
 
 
 
 
 
 
 
 
 
 

Forecasting Carbon Dioxide Levels in Mauna Loa, Hawaii: 
A Study of the Moving Averages Smoothing Method 

 
Abstract 
 
In a NOAA dataset from Mauna Loa, Hawaii, average carbon dioxide levels have been steadily 
increasing for the past few decades. Additionally, the monthly levels vary seasonally, with 
relatively higher levels in the winter and relatively lower levels in the summer, due to 
photosynthetic plants. Since this dataset has a secular and seasonal component, it would serve 
as a good example to perform a time series model with the moving averages smoothing 
method. To analyze its effectiveness, we compared its results to the results of a linear 
regression model with seasonal variation and a time series model with first order autoregressive 
errors. We compared all the models’ forecasted results to the actual measured result of October 
2018. While the third model gave the most accurate result, it does not include a seasonal 
component, for which the moving averages model would be the most useful.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Research Questions 
How useful is the Moving Averages Method in forecasting future results? How does its utility 
compare to the linear regression model with seasonal variation and the time series model with a 
first order autoregressive error component? 
 
Introduction 
The purpose of this study is to forecast monthly carbon dioxide levels in Mauna Loa, Hawaii. 
While the Earth’s carbon dioxide is largely stored in the Earth’s oceans, it is a trace gas in our 
atmosphere that varies seasonally due to photosynthetic plants. In the spring and summer, the 
plants are active and performing photosynthesis, meaning that less carbon dioxide is in the air. 
In the fall and winter, the plants die off or are dormant, meaning that there is less carbon dioxide 
in the air. However, carbon dioxide is also a greenhouse gas, and scientists have concluded 
that anthropogenic emissions such as the burning of fossil fuels and agriculture have been 
steadily increasing the amount of atmospheric carbon dioxide, and therefore contributing to 
global warming. It is important to track the growth of the carbon dioxide percentage in the 
atmosphere and predict future amounts to be able to try to reduce our carbon emissions and 
keep our planet healthy.  
 
Our dataset is from the National Oceanic and Atmospheric Administration’s Earth System 
Research Laboratory Global Monitoring Division (NOAA ESRL Global Monitoring Division), 
which records the monthly mean carbon dioxide level as a mole fraction from March 1958 to 
October 2018 (Tans and Keeling). Since monthly carbon dioxide level is recorded over time, 
one approach to modeling the carbon dioxide level is to use a time series model. In this study, 
our team will identify and model the data with time series methods, analyze the long-term trend, 
and utilize the moving average method to “smooth out” these seasonal fluctuations and forecast 
future carbon dioxide levels. 
 
Data Summary 
We generated scatter plots with MINITAB to explore average carbon dioxide trends across 
recent years. The graph shows a clear long-term increasing trend of carbon dioxide levels 
during the ten year period of interest (Figure 1). From the visual, we observed that average 
carbon dioxide levels rise earlier in the year, decrease around mid-year, and then increase into 
the next calendar year. This trend continues across the years in this subsample and the 
complete dataset and is consistent with our expected pattern of carbon dioxide emission level 
(Figure 2). 
 
Methodology 
For the focus of this report, we will explore the moving averages smoothing method. The main 
assumption of forecasting with a moving averages model is that the model is constant (Jensen). 
This implies that the parameters don’t change as time changes, and the mean response value 
shows a linear trend during the period of interest. Also, it is important that the time variable 
under consideration is consistent, meaning that if the monthly data is of interest each 
observation used for the moving average should be the monthly data. For our analysis, monthly 
index values were calculated to estimate the effect of month on average carbon dioxide levels. 
These monthly index values can be utilized to forecast future average carbon dioxide levels 
across months with consideration of the long-term trend and the seasonal variation trend. 
 
 



Analysis 
Model 1: 12-point Moving Averages 

 
The forecasted value for average carbon dioxide level in October 2018 was of 407.8940 with a 
95% prediction interval of 402.8120 to 412.9780. As we have observed a seasonal trend, the 
final forecasted value is calculated as 407.894 multiplied weighted with the seasonal index for 
October. Our Model 1 forecast with the seasonal index is 405.43. 
 
Model 2: Linear Regression Model with Seasonal Variation 
Model 2 was developed as a linear time series model with monthly dummy variables (x1, ..., x11) 
to account for seasonal variation we observed during exploratory data analysis. From the Model 
2 regression results, the observed p-value on the global F-test below the 0.05 threshold led us 
to reject the null hypothesis which suggests that at least one of the included variables is 
statistically significant for predicting monthly carbon dioxide level (Table 1). The October 2018 
prediction from Model 2 yielded a forecast of 405.6228 and a 95% prediction interval of 
404.4995 to 406.7462. Model 2 relies on the assumption of independent errors, so to check for 
residual correlation, we conducted a Durbin-Watson test and found the p-value for negative 
autocorrelation is 1.000 which suggests there is autocorrelation in the error term (Table 2). 

 
Model 3: Time Series Model with First Order Autoregressive Errors  
Model 3 assumes that the average carbon dioxide level in month t will be highly correlated with 
the average carbon dioxide level in the previous month, month t-1. However, different than the 
other two models, Model 3 doesn’t take seasonal variation into account, but accounts for the 
autocorrelation in the error term. For model assumptions, we checked the lack of fit and 
constant variance assumptions by visual analysis of the residual plot (Figure 3). From the plots, 
we determined that the residuals don’t exhibit a distinctive pattern or trend, and appear to be 
evenly distributed around zero. As well, the lack of a “fanning” in or out pattern and the spread 
of residuals around the mean is consistent across time, so the assumption of homoscedasticity 
is also satisfied. We then affirmed the normality assumption by examining the residual 
histogram, which showed that the distribution is pretty symmetric (Figure 4). Therefore, all 
assumptions for Model 3 are satisfied. From a SAS regression, the forecasted value of average 



carbon dioxide level in October 2018 based on Model 3 is 406.0895 with a 95% confidence 
interval of 403.5892 to 408.5898 (Table 3). 
 
Conclusion 
Best Model and Interpretation  
Since the distinct modeling methods make it difficult to compare model utility with a statistical 
test, our principal decision for goodness of fit is based on comparing each model’s forecast for 
October 2018. The actual measured carbon dioxide level for October 2018 is 406.00, and the 
closest model was Model 3. Model 3 assumes that the average carbon dioxide level in any 
given month will be closely related with the average carbon dioxide level in the previous month. 
Unlike Model 1 and Model 2, Model 3 measures the increase and decrease in carbon dioxide 
levels and does not provide explanation for seasonal variation across months. As well, Model 3 
saw a smaller 95% prediction interval when compared to Model 1. Although Model 2 had an 
even smaller range of possible values than the third, it violated the regression error assumption 
independence, and thus we opted not to proceed with the model. From our exploration, we 
believe that considering the seasonal trend is very important to predicting the mean monthly 
carbon dioxide levels. However, Model 3 only serves as a good predictor of the next month’s 
values given current data. From a forecasting perspective, a model’s predictions will become 
less accurate the further the projection, and this is an important consideration when assessing 
our models. 
 
Recommendations for Future Research 
This study was successful in assessing the positives and negatives of a variety of forecasting 
methods. Future researchers should be aware of the problem of extrapolation, as any model 
that makes predictions about the future based on current data will run into the issue of 
extrapolation. In working with the models assessed in this study, it is important that the models 
are updated with current data to note any change in the observed trends. There is also the issue 
of negative autocorrelation in the data, as the measured carbon dioxide levels are not 
independent. This must be taken into consideration when building a model to predict carbon 
dioxide levels, as shown from our research, as the carbon dioxide levels of one month are 
closely related to the previous month. For our study, although we used first-order autoregressive 
errors to account for the dependence, there might be a better autoregressive model than the 
one we used.  
 
Our study focused on measuring average carbon dioxide levels across months and observing 
the clear seasonal and long-term trends. Thus, our model can be utilized to note any changes in 
the trend which would suggest a detrimental impact on the environment. For future studies to 
diagnose the question of the relationship of climate change and carbon dioxide levels, it is 
crucial to dig deeper into the causes of changing carbon dioxide levels and explore our question 
from various perspectives. For the sake of our ecosystem and society, it is critical to analyze 
carbon dioxide levels, identify contributors to change in the carbon dioxide levels, and 
implement societal changes to keep our planet healthy. 
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Appendix 
 

 
Figure 1: MINITAB scatter plot of monthly average carbon dioxide level from January 2008 to 
October 2018. The time variable is indicated as t. A long-term trend is apparent across the most 
recent 10 years, as well as seasonal variation. 
 

 
Figure 2: MINITAB scatterplot of average carbon dioxide level from January 2014 to October 
2018, focusing on a smaller portion of the data. Time is indicated in years. The long-term and 
seasonal variation trends continue. This plot gives us a clear idea of carbon dioxide fluctuation 
across months with the sample pattern across years. 
 
 
 



Variable Estimate SE p-value 

Time 0.1944 0.0013 <.0001 

January 1.1606 0.2234 <.0002 

February 1.6499 0.2234 <.0003 

March 2.3692 0.2234 <.0004 

April 3.5557 0.2234 <.0005 

May 4.1186 0.2234 <.0006 

June 3.1252 0.2234 <.0007 

July 1.2436 0.2234 <.0008 

August -1.0245 0.2234 <.0009 

September -2.607 0.2234 <.0010 

October -2.5993 0.2234 <.0011 

November -1.2476 0.2392 <.0012 

Intercept 382.9552 0.1887 <.0013 
Table 1: The results for Model 2 are summarized above. The global F-test (p<.0001) led us to 
reject the null hypothesis that all parameter estimates were equal to zero. From the output, 
parameters for Model 2 are significant at alpha = .05 level. 
 

 
Table 2: A Durbin-Watson test was conducted to test for correlation of the error term in Model 2. 
From the results, the p-value for negative autocorrelation is 1.000, suggesting there is 
correlation in the error term and an autocorrelation term should be added to the model. 
 
 

 



 
Table 3: Included above is the ARIMA output of Model 3, our time series model with a first order 
autocorrelation term. The ARIMA procedure includes the estimated parameters for the 
prediction equation and the forecasted carbon dioxide level in October, 2018:  4.0895.  
 

 
Figure 3: The SAS residual plot for carbon dioxide level against time from Model 3. From visual 
analysis, there is no apparent pattern in the residuals. 

 
Figure 4: Above is the Model 3 residual histogram. The distribution of residuals shows a 
symmetric bell shape which is very close to normal distribution. We conclude that the residuals 
sufficiently follow a normal distribution and our Model 3 can be assumed normal. 


