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Abstract

In this research paper, we analyze how the sensitivity (the
likelihood that those with the disease test positive), speci-
ficity (the likelihood that those without the disease test
negative), and disease prevalence affect the Covid-19
testing performance. We use a set of different sensitivity
and specificity values with a range of prevalence values
to evaluate test performance in terms of positive predic-
tive value (PPV, the likelihood that those who test positive
have the disease) and negative predictive value (NPV,
the likelihood that those who test negative do not have the
disease). Our analysis indicates that the disease preva-
lence has a significant impact on the sensitivity and speci-
ficity values necessary to achieve high PPV and NPV.
Furthermore, we find that a prevalence of less than 0.01
(1%) would require an unrealistically high specificity value
to achieve a strong PPV.



1. Background and Research Objective

Covid-19 testing has become a regular part of life over the past few years and yet, there is
still confusion and debate about the results of these tests and how they are presented at
large. For example, public concern continues over issues of false positives and negatives.
At the same time, a firm understanding of test results would allow hospitals, frontline
workers, and healthcare authorities to effectively allocate their resources.

In this paper, we examine the effectiveness of Covid-19 testing in mid-2020 by computing
the likelihoods of true positive and negative results. These values are known as the
positive and negative predictive value (PPV and NPV). PPV measures how likely it is
that someone who tests positive has the disease (a true positive), and NPV measures
the likelihood of someone who tests negative not having the disease (a true negative).
The PPV and NPV calculation require the prevalence (p) of Covid-19, sensitivity (the
probability that those who have the disease actually test positive), and specificity (the
probability that those who do not have the disease actually test negative).

To obtain the estimated prevalence (p) of Covid-19 in mid-2020, we examined data from
the Pfizer-BioNTech vaccine study [3]. The study employs nucleic acid amplification test-
ing (NAAT), the most sensitive form of testing available to test for Covid-19 contraction
[5], providing a more accurate means of assessing prevalence than the publicly available
tests. By focusing on the placebo group from the vaccine study (n = 21728), we obtained
p = 162/21728 = 0.00746 (0.746%) [3]. Note that this is representative of the general
population since vaccines were not widely available in mid-2020.

2. Methods

a. Predictive Values

PPV and NPV are the proportions of positive and negative results that are true positives
and true negatives. Let D denote the event of an individual having the disease, and
let N denote the event of an individual testing negative for the disease. Then, PPV =
P(D|N’) and NPV = P(D'|N). Now, let « and 3 denote assumed sensitivity and
specificity, respectively. Then, by [2], estimated PPV and NPV, denoted by 5,,, and
Dnpo, respectively, are given by:
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Note that p,,, and p,,,, are both functions of estimated disease prevalence p.

b. Confidence Intervals for PPV and NPV
Confidence intervals give us a range of plausible values for the parameters of interest,
given a specific level of desired confidence. To obtain 95% confidence intervals for
PPV and NPV, we apply the delta method. Specifically, for a large n, a 95% confidence
interval for a function of p, denoted by ¢(p), is given by:

g(p) £ 1.96\/[9/(73)]215(1_13)7

assuming ¢'(p) exists and ¢'(p) # 0. A direct application of the formula above gives
us 95% confidence intervals for PPV and NPV as follows:
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By following the recommended values of a = 0.95 and g = 0.98 for a screening in-
dication [1], using the estimated disease prevalence of p = 0.00746, ppp, = 0.2630
with its 95% confidence interval [0.2330, 0.2929], and p,,;,, = 0.9996 with its 95% con-
fidence interval [0.9996, 0.9997] (see Appendix B for more details about the derivation
and calculation of confidence intervals). Therefore, while a negative test result almost
certainly implies the absence of the disease, only about one out of four positive test
results indicates the presence of the disease under the given sensitivity, specificity,
and estimated disease prevalence.

3. Analysis and Insights

The estimated PPV and NPV (p,,,, and p,,,,) along with their confidence intervals can be
used to estimate the true number of positive and negative cases among those tested pos-
itive and negative. We specifically utilize weekly Covid-19 testing data from Washington
State in the United States between February 29, 2020 and September 25, 2020 [4].
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Figure 1: Left: Graph of weekly reported positive cases in Washington State (in red) [4] and
estimated true positive cases assuming a = 0.95, 5 = 0.98, and p = 0.00746 (in orange).
Pointwise 95% confidence intervals for the true positive cases are also displayed (in shades).
Right: Graph of weekly reported negative cases in Washington State (in blue) [4] and estimated
true negative cases assuming a = 0.95, 5 = 0.98, and p = 0.00746 (in green). Pointwise 95%
confidence intervals for the true negative cases are also displayed (in shades).

Figure 1 compares reported Covid-19 test results to the estimated portions of those tests
with true test results. The low p,,, (of about 0.2630) implies that the visible peak in the
reported positive cases at around Week 20 (mid-July) is very much flattened in the esti-
mated true positive cases. On the other hand, the estimated true negative cases is nearly
identical to the reported negative cases due to the high p,,,, (of about 0.9996). Also, while
the proportion of false positives is much higher than that of false negatives, there are
overall far fewer reported positive cases, as reflected in the difference in the scales in
these two graphs of Figure 1.

In summary, the recommended sensitivity and specificity of o = 0.95 and g = 0.98 for
a screening indication provides an accurate assignment of reported negative results, but
also frequently mislabel true negative results as positive when the disease prevalence is
low (e.g., p = 0.00746). This is partly a result of the selected sensitivity and selectivity val-
ues, and partly a result of the low prevalence of the disease. In the following, we examine
how each of these variables affects the overall accuracy of various testing methods, as
measured by PPV and NPV.
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Figure 2: Left: PPV as a function of a (along the z-axis) and g (along the y-axis) with surfaces
corresponding to different prevalence values, as shown by the legend on the right.

Right: NPV as a function of « (along the z-axis) and 5 (along the y-axis) with surfaces corre-
sponding to different prevalence values, as shown by the legend on the right.

Figure 2 above clearly shows that as disease prevalence increases, PPV also increases
while NPV decreases. Generally, a lower PPV and a higher NPV are associated with a
lower prevalence. Moreover, regardless of disease prevalence p and sensitivity a, we
observe in the left graph that as § — 1(100%) (higher values of specificity as we move to-
wards right on the front axis), PPV — 1 as well. Conversely, we see in the right graph that
NPV is most sensitive to changes in sensitivity a than specificity g, and as o — 1(100%),
NPV — 1. Together, these relationships guarantee that increased standards of sensitivity
« and specificity 8 always result in higher accuracy for both PPV and NPV, regardless of
disease prevalence. However, for the case that we have examined where p = 0.00746,
prevalence is so low that specificity 5 would need to be increased to approximately 0.9999
to constitute near-perfect accuracy in PPV of 0.9862. As such standards are unrealistic in
practice, we would have to accept some degree of false positives with our testing results.

4. Significance and Limitations

Our analysis implies that most people who tested negative did not have Covid-19 in mid-
2020 and, perhaps more importantly, approximately three quarters of the people who
tested positive also did not have Covid-19. That shows that Covid-19 testing is not a
perfect science even with high sensitivity and specificity when the disease prevalence is
low. In other words, a positive result does not necessarily indicate Covid-19 contraction.

However, our results need to be interpreted with caution as the study population may
not fully represent the target population and the parameters used may not accurately
represent the reality. For example, those who volunteered for the vaccine study [4] are
likely biased towards healthier individuals, possibly overlooking at-risk individuals with co-
morbidities. On the other hand, the actual sensitivity and specificity may be lower partly
due to issues surrounding sample collection, handling, and analysis [1]. Furthermore,
as these volunteers were recruited from multiple regions, directly applying the results to
the Washington State data may be inappropriate due to the differences in health policies,
overall health and well-being of the study and target populations, and demographics in
general. For the future work, we are hoping to re-conduct a similar study with different
U.S. state populations by carefully avoiding these issues. The follow-up study could be
used to assess the vaccine efficacy or to evaluate the impact of different variants.
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Appendix A. Secondary Analysis with Varying Estimated Disease Prevalence Values

Figure 1 contrasts reported positive and negative Covid-19 cases with estimated true positive
and negative cases along with their 95% confidence intervals. These estimates are calculated
using the estimated disease prevalence of p = 162/21728 ~ 0.00746, which is considered low,
with o = 0.95, 5 = 0.98, and n = 21728. The following plots display the same data from
the Washington State Department of Health [4], but use different estimated prevalence values
(p = 0.1,0.5,0.9) in the calculation of estimated true positive and negative cases along with their
95% confidence intervals while keeping o = 0.95, 5 = 0.98, and n = 21728 as before. These
additional case studies allow us to extend our analysis of the effects of various prevalence
values on testing results.
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Figure 3: Left: Graph of weekly reported positive cases in Washington State (in red) [4] and
estimated true positive cases assuming o = 0.95, 5 = 0.98, and p = 0.1 (in orange). Pointwise
95% confidence intervals for the true positive cases are also displayed (in shades).

Right: Graph of weekly reported negative cases in Washington State (in blue) [4] and estimated
true negative cases assuming a = 0.95, 5 = 0.98, and p = 0.1 (in green). Pointwise 95%
confidence intervals for the true negative cases are also displayed (in shades).

Figure 3 shows that even a relatively low estimated prevalence of p = 0.1 results in a significant
jump in the number of estimated true positive cases and a much narrower confidence interval
(compared to Figure 1). The gap between the reported positive cases and estimated positive
cases continues to decrease as disease prevalence increases. When p > 0.5, nearly all the
reported positive cases can be considered true positive cases according to Figures 4-5.

On the other hand, the number of estimated negative cases decreases as disease prevalence
increases. Compared to the right plot of Figure 3, the margin of separation between the reported
and estimated negative cases gets proportionally larger when p = 0.5 (see the right plot of
Figure 4). The trend becomes very obvious when p = 0.9 where we see a clear deviation
between the reported negative cases and estimated negative cases (see the right plot of Figure
5). This is due to differences between the formulas for PPV and NPV estimation (p,,, and py.),
as discussed in Section 2a, which in turn affect the confidence interval calculations in Section
2b. For a more detailed look at confidence interval derivations, see Appendix B.
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Figure 4: Left: Graph of weekly reported positive cases in Washington State (in red) [4] and
estimated true positive cases assuming « = 0.95, 5 = 0.98, and p = 0.5 (in orange). Pointwise
95% confidence intervals for the true positive cases are also displayed (in shades).

Right: Graph of weekly reported negative cases in Washington State (in blue) [4] and estimated
true negative cases assuming o = 0.95, 5 = 0.98, and p = 0.5 (in green). Pointwise 95%
confidence intervals for the true negative cases are also displayed (in shades).
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Figure 5: Left: Graph of weekly reported positive cases in Washington State (in red) [4] and
estimated true positive cases assuming o = 0.95, 5 = 0.98, and p = 0.9 (in orange). Pointwise
95% confidence intervals for the true positive cases are also displayed (in shades).

Right: Graph of weekly reported negative cases in Washington State (in blue) [4] and estimated
true negative cases assuming a = 0.95, § = 0.98, and p = 0.9 (in green). Pointwise 95%
confidence intervals for the true negative cases are also displayed (in shades).



Appendix B. Derivation of PPV and NPV Confidence Intervals

In Section 2b, we apply the delta method to calculate confidence intervals for PPV and NPV.
Recall that the delta method requires the derivative of the function of the parameter of interest.
Since NPV and PPV in Section 2a are both functions of p, their derivatives with respect to p
can be calculated.

B1. Derivative of PPV and NPV with Respect to p

Let
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B2. PPV and NPV Confidence Interval Derivation Using the Delta Method

By the delta method, these derivatives can then be used to construct confidence intervals for
PPV and NPV using the formula given in Section 2b:

g(p) £ 1.96\/[9/@)]%(1_@'

By letting g(p) = pppv, We have
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as a 95% confidence interval for PPV. After rearranging and simplifying, we have:
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Similarly, by letting g(p) = pnpv, We have
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as a 95% confidence interval for NPV. After rearranging and simplifying, we have:
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Using p = 165/21728 which we calculated previously, we can compute 95% confidence intervals
for PPV and NPV for various o and 3 values. For a = 0.95 and g = 0.98, we obtain the following
PPV and NPV estimates:

0.95(37%53)
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PP 0.95(5252) + (1 — 0.98) (1 — 5192)
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Additionally, we have:
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Thus, the 95% confidence interval for PPV is

(26.19116) (51955 (1 — 1955))
21728

685.977(0.00740)
21728

0.26298 £+ 1.96\/

0.26298 + 1.96\/

= 0.26298 = 0.02999
= [0.23302,0.29294].

Similarly, the 95% confidence interval for NPV is

(=0-05175)* (51255 (1 — 1735))
21728
0.00268(0.00740)
21728

0.99962 + 1.96\/
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= 0.99962 £ 0.0000592
= [0.99956,0.99968].



