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Semiparametric Regression for Measurement of Parts Data

Abstract

One of the approaches to model the smooth function in a nonparametric model is to approximate
it by adopting adequate basis functions. In this research project, we will approximate the smooth
function by a truncated polynomial basis with degree 2, which contains the polynomial basis and
the splines constructed by knots. After we fix the number of knots, the function is estimated by
well-known methods such as ordinary least squares, penalized spline regression and linear mixed
model. We propose our version of Bayesian penalized spline, which provides comparable results.
The prior distribution is chosen to be “objective” so it will minimize the influence to the posterior
distribution and maintain the advantages Bayesian statistics provided. The non-informative Jeffreys
prior is adopted for the polynomial basis and the variance component in the model. The prior for the
splines constructed by knots is elicited from the penalty term in the penalized likelihood. To ensure the
posterior distributions are proper, we have to use an informative prior on the smoothing parameter. To
achieve the goal of having an “objective” prior for the smoothing parameter, we will use the effective
dffit (degrees of freedom for fit) to determine the hyperparameters in the prior distribution. After we
fit a nonparametric model, we look at a semiparametric model. This semiparametric model combines
our nonparametric model with a categorical variable. We use the Akaike Information Criterion (AIC)
to compare those methods proposed through a simulated data set and a manufacturing data set.

1 Introduction

For our project, we are looking at different regression methods and how they perform compared to
each other. Regression is widely used for prediction and to help find relationships between different
variables. The three types of regression methods we are looking at are ordinary least squares, penal-
ized spline, and linear mixed model regression. After fitting these models, we want to see if we can
use Bayesian estimation to find a model that provides comparable results.

Before we began our study, we had to choose if we were going to use nonparametric, semipara-
metric, or parametric regression to model our data set. In nonparametric regression, the data is not
required to fit any particular structure, which is useful when we know little or nothing about the
true function. A parametric model assumes that our data follows a probability distribution and can
be modeled by specific structure. Semiparametric regression has a combination of parametric and
nonparametric parts. In this type of model, you must specify the structure of the parametric term,
which is usually assumed linearly related to your response.

The rest of the paper’s layout is as follows: section 2 discuss the nonparametric model for a
continuous variable estimated by ordinary least square regression, penalized spline and linear mixed
model. Section 3 describe the semiparametric model and its estimations based on ordinary least
square regression, penalized spline and linear mixed model. Section 4 propose our version of Bayesian
penalized spline model. Section 5 and 6 evaluates the approaches using simulation example and
manufacturing data, respectively. We summarize our conclusion in section 7.
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2 Nonparametric Model

First, we started with the nonparametric model with a continuous variable x,

yi = f(xi) + εi, (1)

where y is the response variable that we are interested in. The function f(x) is a smooth function
which can be linear but does not have to be. The error terms, denoted εi, follow a normal distribution
with a mean of zero and a variance of σ2. Now we define

y = (y1, y2, · · · , yn)′, (2)

ε = (ε1, ε2, · · · , εn)′. (3)

Therefore, y is an n × 1 vector, meaning that we have n data points. We will be using a truncated
power basis to approximate f(x) (Ruppert, Wand, & Carroll, 2003), which is

f(xi) = β0 + β1xi + · · ·+ βpx
p
i +

k∑
r=1

βp+r(xi −Kr)
p
+,

where p is the degree of the polynomial basis, k is the number of knots in the model, and K is the
value at which each knot is placed; so Kr would be the value of the rth knot. A knot is a point on the
graph where two line segments meet, but they do not necessarily form a straight line. These knots
allow the regression curve to fit your data better.

To simplify our equation we can use matrix notation, making it

y = Xβ + ε, (4)

where
β = (β0, β1, · · · , βp+k)′ (5)

is a (p+ k + 1)× 1 vector of regression coefficients and X is an n× (p+ k + 1) matrix of a predictor
variable and its knots defined as

X =


1 x1 · · · xp1 (x1 −K1)p+ · · · (x1 −Kk)

p
+

1 x2 · · · xp2 (x2 −K1)p+ · · · (x2 −Kk)
p
+

...
...

. . .
...

...
. . .

...
1 xn · · · xpn (xn −K1)p+ · · · (xn −Kk)

p
+

 . (6)

In this research project, we will be looking at ordinary least squares, penalized spline, linear mixed
models, and Bayesian penalized spline regression. We will first be going through the basic set up for
these methods, then we will look at the methods on simulated data, and finally we will be looking at
all the methods on our manufacturing data.

2.1 Ordinary Least Squares Regression

The first method we will look at is the ordinary least squares regression. This model finds the function
that fits the data best while minimizing the distance between the data points and the function. The
model to fit is equation (4), where y,X,β, and ε are defined by equations (2), (6), (5), and (3). To
find β̂, the estimate of β, we want to minimize∥∥y −Xβ∥∥2

,
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giving us
β̂ = (X ′X)−1X ′y. (7)

Once we have β̂, we can compute ŷ = Xβ̂ and obtained R2
adj. to see if our model is a good fit for

the data, where

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

,

R2
adj. = 1−

(
n− 1

n− (p+ k + 1)

)(
1−R2

)
.

In this project, we used the R2
adj. to select the number of knots. The models, which vary in number

of knots, with the highest R2
adj. would be selected.

In this regression method, the dffit (degrees of freedom for fit), or number of fitted parameters,
depends on the trace of the hat matrix.

tr(H) = tr(X(X ′X)−1X ′) = tr((X ′X)−1X ′X)

= tr(Idffit) = dffit = p+ k + 1

where the hat matrix H is defined by

ŷ = Xβ̂ = X(X ′X)−1X ′y = Hy,

H = X(X ′X)−1X ′. (8)

2.2 Penalized Spline Regression

The penalized spline regression method penalizes over-fits of your data, because a model that is over-fit
will not necessarily do well when predicting. This model is to minimize∥∥y −Xβ∥∥2

+ λβ′Dβ. (9)

where D =

[
0(p+1)×(p+1) 0(p+1)×k

0k×(p+1) Ik×k

]
=



0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0
0 · · · 0 1 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 1


, and λ is the smoothing param-

eter (Ruppert et al., 2003).

When λ is small, the model will be rough or bumpy, and as λ gets larger the model starts to look
more like a straight line.

The estimate for β in equation (9) is

β̂ = (X ′X + λD)−1X ′y. (10)

To find β̂, we estimate λ by generalized cross validation (GCV). The computation of GCV depends
on the smoothing matrix, which for penalized spline is

Sλ = X(X ′X + λD)−1X ′. (11)

The dffit is based on the trace of the smoothing matrix, which can be manipulated by the selection
of λ.
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dffit = tr(Sλ) = tr(X(X ′X + λD)−1X ′) = tr((X ′X + λD)−1X ′X).
If λ→ 0, then tr(Sλ) = p+ k + 1.

If λ→∞, then tr(Sλ) = p+ 1.

GCV is based on the average of the diagonals of the smoothing matrix,

1

n

n∑
i=1

Sλ,ii =
1

n
tr(Sλ) =

1

n
dffit

where Sλ,ii denotes the ith diagonal of the smoothing matrix. Therefore,

GCV (λ) =

∑n
i=1(yi − ŷi)2(
1− 1

ndffit
)2 . (12)

We always want to minimize equation (12), and the λ associated with this minimum is the λ that
we want to use in our model. Once we have our λ we can go back and find our β̂ in equation (10).

2.3 Linear Mixed Model Regression

The third regression method we looked at was linear mixed model regression, which incorporates both
fixed effects along with random effects in the model. This method is frequently used when dealing
with repeated measures data. The linear mixed model is

y = X1βx +Zµ+ ε, (13)

where y and ε are defined in equations (2) and (3). We now have X1 and βx looking at the polynomial
basis part of the model, and Z and µ are looking at the spline constructed by knots part of the model.
In this case X1 is an n× (p+ 1) matrix, Z is an n× k matrix, βx is a (p+ 1)× 1 vector, and µ is a
k × 1 vector. Both βx and µ are vectors of regression coefficients. The X1, Z, βx and µ are defined
as,

X1 =


1 x1 · · · xp1
1 x2 · · · xp2
...

...
. . .

...
1 xn · · · xpn

 , (14)

Z =


(x1 −K1)p+ (x1 −K2)p+ · · · (x1 −Kk)

p
+

(x2 −K1)p+ (x2 −K2)p+ · · · (x2 −Kk)
p
+

...
...

. . .
...

(xn −K1)p+ (xn −K2)p+ · · · (xn −Kk)
p
+

 , (15)

βx = (β0, β1, · · · , βp)′, (16)

µ = (µ1, µ2, · · · , µk)′. (17)

We are trying to minimize the penalized likelihood:∥∥y −X1βx −Zµ
∥∥2

+ λ
∥∥µ∥∥2

.

Thus, we can find β̂x and µ̂ by

β̂x = (X ′1Σ
−1X1)−1X ′1Σ

−1y, (18)

µ̂ = Z ′Σ−1(y −X1β̂x), (19)

where Σ = ZZ ′ + λI (Ruppert et al., 2003).

Once again in order to find β̂x and µ̂ from equations (18) and (19), we have to find λ by minimizing
equation (12).
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3 Semiparametric Model

After adding a categorical variable x2 to the nonparametric model in equation (1), the semiparametric
model is

yi = f(xi) + β2x2i + εi,

where f(x) is again approximated by the truncated polynomial basis. The categorical variable will
have j+1 levels, so we will need to use j dummy variables in the model. Dummy variables are vectors
of zeros and ones, with the zeros representing when a certain level of the categorical variable is absent
and the ones indicating presence. Our model is now

yi = β0 + β1xi + · · ·+ βpx
p
i +

∑k
r=1 βp+r(xi −Kr)

p
+ +

∑j
l=1 βp+k+lMil + εi

where Ml represents the different dummy variables, and j is the number of dummy variables in the
model.

In matrix notation we have

y = X1βx +X2βdum +Zµ+ ε, (20)

where X1,Z,βx and µ are defined in equations (14), (15), (16), and (17),

X2 =


M11 M12 · · · M1j

M21 M22 · · · M2j
...

...
. . .

...
Mn1 Mn2 · · · Mnj

,

and βdum = (βp+k+1, · · · , βp+k+j)
′.

The estimates of β = (β
′
x,β

′
dum,µ

′
)
′

using ordinary least squares is equation (7) with X =
(X1,X2,Z).

In penalized spline regression, the estimate of β = (β
′
x,β

′
dum,µ

′
)
′

is obtained by minimizing
expression (9), where X = (X1,X2,Z) and the λ that is associated with the minimum GCV.

The linear mixed model is

y = X1βx +X2βdum +Zµ+ ε

= Xβ +Zµ+ ε

where the X = (X1,X2) and β = (β′x,β
′
dum)′. The Z and µ were defined in equations (15) and (17).

The β and µ will be estimated by equations (18) and (19) with X1 replaced by X and βx replaced
by β. The required λ is obtained by minimizing GCV.

4 Bayesian Penalized Spline Regression

4.1 Bayesian Statistics

Another way to model the data is to use Bayesian statistics. Bayesian statistics express the uncertainty
of an unknown parameter θ in terms of probability. In Bayesian statistics, you start with a prior π(θ),
which is based on the current knowledge you have. You then use your observed data, which follows
a likelihood distribution f(y|θ) to “update” your knowledge. This “updated” knowledge is called the
posterior distribution f(θ|y), which can be represented by Bayes Theorem:
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p(θ|y) = f(y|θ)π(θ)∫
R
f(y|θ)π(θ)dθ

, where R is the support of θ,

p(θ|y) ∝ f(y|θ)π(θ),

so the posterior distribution p(θ|y) is proportional to the product of the likelihood and the prior.

4.2 Nonparametric Model with One Continuous Variable

4.2.1 Prior Selection

Using a Bayesian model, all the parameters are considered to be random. Because of this we need to
have a prior distribution for each parameter. In some situations there is information we can use from
past experiments, from which we can make an informative prior for the parameter. In other situations
very little is known about a parameter so a non-informative prior is formed. These non-informative
priors are almost always improper which means that

∫
R
f(θ)dθ 6= 1, so they have to be chosen carefully

to guarantee proper posterior distributions.

In this study, we are aiming to use “objective” priors, which use minimum prior information to
derive the posterior distribution. For βx and the variance of ε, σ2, in equation (13), we used non-
informative Jeffreys prior

π(βx) ∝ 1,

π(σ2) ∝ 1

σ2
.

We then looked at finding our prior for µ. Notice that minimizing∥∥y −X1βx −Zµ
∥∥2

+ λ
∥∥µ∥∥2

is the same as maximizing

−1
2σ2

∥∥y −X1βx −Zµ
∥∥2 − λ

2σ2

∥∥µ∥∥2
.

Looking at the above penalized likelihood, we can see that the penalty term looks like a normally
distributed for µ with a mean of 0 and a variance of σ2

λ (Kimeldorf & Wahba, 1971). Using this, we
found

π(µ) ∼ N
(

0, σ
2

λ Ik

)
.

Finally we needed our prior for λ. We needed this prior to be a proper prior so that we would end
up with a proper posterior distribution (Sun & Speckman, 2008). Thus we proposed

π(λ) ∼ Gamma
(

1

2
, 2b

)
, (21)

where π(λ) = 1

(2b)1/2Γ(1/2)
λ−1/2e−λ/2b.

We will discuss how we chose our b in the “Determining Hyperparameter b” subsection.
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4.2.2 Posterior Derived

After assigning priors for each parameter, we will have to derive the posterior distributions,

f3(θ1|y) =
∫
θ2
· · ·
∫
θw
f2(θ1|y, θ2, · · · , θw)dθ2 · · · dθw.

To avoid messy integration to get our posterior, we will generate random samples from the full condi-
tionals through Gibbs sampler (Gelman, Carlin, Stern, & Rubin, 2004). The random samples created
will form the posterior distributions.

Full conditional:

f2(θ1|y, θ2, · · · , θw) ∝ f1(y|θ1, · · · , θw)π1(θ1)π2(θ2) · · ·πw(θw).

To improve the mix of Gibbs sampler between βx and µ, we adopted block sampling (Gelman et al.,
2004). Both βx and µ will be sampled simultaneously through multivariate normal distribution. This
approach allows for less iterations due to rapid convergence. Using the priors from section 4.2.1 and
setting X = (X1,Z) and β = (β′x,µ

′)′, the full conditionals are:

β|σ2, λ,y ∼ N
(

(λD +X ′X)−1X ′y, (
1

σ2
X ′X +

λ

σ2
D)−1

)
(22)

λ|β, σ2,y ∼ Gamma

(
k + 1

2
,

(
1

σ2
β′Dβ +

1

2b

)−1
)

(23)

σ2|β, λ,y ∼ Inv.Gamma
(
n+ k

2
,
1

2

(
(y −Xβ)′(y −Xβ) + λβ′Dβ

))
(24)

4.2.3 Determining Hyperparameter b

To determine the hyperparameter b for π(λ) in equation (21), we start with choosing a prior dffit
that we think our data should have. The smoothing matrix for Bayesian penalized spline is Sλ =
X(X ′X + λD)−1X ′. Then

dffit = tr(Sλ) = tr
((
I + λD(X ′X)−1

)−1
)

= tr
(
(I + λv)−1

)
=

p+k+1∑
i=1

1

1 + λvi
(25)

where v is a (p+ k+ 1)× 1 vector of the eigenvalues for D(X ′X)−1 (Hastie, Tibshirani, & Friedman,
2001).

For a given dffit, we can solve for λ in equation (25). We take this λ̂ as the median for the prior
π(λ), a skewed distribution, to specify b. The prior π(λ) can be considered as a scaled χ2 distribution
with 1 df . The median of π(λ) is bχ2

(1) = .455b. We can solve for b by λ̂ = .455b.

4.3 Semiparametric Model with One Continuous and One Discrete
Variable

The Bayesian penalized spline for the semiparametric model in equation (20) minimizes∥∥y −Xβ −X2βdum
∥∥+ λβ′Dβ, (26)

where X = (X1,Z), β = (β′x,µ
′)′ and D =

[
0(p+1)×(p+1) 0(p+1)×k

0k×(p+1) Ik×k

]
.

We proposed both a non-informative and an informative prior for βdum.
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4.3.1 Non-informative Prior for βdum

Our non-informative prior for βdum is

π(βdum) ∝ 1.

Using this non-informative prior, we got the following full conditionals,

where X∗ = (X2,X), β∗ = (β′dum,β
′)′, and D∗ =

[
0(p+j+1)×(p+j+1) 0(p+j+1)×k

0k×(p+j+1) Ik×k

]
.

β∗|σ2, λ,y ∼ N
(
(λD∗ +X ′∗X∗)

−1X ′∗y, (
1
σ2X

′
∗X∗ + λ

σ2D∗)
−1
)
,

λ|β∗, σ2,y ∼ Gamma
(
k+1

2 ,
(

1
σ2β

′
∗D∗β∗ + 1

2b

)−1
)
,

σ2|β∗, λ,y ∼ Inv.Gamma
(
n+k

2 , 1
2 ((y −X∗β∗)′(y −X∗β∗) + λβ′∗D∗β∗)

)
.

4.3.2 Informative Prior for βdum

Our informative prior for βdum is

π(βdum) ∼ N
(

0, σ
2

λ1
Ij

)
, where π(λ1) ∼ Gamma

(
1
2 , 2
)
.

From the penalty term in equation (26), we elicit the prior for β is

π(β) ∼ N
(

0, σ
2

λ D
−1
)

.

And from section 4.2.1

π(λ) ∼ Gamma
(

1
2 , 2b

)
and π(σ2) ∝ 1

σ2 .

Using these priors, we had the following full conditionals, where

λ1|λ,β,βdum, σ2,y ∼ Gamma
(
j+1

2 ,
(

1
σ2β

′
dumβdum + 1

2

)−1
)

λ|λ1,β,βdum, σ
2,y ∼ Gamma

(
k+1

2 ,
(

1
σ2β

′Dβ + 1
2b

)−1
)

β|λ1, λ,βdum, σ
2,y ∼ N

(
(X ′X + λD)−1(X ′y −X ′X2βdum), ( 1

σ2X
′X + λ

σ2D)−1
)

βdum|λ1, λ,β, σ
2,y ∼ N

(
(X ′2X2 + λ1Ij)

−1(X ′2y −X ′2Xβ), ( 1
σ2X

′
2X2 + λ1

σ2 Ij)
−1
)

σ2|λ1, λ,β,βdum,y ∼ Inv.Gamma
(
n+k+j

2 , 1
2

(∥∥y −Xβ −X2βdum
∥∥2

+ λβ′Dβ + λ1

∥∥βdum∥∥2
))

4.4 Model Selection

We compare all the models using the Akaike Information Criterion (AIC). The model with the lowest
AIC will be selected.

AIC(λ) = log

(
n∑
i=1

(yi − ŷi)2

)
+

2dffit
n

(27)

To compute the AIC for each of our approaches, we need the dffit, so we must know the smoothing
matrix for the approach.

The smoothing matrices for the ordinary least squares and penalized spline methods are defined
in equations (8) and (11).

The linear mixed model smoothing matrix is

8



Sλ=X1(X ′1Σ
−1X1)−1X ′1Σ

−1 +ZZ ′Σ−1

−ZZ ′Σ−1X1(X ′1Σ
−1X1)−1X ′1Σ

−1

where Σ = ZZ ′ + λI.

The Bayesian penalized spline smoothing matrix is

Sλ= X(X ′X + λD)−1X ′.

While the penalized spline and Bayesian penalized spline smoothing matrices appear identical, the
Bayesian approach uses the posterior mean for λ, where the penalized spline approach uses the λ we
found from minimizing the GCV in equation (12).

5 Simulation Study

5.1 Nonparametric Model with One Continuous Variable

To gain understanding of the different models, we used R to create a simulated data set for a non-
parametric model,

yi = f(timei) + εi = 1 + 3 ∗ sin(2 ∗ timei ∗ π − π) + εi,

where εi ∼ N(0, 4) with time being specified by twenty even increments between zero and one. This
function for y generated 20 normal random samples, which is plotted in figure 1.
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Figure 1: Simulated data points

Figure 1 suggested that we set the polynomial basis power p = 2 with the number of knots k = 3.
This should be flexible enough to fit the data with possible curvature.

5.1.1 Ordinary Least Squares Model

The ordinary least squares regression is estimated by equation (7) with determined structure of p = 2
and k = 3.
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5.1.2 Penalized Spline Model

The penalized spline method is more flexible than the ordinary least squares method. It will smooth
the rough fits by ordinary least square if necessary. The estimate by penalized spine is in equation
(10). We ran a loop of 100 evenly-spaced λ between 0 and .001. To determine the best λ, we checked
to see which λ in this loop produced the lowest GCV. Using the corresponding λ, we can find the dffit,

the β̂, and thus our fit. Our minimum GCV was 14.7001, whose λ = 4.4444×10−4 and dffit = 4.7667.

5.1.3 Linear Mixed Model

Linear mixed models consider the polynomial basis as the fixed effect and the spline constructed by
knots as the random effect. The β̂x in equation (18) and µ̂ in equation (19) are estimated with
λ = 4.4444× 10−4 which minimized the GCV.

5.1.4 Bayesian Penalized Spline Model

The simulated data set plotted in figure 1, suggested that we would want to fit at least a cubic
function to our model. We choose the dffit to be around 4 to 5 to provide sufficient flexibility to the
fit. Following the discussion in “Determining Hyperparameter b”, several prior dffit are considered
and the corresponding λ and b are listed in table 1. We examined the fits based on the b listed in

Prior dffit λ b
3.5 .0089 .0196
4 .0023 .0051

4.5 .0008 .0017
5 .0003 .0006

Table 1: Different λ and b values based on chosen prior dffit

table 1 and found that the fits are pretty robust to the choice of b. We choose the b= .0006. We then
use R to compute 10,000 iterations to generate random samples using Gibbs sampler (Gelman et al.,
2004) for β, λ, and σ2 from their full conditionals in equations (22), (23) and (24). We then applied
a burn-in, which chopped off the first 2,000 iterations, getting rid of the influence of our initial values
for the parameters. The convergence was rapid as showed in figure 2. Those random samples were
used to create the posterior distributions. Doing so, we were able to determine the posterior means
of both β̂x and µ̂ to compute a fit.

5.1.5 Model Comparison for Simulated Data with time only

Finally, we can compare the ordinary least squares, penalized spline, linear mixed model, and Bayesian
penalized spline fits. Penalized spline and linear mixed model are using their best λ fits, for which
is the same value in this case, so the two fits are the same. We can see this in figure 3. The fit
by penalized spline was based on penalizing the splines constructed by knots in equation (9), which
is similar to the linear mixed model that has the splines constructed by knots fit as random effect.
Therefore, there is no surprise that both fits provided similar results. Then, we computed the AIC
using equation (27) for approaches proposed.

For this simulated data, we should use the Bayesian penalized spline approach since it has the
lowest AIC showed in table 2. Note that the penalized spline and linear mixed model approaches gave
the same AIC due to the same fits provided.
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Figure 2: Trace plots of (a): β1, (b): β2, (c): β3, (d): µ1, (e): µ2, (f): µ3, (g):λ, and (h): σ2
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Figure 3: Plot of f(x) used to generate the data (solid), ordinary least squares (dashed), penalized spline
(thick dashed line), linear mixed model (thick dashed line), and Bayesian penalized spline (thick solid)

Approach AIC
Ordinary least squares 4.031754
Penalized spline 3.937102
Linear mixed model 3.937102
Bayesian penalized spline 3.807775

Table 2: AIC for the different methods

If the Bayesian penalized spline yields a similar result to the penalized spline and linear mixed
model methods, then why would we go through all the trouble to use it? First, if prior information
is available, the Bayesian framework will provide a way to incorporate this information. Further,
using the frequentist approach, we estimated λ using the minimum GCV. This gave us a single value

11



estimate for the λ. In the Bayesian approach, we get an entire distribution for λ, which will easily
extend the statistical inference to hypothesis testing. As a result, the Bayesian approach is not as
susceptible to outlier values, like those in the simulated data when time is .3 and when time is .8.

5.2 Semiparametric Model with a Continuous and a Discrete Vari-
able

We used R to simulate a data set that looked at adding a categorical variable with three levels, making
our model semiparametric as in equation (20). They are different only in intercept. Let

y1i = f(timei, op1i) + εi = 1 + 3 ∗ sin(2 ∗ timei ∗ π − π) + εi,
y2i = f(timei, op2i) + εi = 2 + 3 ∗ sin(2 ∗ timei ∗ π − π) + εi,
y3i = f(timei, op3i) + εi = 3 + 3 ∗ sin(2 ∗ timei ∗ π − π) + εi,

and y = (y1,y2,y3)

where εi ∼ N(0, 1), and time is specified by twenty even increments between zero and one. The
response for the first operator is given in y1, for the second operator the response is in y2, and for the
third operator the response is in y3. This function for y generated 60 normal random samples. The
simulated data is in figure 4.
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Figure 4: Simulated data points with three operators

We estimate the fit based on approaches, ordinary least square, penalized spline and linear
mixed model discussed in section 3 and Bayesian penalized spline model in section 4. We again
used three knots for all the models so that we can compare the results.

The estimate of β in ordinary least squares is in equation (7), where X = (X1,X2,Z) and
β = (β′x,β

′
dum,µ

′)′. For penalized spline, the λ that minimized GCV is λ = 2.2222 × 10−4. In
linear mixed model, the minimum GCV gave λ = 2.23× 10−4, which allowed us to compute both
our β̂ and µ̂ to determine a fit.

For Bayesian penalized spline, we have to specify the hyperparameter b for the prior π(λ). We
looked at having 4 to 5 prior dffit, before including the operator effects. Now with three operators
included, we are going to add 3 more df , giving us the prior dffit = 7, giving us λ = .000095 and
b = .00021. Both non-informative and informative priors for βdum were examined.
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Figure 5: Plot of ordinary least squares (solid), penalized spline (dashed), linear mixed model (dotted),
non-informative Bayesian penalized spline (dot-dashed), and informative Bayesian penalized spline (long
dashed).

Approach AIC
Ordinary least squares 4.541667
Penalized spline 4.536191
Linear mixed model 4.536197
Bayesian penalized spline (non-informative) 4.548832
Bayesian penalized spline (informative) 4.512195

Table 3: AIC for the different methods

5.2.1 Model Comparison for Simulated Data with time and operators

Although the Bayesian penalized spline with the informative prior model gave the lowest AIC (as
indicated in table 3), all of the AIC values are close. This tells us that all of the models would provide
a similar fit for the data as showed in figure 5.

6 Manufacturing Data

This new data concerns parts called “004 profiles,” which are produced by stamping out metal material
through a machine. Some parts of the machine become worn out after a certain period of time,
resulting in the “004 profiles” being out of specification. In the “004 profiles” data there are three
variables. There is “profile,” which is the measurement taken; “time,” which is the time at which
the measurement was taken; and there is also “operator,” which is the ID of the operator that took
the measurement. We considered “profile” to be our response variable, “time” was our continuous
predictor variable and “operator” is a categorical predictor variable. Figure 6 is a plot of the raw
data.
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Figure 6: Manufacturing data points

Our first step was to choose the number of knots for our model, which was done using the ordinary
least squares method, and selecting the number of knots associated with the greatest R2

adj. value. This
resulted in us choosing to implement 5 knots in our model.

Knots R2
adj

1 .3753
2 .3781
3 .3718
4 .3743
5 .4024
6 .3921

Table 4: R2
adj. values for the different number of knots in ordinary least square

6.1 Model the Variable “time” only

The nonparametric model is proposed to model the variable “time”,

y = f(time) + ε.

Using the methods laid out in section 2.1, we first tested the ordinary least squares. Next we looked
at the penalized spline approach described in section 2.2. We found our minimum GCV = .00089982,
with corresponding dffit = 7.669 and λ = 2.020202 × 10−5. Moving on to the linear mixed model
approach described in section 2.3, we found that our best λ = 2.118182× 10−5, based on a minimum
GCV = .00089985 with dffit=7.656. Since the λ values are so close to zero, both the penalized spline
and the linear mixed models have comparable fits to that of the ordinary least squares model.

Lastly, we implemented the Bayesian penalized spline approach which required us to specify the
hyperparameter b. We tried several prior dffit listed in table 5.
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Prior dffit λ b
6.5 .000225 .000495
7 .000097 .000213

7.5 .000035 .000077
7.66 .000021 .000046

Table 5: Different λ and b values based on chosen prior dffit

We chose our prior dffit = 7.66 because our penalized spline and linear mixed model approaches
both had approximately this value. Thus, our b=.000046. Again, we could have chosen a different
prior dffit since the posterior dffit is robust to the choice of b, and still have ended up with similar
results.
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Figure 7: Plot of ordinary least squares (solid), penalized spline with λ = 2.020202× 10−5 (dotted), linear
mixed model with λ = 2.118182 × 10−5 (thick dotted), and Bayesian penalized spline (dashed) where
b=.000046

Once we had all of our fits, we used the AIC to compare them.

Approach AIC
Ordinary least squares -7.014243
Penalized spline -7.015655
Linear mixed model -7.015612
Bayesian penalized spline -6.998666

Table 6: AIC for the different methods

In table 6 we can see that the penalized spline approach had the lowest AIC. Even though this is
the lowest value, all of the values are close so they will give about the same fit for our manufacturing
data set of “004 profiles.” These fits are presented in figure 7.
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6.2 Model Variables “time” and “operators”

In addition to having time as our independent variable, we also use the operators that took the mea-
surements as our independent categorical variable. In this data set there were 18 different operators, so
our categorical variable will have 18 levels with 17 dummy variables incorporated in our equation (20).

Using the methods laid out in section 3, we first tested the ordinary least squares approach.
Next we looked at the penalized spline approach. We found our minimum GCV = .00099725, with
corresponding dffit = 24.61611 and λ = 2.020202 × 10−5. Moving on to the linear mixed model
approach, we found that our best λ = 2.118182 × 10−5, based on a minimum GCV = .0009972932
with dffit=24.60107.

We then looked at the Bayesian penalized spline with a semiparametric model as described in
section 4.3, with both an informative and a non-informative prior for βdum using block sampling. For
the non-informative prior, we will be using the full conditionals from the “Non-informative Prior”
in subsection 4.3.1 and for the informative prior, we will be using the full conditionals from the
“Informative Prior” in subsection 4.3.2. Both of these methods need us to first find b. Several prior
dffit is proposed and the corresponding b is provided in table 7.

Prior dffit λ b
23 .000390 .000858

23.5 .000179 .000394
24 .000079 .000174

24.5 .000028 .00062
24.6 .000021 .000047

Table 7: Different λ and b values based on chosen prior dffit

We chose our prior dffit = 24.6 because our penalized spline and linear mixed model approaches
both had approximately this value. Thus, our b=.000047. We can see the fit for the non-informative
prior in figure 8, and the fit for the informative prior in figure 9. We can see from both figure 8 and
9 that we have 18 lines. These lines represent the different operators. Some of the lines are longer
because some operators took more measurements than others.

Approach AIC
Ordinary least squares -6.935337
Penalized spline -6.936578
Linear mixed model -6.936503
Bayesian penalized spline (non-informative) -6.929622
Bayesian penalized spline (informative) -6.929623

Table 8: AIC for the different methods

Once we had all of our fits, we used the AIC to make the grand comparison. Again, they are all
pretty close so they will give about the same fit for our manufacturing data set of “004 profiles.”
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Figure 8: Plot of non-informative Bayesian penalized spline fit where b=.000047 with 18 operators
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Figure 9: Plot of informative Bayesian penalized spline fit where b=.000047 with 18 operators

7 Conclusion

Based on the simulated data for a nonparametric model in section (5.1), we found that the Bayesian
penalized spline method was slightly better than the ordinary least squares, penalized spline, and
linear mixed model methods. We believe this is due to the fact that we incorporated prior information
into this method, which helped to improve our estimation.
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We also found that when dealing with a semiparametric model for our simulated data shown in
section (5.2), all of the methods gave approximately the same result. Looking between the non-
informative and the informative prior for βdum, we also saw very similar results. We believe that this
is because of our small λ value, which caused the variance σ2

λ for our informative prior for βdum to be
very large. This in turn produced an almost uniform distribution, which was how our non-informative
prior was classified, thus they gave very similar results. Therefore, the data provided sufficient infor-
mation to overcome the influence of the priors selected.

Even though Bayesian penalized spline yields a similar result to the penalized spline and linear
mixed model methods, it offers the framework to incorporate prior information when available. The
posterior distribution obtained for λ provided the information for statistical inference while the fre-
questist’s estimates based on minimum GCV only provided the point estimate.

In the future, there are several extensions of this project that can be done. We have worked with
nonparametric and semiparametric models, but we could also work with an additive model, which
combines two continuous functions. Further, in our work, we used a truncated polynomial basis for
our calculations. We could try other basis, like the radial basis function that takes the absolute value of
the knots, to see the effects on the estimation. Finally, because we have only worked with predictions,
we could use hypothesis testing to assess the data in this fashion.
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