster for the variables that were used. 
 
Comparison of modelling techniques 
In addition, we explored three modelling techniques: hierarchical linear modelling (HLM), 
unpooled modelling, and no pooling.  We generated different graphical displays to illustrate the 
advantages of an HLM through “partial pooling,” “borrowing strength,” and “shrinkage.” 
 
Stage 2: Confirmatory data analysis 

Hierarchical models 
When proceeding to the confirmatory data analysis stage, we used the lme4 and lmerTest 
packages in R.  The lme4 package assisted us in fitting hierarchical linear and generalized linear 
models.  We obtained the estimates for the coefficients and variance components after running 
different models.  The first model that we ran was an unconditional means model with 
improvement in concept scores as the response.  With the estimated variance components from 
this model, we estimated the intraclass correlation coefficient, also called the variance partition 
coefficient.  This estimate gave us a hint as to the importance of defining a hierarchy when 
performing our analysis.  Extending from the unconditional means model, we fitted additional 
models based on the different combinations of predictors.  Our method was to include all 
predictors in a model and then perform backward elimination to result in a final model.  With the 
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different models that we had, we compared their performance based on AIC values.  Graphical 
displays were also generated to visually communicate the results we discovered from the 
models we ran.   
 
 

Exploratory Data Analysis 
Example of between-instructor and within-instructor variability in improvements 

In our exploratory data analysis stage, we created different graphs to explore the variability of 
improvement in concepts that is explained by the differences among instructors and the 
differences within instructors, which is equivalent to the differences among students.  Below is 
an example of a graph that illustrates the above idea.  Shown are the boxplots of improvement 
in concepts separated by sections, with the means plotted in diamonds and outliers plotted in 
red.  We also included a green dotted line that displays the national average improvement of 
.091 from pre to post on the CAOS test. 

 
It is evident that some sections had an average improvement that is above the national average, 
such as sections 3 and 4, and they also had an average improvement that was positive rather 
than negative.  In contrast, some sections had students who performed below the national 
average and also declined, on average.  There was generally more variability within each 
section than between sections, as most of the boxplots overlapped with each other.  However, 
there were still enough differences among instructors/sections to motivate us to explore 
potential explanations for these instructor/section level differences. 
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Instructor classification 
 
There were three different approaches that we used to group similar instructors/sections 
together.  The first approach was an ad-hoc method where we classified instructors based on 
their experience with the curriculum, as we hypothesized that improvements may differ based 
on this variable.  The second and third approaches were based on student characteristics and 
instructor/section characteristics.  For the latter two approaches, we decided to conduct cluster 
analyses to distinguish instructors by using student level variables and instructor level variables.   
The two clustering methods we used were the k-means method and the hierarchical clustering 
method.  For each clustering method, we had two different analyses that focused on student 
characteristics and instructor characteristics.  To interpret our categories for the clustering 
analyses, we calculated the means of each section for each variable and then standardized 
each variable.  We also only included sections where the concept test was administered on both 
occasions of pre and post.  After conducting cluster analyses with both clustering methods, we 
decided to use clustering variables based on the k-means method, as the number of sections 
for each cluster was more equal compared to the hierarchical clustering method.  
 
Instructor classification: Ad-hoc classification 
 
For the ad-hoc method, we established four different categories that were experienced (e.g., 
members of the author team), middle, new (this was their first time using the materials), and 
non-users (we had two sections where the instructor was not using the ISI materials but agreed 
to administer the same assessments).  Below are two graphs showing the relationship between 
improvement and the level of experience with the curriculum.  The left graph shows the 
variability in improvements among the four categories while the right graph shows the variability 
within each of the four categories, equivalently among sections of the same category. 
 

 
 
From the graph on the left, non-users tended to have students who did not improve as much as 
the three other categories of users, on average.  Also, students who were taught by instructors 
more experienced with the curriculum tended to have the best improvements. The graph on the 
right illustrates how sections differ in each category.  It is shown that there are considerable 



	
  6  

differences among sections, especially for the experienced users and new users; sections did 
not differ as much on average for middle users and non-users as the variability and means of 
the sections did not generally differ that much.  With the information portrayed from these two 
graphs, we hypothesized that there may be a significant difference between experienced users 
and non-users, while users of the other levels may not be significantly different in 
improvements.   

 
Instructor classification: K-means  
 
Most “optimal” number of clusters 
To decide on the most “optimal” number of clusters to use, we studied how the within and 
between sum of squares of the student and instructor level variables changed with different 
number of clusters based on the k-means method.  Below are two graphs that show the within 
sum of squares in green and the between sum of squares in blue.  Student and instructor 
characteristics are shown on the left and right graphs, respectively.   
 

 
 
The results of the above two graphs made us understand that the between sum of squares (in 
blue) started to exceed the within sum of squares (in green) when the number of clusters was 
roughly around four.  In a mathematical sense, it may be interpreted that the most optimal 
number of clusters to use would be ten because the largest difference between the two sums of 
squares occurred at the number.  However, our decision was based on a statistical perspective 
where we did not want multiple clusters to only consist of one instructor.  It is also worth noting 
that with four clusters, we already had a cluster with only one instructor in it.  Therefore, we 
chose to use four clusters as the number was a “balancing point” of the two types of sum of 
squares.   
 
Clustering based on student characteristics 
We then ran our first k-means cluster analysis based on 14 student level variables, which 
described student characteristics.  Such student characteristics were their age, GPA, grade 
level, number of previous high school and college classes related to mathematics and statistics, 
degree seeking (higher positive numbers indicated higher degree seeking), gender (higher 
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positive numbers indicated more females), pre-test scores, and 6 attitudes variables (as 
measured by taking the average of corresponding questions from the attitudes test).  Below is 
the table of the means of each variable for each cluster. Certain means were color coded when 
those clusters stood out. 
 

 
 
We proceeded to characterize each cluster with the main features observed in the table.  Our 
classification of the four clusters was as follow: 
 

§ Cluster 1: Instructors with students who tended to have more negative feelings about 
statistics and its difficulty and had less prior experience with statistics in high school or 
college going into the course. 

§ Cluster 2: Instructors with older students who tended to have more previous exposure to 
statistics and scored high on the pre-test.  These students also tended to have better 
pre-attitudes about statistics. 

§ Cluster 3: Instructors with younger students (high-school) who tended to have less prior 
experience in statistics and lower perception of value of statistics.  The students also 
tended to score the lowest on the pre-test, did not perceive to exert much effort, and had 
lower interests in statistics. 

§ Cluster 4: Instructors with younger students who tend to have students who did worse on 
the pre-test but had high expected effort.  

 
After characterizing the four clusters, we generated boxplots to show how the four clusters 
differed in respect to improvement in concepts along with how sections in each cluster differed.  
The means of each boxplot are shown in diamonds and the boxplots were color coded 
according to each of the four clusters. 
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From the graph on the left, it was intriguing that the instructor with younger (high-school) 
students who had worse pre-test scores and lower perception of value of statistics (green 
boxplot) tended to have higher improvements than the other three clusters.  We also found that 
instructors with younger students who were weaker but had high expected effort (brown boxplot) 
also tended to have higher improvements.  This relationship may be due to their ethic to work 
harder as they may have realized that they did not understand statistics as much after taking the 
pre-test.  In contrast, instructors with older students who scored higher on the pre-test (blue 
boxplot) tended to not improve as much.  One possible explanation is that they may have 
already done so well on the pre-test that after taking the course their knowledge of statistics did 
not broaden as much compared to students with less knowledge going into the course.  
However, the boxplots of each cluster still have some considerable overlapping depicting not as 
much between-cluster variability.   
 
When analyzing the within-cluster variability based on the graph on the left, there is 
considerable variability among sections in each cluster.  For example, section 3 in the “middle” 
category has a higher average than the other sections in the same category, section 19 in the 
“older” category has a lower average than the other sections in the same category, and section 
4 in the “younger with worse pre-test” category has a higher average than the other sections in 
the same category.   
 
Clustering based on instructor characteristics 
Our second k-means cluster analysis was based on 8 instructor level variables, which described 
instructor, section, and school characteristics.  Such variables were department (higher positive 
numbers indicated closer to being in the statistics department), tenure status (higher positive 
numbers indicated closer to being tenured), school type was coded (higher positive numbers 
indicated the school was closer to a four-year university, years of teaching, student and 
instructor-led involvement, length of weeks, and time of day (higher positive numbers indicated 
the class being later in the day).  Below is the table of the means of each variable for each 
cluster.  Certain means were color coded when those clusters stood out. 
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We proceeded to characterize each cluster with the main features observed in the table.  Our 
classification of the four clusters were as follow: 
 

§ Cluster 1: Instructors who incorporated more student-led involvements, tended to be in 
the statistics department, and were on quarter system. 

§ Cluster 2: Instructors who were newer with less experience in teaching and had classes 
that met later in the day.   

§ Cluster 3: Instructors who liked to lecture, tended to not be in the statistics department. 
§ Cluster 4: A two-year college instructor from the math department who had a class that 

met for longer weeks and earlier in the day.   
 
To illustrate how the four clusters differed in improvement in concepts along with the disparity in 
the sections of each cluster, boxplots were created.  The means of each boxplot are plotted in 
diamonds and the boxplots were color coded according to each of the four clusters. 
 

 
 
The graph on the left shows that instructors who had more student involvements (red boxplot) 
tended to have a higher improvement in concepts compared to instructors who liked to lecture 
(green boxplot).  Also, instructors with less experience in teaching (blue boxplot) tended to have 
lower improvement in concepts except when compared to the two-year college instructor.  The 
two-year college instructor from the math department (brown boxplot) had the worst 
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improvement in concepts on average than the other three clusters.  There is more variability in 
improvements among the four clusters based on instructor characteristics as compared to 
earlier based on level of experience with curriculum and student characteristics.   
 
The graph on the right depicts the how sections within each cluster varied.  It is evident that all 
except for section 27 in the “more student-involvement“ cluster were above the national 
average.  The section in the “less experience in teaching” cluster that is pulling the average of 
the cluster down is section 16.  In the “like lecture” cluster, the sections were generally the same 
in terms of the variability but slightly different means.  Lastly, the two-year instructor had an 
average improvement that is lower than the national’s and is below zero.   
 
 

Comparison of Modelling Methods 
Partial pooling and borrowing strength 

We focused on comparing the fitted lines among the three modelling methods.  For the HLM, we 
have fitted lines for each instructor after predicting improvement in concepts with pre-test 
concept as the random predictor.  The complete pooling method involved regressing 
improvement in concepts on pre-test concept while ignoring instructor-to-instructor variability.  
The no pooling method fitted the previously mentioned regression but for each individual 
instructor.  With the fitted lines, we studied how the HLM lines differed among the sections that 
we had.  The graph on the next page shows a scatterplot of improvement in concepts versus 
pre-test concept separated by each section.  The complete pooling line is plotted in black and 
did not change across sections, as we ignored the instructor-to-instructor variability.  The no 
pooling lines are plotted in red and the HLM lines are plotted in yellow, and these fitted lines did 
change across sections. 
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We learned from the graph above the HLM served as a balance between the two extreme 
methods of complete pooling and no pooling.  It is evident that for each section, the HLM line 
was always between the pooled line and unpooled line.  Therefore, HLM is a partial pooling 
technique where each section borrows information from the overall trend.  The only difference 
across the sections is the amount of borrowing strength.  As expected, we see that borrowing 
strength increased when there is a smaller sample size in a section and a section with a larger 
sample size did not have to borrow as much information from the other sections.  For example, 
comparing section 4 and 5 illustrated the above ideas.  The yellow HLM line for section 5 is 
closer to the black pooled line than to the red unpooled line as there were fewer students in that 
section.  In contrast, the yellow HLM line for section 4 is closer to the red unpooled line than to 
the black pooled line as there were more students in that section.   
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Shrinkage 

Next, we compared the variability of the unpooled estimates to the HLM estimates.  Scatterplots 
of the parameter estimates and the distribution of the parameter estimates were created to 
compare the two different modelling methods.  

 
The upper-left graph shows a scatterplot of the HLM parameter estimates versus the unpooled 
parameter estimates with the sample slopes in green and sample intercepts in red.  It is evident 
that the unpooled estimates are more variable than the HLM estimates, as the range of x-values 
is larger than the range of y-values for both the sample slopes and sample intercepts.  The 
upper-right graph shows a scatterplot of the sample slopes versus sample intercepts identified 
either estimated through HLM or the unpooled method.  Evidently, the HLM estimates tend to be 
more cluttered together compared the unpooled estimates.  Also, as the sample intercepts 
increased, the sample slopes tended to decrease.  This relationship made sense because a 
more negative association between improvement in concepts and pre-test concept for each 
section is related higher predicted improvement in concepts when the pre-test concept was 
zero.  The two graphs below show the distributions of the sample slopes and sample intercepts 
in green and blue for the HLM and unpooled method, respectively.  It is evident that the idea of 
“shrinkage” in the parameter estimates is shown, as the variability in the sample slopes is about 



	
  

	
   13  

3 times lower with the HLM compared to the unpooled method.  Also, the variability in the 
sample intercepts is about a little above 2 times higher with the HLM compared to the unpooled 
method.   

 

Confirmatory Data Analysis 
Unconditional means model with improvement in concepts as response 
 
Proceeding to running our hierarchical models, we first fitted an unconditional means model to 
quantify the differences among instructors in their improvement in concepts.  We calculated the 
intraclass correlation coefficient/variance partition coefficient with the formula: 
	
  

𝜌 =   
𝐵𝑒𝑡𝑤𝑒𝑒𝑛 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛  𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝑖𝑛  𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡  𝑖𝑛  𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑠  

𝑇𝑜𝑡𝑎𝑙  𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝑖𝑛  𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡  𝑖𝑛  𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑠
	
  

        =
𝜎!!

𝜎!! + 𝜎  !
=   

. 002568
. 002568 + .0140

=    .154	
  

	
  
This estimate can be interpreted in two different ways as it is considered to represent two ideas: 
 

1. The heterogeneity among instructors/sections is estimated to account for 15.4% of the 
total variability in improvement in concepts 

2. A pair of two students within the same instructor/section is estimated to have a 
correlation of .154 

 
Despite either interpretation, we have found that there is not much variability among instructors 
as the variability within instructor is much larger.  Past education research have reported an 
intraclass correlation coefficient for similar analysis to be around 10%.  Therefore, we decided to 
continue our analysis by defining the hierarchy in the model in respect to the structure of the 
data.  We explored numerous models after the unconditional means model but only the most 
interesting ones is discussed in the following sections. 
 
Model 1  
 
The first model that we will discuss in detail was a model predicting improvement in concepts 
with the predictors of the clustering based on instructor characteristics and student level 
variables.  In total, there were 453 students and 19 sections that did not have missing data for 
the variables involved.  Shown is the output for the model with the 2 significant student-level 
predictors of concepts pre-test and improvement in interest toward statistics and the 1 
significant instructor-level predictor of clustering based on instructor characteristics.  We ended 
up with this model after first fitting a model with many predictors and then paring it down with 
backward elimination after all predictors were found to be significant.  The AIC value also 
resulted to be -715. 
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It is evident that after adjusting for improvement in interest and instructor characteristics, higher 
pre-test concepts are associated with a lower improvement in concepts.  This association 
reflects that students who did worse on the pre-test tended to improve more while students who 
did better on the pre-test did not have as much room for improvements.  The only significant 
student attitudes predictor with this model was improvement in interests.  The association 
between improvement in interests and improvement in concepts is positive, after adjusting for 
the other two variables in the model.  Therefore, increasing students’ interest in statistics from 
pre-test to post-test is associated with them having higher improvements in concepts, after 
adjusting for their pre-test concepts and the type of instructor they had.  In regards to instructor 
characteristics, the only statistically significant difference is between the two-year college 
instructor and the “more student-led involvement” category of instructors.  The coefficient also 
told us that being taught by the two-year instructor is associated with an average drop of 15 
percentage points from the concepts pre-test to the post-test compared to being taught by 
instructors in the “more student-led involvement” category, after adjusting for concepts pre-test 
and how much interest in statistics has been improved. 
 
To summarize this model in a practical sense, we see a student will have large improvements in 
the concept test if they score lower on the pre-test, is taught by an instructor with more student-
level involvement, and has an improvement in interest in statistics in the course.   
 
We also generated a scatterplot of improvement in concepts versus improvement in interests 
with the HLM fitted lines for each category of instructors imposed.  (Note: the interaction was not 
statistically significant.)  The scatterplot shows that the red fitted line for the “more-student led” 
cluster is higher than all the other three clusters.  The two clusters of “more non-tenure” and 
“like lecture” are very similar to each other, lower than “more-student led”, and higher than “two-
year college.”   The green fitted line for the “two-year college” instructor is the lowest of all 
cluster fitted lines.  However, the association of improvement in concepts and improvement in 
interests is the same across all clusters.   
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Adding the variable of experience with curriculum to Model 1 
 
We were also interested in determining whether there would be a significant difference among 
instructors of different level of experience with the curriculum, after adjusting for the significant 
predictors from model 1.  Therefore, we added the ad-hoc experience variable into model 1.  
The AIC of the model resulted in -702, meaning this model did not perform quite as well as the 
previous model.  We found that non-users tend to have a significantly lower improvement in 
concepts than experienced users of the curriculum, after adjusting for other instructor 
characteristics and student improvement in interests.  The output of this model is shown below. 
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Predicting improvement in interests 
 
As improvement in interests was the significant student-level attitudes predictor, we wanted to 
determine the significant predictors of this variable.  The purpose was to see if we could identify 
which types of students or instructors are associated with higher improvement in interests, then 
they would also be linked with higher improvement in concepts. 
 
We first ran an unconditional means model to obtain the ICC/VPC.  Below is the output of the 
unconditional means model. 
 

 
 
The estimated intraclass correlation coefficient turned out to be .0545 after calculations were 
done.  This small value revealed that differences among instructors/sections did not account 
much for the total variability in improvement in interests.   
 
We started with a model including all instructor-level predictors and student-level predictors that 
were not based on the attitudes pre-test.  The model that we finalized on after paring was done 
included the 5 significant instructor-level predictors of whether or not tenured, years of teaching, 
instructor-led percent, length of classes, and gender of instructor.  Below is the output of the 
model fitted and the AIC was 1874. 
 

 
 
From this model, the most ideal instructor, for student improvement in interest in statistics, is a 
tenured male instructor who has moderate experience of teaching and focuses on student-led 
involvement in a school on quarter system.  
 
Model 2 
 
The second model that we fitted was a model predicting improvement in concepts with the 
predictors of the clustering based on student characteristics and instructor-level variables.  In 
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total, there were 535 students and 19 sections that did not have missing data for the variables 
involved.  Shown is the output for the model with the 1 significant predictor of concepts pre-test 
and the 6 significant instructor-level predictors of the clustering variable based on student 
characteristics, gender of instructor, years of teaching, time of the day, the interaction of the 
clustering variable and years of teaching, and the interaction of the clustering variable and time 
of the day.  The cluster of instructors with younger students who had worse pre-test and less 
value perception was dropped from the model as we had missing data on the cluster for at least 
one of the predictors in the model.  We ended up with this model after first fitting a model with 
many predictors and then paring it down with backward elimination after all predictors were 
found to be significant.  The AIC value also resulted to be -799.   
 

 
 
The most intriguing findings from this model were from the interaction terms.  For the interaction 
of the clustering variable and years of teaching, we found that for students who had more prior 
experience in statistics and did better on the pre-test improvement in concepts did not tend to 
be associated with the years of teaching of the instructor, after adjusting for other predictors in 
the model.  For students who performed worse on the pre-test but had high expected effort, 
their improvement in concepts tend to increase with more years in teaching, after adjusting for 
other predictors in the model.  Also, students with more negative tended to decline with more 
experienced instructors, after adjusting for other predictors.  The second interaction of the 
clustering variable and time of day provided evidence that if the class met later in the day, the 
improvement in concepts tend to increase for both clusters of instructors who had high 
experience students and students who did worse on the pre-test but had high expected effort.  
In contrast, for the cluster of instructors who had the “middle” students, if the cluster met in the 
day, the improvement in concepts tended to decrease.   
 
For the two remaining significant main effects, after adjusting for the predictors in the model, 
students with male instructors tended to do worse than students with female instructors.  Also, 
after making the necessary adjustments, students who did well on the concepts pre-test tended 
to have lower improvements. 
 
The ideal student with this model is a high effort student taught by an experienced instructor in a 
course meeting later in the day.   
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Above is a scatterplot with the HLM and unpooled lines of the clustering of instructors based on 
student characteristics imposed to illustrate one of the ideas from the model fitted.  It is evident 
that there is some disparity between the HLM and unpooled lines so accounting for the 
hierarchy does make a difference in the associations.  The yellow line is for instructors who had 
younger students with worse pre-test but high effort.  There is a positive slope for this line, 
which agrees with the earlier interpretation that students with lower pre-test scores tend to show 
higher improvements.  Also instructors with students who were older and high previous 
experience in statistics did not have an association between improvement in concepts and 
years of teaching, as the blue line is pretty flat.  For the red line, the “middle” students who had 
instructors with more years of teaching tended to have lower improvement in concepts than 
those with newer teachers. 
 

Conclusion 
Limitations of research 
We hope to gather more data from Spring 2014 in the future for many reasons that restrained 
our data analysis.  One of the reasons was that we only had 2 non-users compared to the 28 
users of the curriculum so recruiting more non-users can increase our sample size for that 
category.  We also decided to not include a three-level hierarchy in running our hierarchical 
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models due to the lack of information on the institutions that the instructors were from and the 
limited number of instructors for some institutions.  One approach is to widen our scope by 
contacting more instructors who teach statistics at an introductory level.  After having more data, 
we are interested to defining the third level of the hierarchy to not only identify the student and 
instructor characteristics associated with student gains but also the institution characteristics.  
We are aware that this research is only a start to a much more extensive research to 
incorporate more information from institutions and instructors across the nation.   

In addition, we currently have data on students from winter 2014 who took the assessment tests 
under 10 minutes.  Therefore, we wish to exclude these students from the analysis as these 
type of students were already excluded in the fall 2013 data. 

Goals achieved 
Our two primary goals from the beginning of this research were to identify the student and 
instructor characteristics associated with students gains of the randomization-based curriculum 
and to detect whether there was a disparity in improvement in concepts among instructors who 
were at different level of experience with the curriculum.  We achieved our first primary goal by 
running multiple models.  Based on the model after adding the experience with curriculum 
variable to Model 1 and the model to predict improvement in interest, we found that the most 
“ideal” student who would on average have the highest gains is a student who scores low on the 
concepts pre-test, increases their interest from pre-test to post-test, and is taught by a moderate 
teaching experience male instructor who has high experience with the curriculum and includes 
more student-led involvements.  However we did find some different results after running Model 
2 where the most “ideal” students is a high effort student taught by an experience instructor who 
met later in the day.  The second primary goal was also achieved after we added the experience 
with curriculum level into Model 1.  We found that after adjusting for other instructor 
characteristics, students’ concepts pre-test performance, and students’ improvement in interest, 
experienced users tended to have significantly higher improvements than non-users.  In 
addition, there was no evidence that users of the curriculum at different levels were significantly 
different.  The two secondary goals that were to understand and apply hierarchical models and 
to utilize R for performing analyses and producing graphical displays were also reached as we 
found the HLM to be a partial pooling method involving the ideas of borrowing strength and 
shrinkage and we conducted different analyses and produced many graphs in R throughout our 
research. 
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