
Towards a Bayesian Method to Estimate Future Realized
Volatility

Abstract

Estimation of ex-ante or future realized volatility is crucial to the financial industry. In this
paper we explore the use of a Bayesianmethod to estimate the implied volatility on stock options
which in turn will allow us to estimate the future realized volatility on the underlying. We find that
this method is more accurate in estimating the implied volatility than estimates using historical
volatility. Thus this method might be helpful in estimating ex-ante volatility for the underlying
stock and will therefore be useful in pricing derivatives which does not have any implied volatility
data on them.
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1 Background and Significance

The derivatives market has grown dramatically
over the past 20 years. In 1998 the notional
value of outstanding OTC derivatives were esti-
mated to be around $60 trillion and at the end of
June 2018 the same value was estimated to be
around $595 trillion1.

Most research in the field has been based on
the classical paradigm, although someBayesian
analyses have been done. Most notably Boyle
and Ananthanarayanan (1977) who created
credible intervals for the Black-Scholes option
price and Karolyi (1993) who showed how the
use of Bayesian methods can improve the pre-
cision of price estimations of options.

This paper seeks to further develop a method
to better estimate the the price of derivatives
where the implied volatility cannot be observed
through using a Bayesian method to better esti-
mate the implied volatility data for the underlying
asset in question.

At the foundation of this paper lies the notion
that implied volatility used in the appropriate
manner will provide a better estimation of future
volatility of the stocks. This notion is supported
by many academics in the financial field, most
notably Latané and Rendleman (1976), Chiras
and Manaster (1978), and Beckers (1981).

2 Methods

2.1 Data

The underlying asset we picked is the SPDR SP
500 ETF(SPY) which is an ETF that is designed
to track the S&P 500 index. We will be focusing
on the 30-day historical volatility. The implied
volatility data comes from the VIX, the CBOE
Volatility Index, which is a measure of antici-
pated movements in the S&P 500, derived from

the current traded prices of S&P 500 options.

The time frame for the data is from November
1st 2017 to April 10th 2019.

2.2 Choice of Likelihood Distribution

We assume that the daily returns are log-
normally distributed and centered at zero, which
is in accordance with Karolyi (1993) and Ho et al.
(2011). Thus our likelihood distribution for the
log returns looks as follows:

yi ∼ Normal(0, σ2
i )

L(σ2
i |y1, ..., yn) =

1√
2πσ2

i

exp
(
−y2i
2σ2

i

)

Where yi is the log-return on day i and σ2
i is the

30-day realized volatility for the same day.

2.3 Prior Distributions

We used three different prior distributions to see
which would produce values most similar to the
actual implied volatility: an Inverse Gamma, a
Gamma, and a truncated Normal prior. For all
of our priors we used weakly informative priors
to let the data drive the posterior.

2.3.1 Inverse Gamma Prior

The Inverse Gamma prior distribution is conju-
gate with the Normal sampling distribution and
has thus been commonly used in estimating the
volatility in asset returns, most notably by Karolyi
(1993).

σ2
i ∼ InverseGamma(α, β)

π(σ2
i ) =

βα

Γ(α)
(σ2

i )
(−α−1)exp

(
−β

σ2
i

)

2.3.2 Gamma Prior

The Gamma distribution although not conjugate
with the Normal distribution was used by Ho
et al. (2011) and was shown to be a better fit for

1https://www.bis.org/statistics/derstats.htm
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modeling asset return volatility than the Inverse
Gamma prior Ho et al. (2011).

σ2
i ∼ Gamma(α, β)

π(σ2
i ) =

βα

Γ(α)
(σ2

i )
(α−1)exp

(
−β

σ2
i

)

2.3.3 Truncated Normal Prior

Our motivation for using this distribution as a
prior is because it closely resembles the data of
the historical volatility data, as can be seen in
the following graph. Another reason is because
volatility cannot be negative.

σ2
i ∼ Normal(µ, τ) T (0, )

π(σ2
i ) =

√
2√
πτ

(
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( µ√
2τ

)
− 1

)
exp

(
− (σ2

i − µ)2

2τ2

)

Where erf is the Guass error function.

2.4 Posterior Distributions

We used Just Another Gibbs Sampler (JAGS)2
to get draws from our posterior distributions. To
get estimates of the volatility for each day we
ran the MCMC with the previous 30 days’ log
returns and took a sample of 100 draws and an-
nualized them. From these draws we recorded
the mean and median values.

By examining a longer chain we see that it has
already converged at this point and it clearly has
low auto-correlation. We saw similar MCMC di-
agnostics for our other prior choices.

2.5 Calculation of Estimation Error

Since we are investigating if a Bayesian esti-
mate can better approximate the implied volatil-
ity than the historical volatility. Thus, the bench-
mark for the estimation error is the implied
volatility data.

We used the following equations to estimate the
estimation error where σB

i is the Bayesian es-
timated volatility for day i, σH

i is the historical
volatility for day i, and σI

i is the implied volatility
for day i.

Bayesian Error =
(
σB
i − σI

i

σI
i

)2

Historical Error =
(
σH
i − σI

i

σI
i

)2

The Bayesian error is the error between the
Bayesian estimated volatility and the implied
volatility and the historical error is the error be-
tween the historical volatility and the implied
volatility.

The lower the error the better the performance
of the estimator in question.

2http://mcmc-jags.sourceforge.net/
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3 Results

The results of the average error for each esti-
mating method are displayed in the table be-
low. As seen in the table, the Inverse Gamma
prior performed significantly worse compared to
the historical volatility data, whereas theGamma
prior performed better than the historical data,
which is in line with what was observed by Ho
et al. (2011). Notably, the truncated Normal prior
turned out to perform as well, up to three decimal
places, as the Gamma prior.

Average Data Error
Inverse Gamma Gamma Normal Historical Error

625 0.097 0.097 0.104

A more comprehensive table is found in the ap-
pendix.

The significance of the improvement in estimat-
ing implied volatility compared to the historical
volatility is 6.29% for both the Gamma and trun-
cated Normal priors, as computed by the formu-
las for estimation error shown in Section 2.5.

4 Discussion

The results in this paper show that Bayesian
volatility estimates with a Gamma or a trun-
cated Normal prior provide around a 6.29%
more accurate estimation of the implied volatility
compared to using historical volatility estimates.
Thus, given the previous research concluding
that implied volatility can be used to provide bet-
ter estimates of ex-ante stock price volatility,
using these methods may provide more accu-
rate pricing of derivatives where there is no data
on implied volatility available. An example of
such a derivative might be employee stock op-
tion schemes for many US and offshore compa-
nies that does not have any publicly traded op-
tions.

4.1 Future Research

At the base of this paper lies the assumption
that stock returns are Gaussian. This notion
has been widely disproven, most notably by Lisa
Borland, who goes on to show that a more ac-
curate distribution to use would be a Tsallis dis-
tribution rather than a Normal distribution for
the likelihood Borland (2002). Below is the log-
returns of the SPDR SP 500 ETF:

Next is a graph showing how this data fails the
Shapiro-Wilk test, which further shows how the
data is non-Normal in nature:

Thus an area for future research is implement-
ing a Tsallis distribution as the distribution for the
likelihood. Further areas of future research in-
clude using a mixture model for the prior distri-
bution.
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5 Appendix
5.1 Table for Section 3

Date InverseGamma Gamma Normal Historical Error
Nov 1, 2017 1493 0.099 0.094 0.143
Dec 2, 2017 554 0.160 0.127 0.135
Jan 2, 2018 298 0.000 0.000 0.002
Feb 2, 2018 834 0.010 0.018 0.019
Mar 5, 2018 569 0.142 0.158 0.179
Apr 5, 2018 690 0.181 0.174 0.189
May 6, 2018 889 0.194 0.188 0.244
Jun 6, 2018 499 0.089 0.080 0.070
Jul 7, 2018 98 0.113 0.103 0.152
Aug 7, 2018 534 0.205 0.197 0.072

Data Average 625 0.097 0.097 0.104
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